Chapter 43 : Evolution of Bacillus anthracis, Causative Agent of Anthrax

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Evolution of Bacillus anthracis, Causative Agent of Anthrax, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap43-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap43-2.gif


Bacillus anthracis is the causative agent of anthrax, primarily a disease of herbivores but also a serious threat to humans when introduced into their environment by natural or nefarious means. The anthrax toxin complex is separated into three protein components called edema factor (EF), lethal factor (LF), and protective antigen (PA). It is clear that the classical anthrax-associated strains are monophyletic and that their global distribution is due to a clonal expansion. Important anthrax virulence factors are likely to have evolved before this phylogenetic bifurcation and are thus found in non-B. anthracis strains, some of which are even associated with severe pathological conditions. B. cereus sensu lato contains numerous pathogenic types whose attributes are controlled or greatly modified by virulence genes on large plasmids. The monophyletic population structure of B. anthracis sensu stricto contains at least three major and multiple minor clonal genetic divisions, estimated by several different molecular genetic methods that largely agree. Full virulence of B. anthracis and the manifestation of anthrax requires both capsule production, pXO2, and the tripartite toxin on pXO1. The pleiotropic effects of the plcR inactivation result in numerous phenotypic deficiencies that would impair strains from existing opportunistic pathogens in the environment.

Citation: Keim P, Pearson T, Okinaka R. 2008. Evolution of Bacillus anthracis, Causative Agent of Anthrax, p 523-533. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch43
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Phylogeny within the B. cereus sensu lato. The B. cereus sensu lato subgroup forms three distinct phylogenetic clusters that are shown in this unrooted phylogram. The specific lineages described by Priest et al. (2004) are located in two large clusters labeled Anthracis and Cereus and Tolworthi, Kurstaki, Sotto, and Thuringiensis. Included in this tree are three of the closest relatives of B. anthracis: B. cereus E33L, B. thuringiensis 97-27, and B. cereus D17. The depiction within each of the clusters is not to scale but illustrates the general relationship between the different lineages.

Citation: Keim P, Pearson T, Okinaka R. 2008. Evolution of Bacillus anthracis, Causative Agent of Anthrax, p 523-533. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Population structure of B. anthracis. The population structure of B. anthracis has been estimated from over 1,000 SNP characters (Pearson et al., 2004). This is a highly robust model that contains very few character state disagreements. B. anthracis evolved from a B. cereus relative through the acquisition of two virulence plasmids, pXO1 and pXO2. The loss of plcR function has been postulated as critical to the maintenance of pXO1 and for dramatically altering other phenotypes of B. anthracis. Major lineages within B. anthracis include the A, B, and C branches. The A branch dominates worldwide anthrax outbreaks; the B branch strains are important in certain geographic regions, while the C branch strains are extremely rare (M. N. van Ert, unpublished data).

Citation: Keim P, Pearson T, Okinaka R. 2008. Evolution of Bacillus anthracis, Causative Agent of Anthrax, p 523-533. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agaisse, H.,, M. Gominet,, O. A. Okstad,, A. B. Kolsto, and, D. Lereclus. 1999. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32:10431053.
2. Aronson, A. I.,, W. Beckman, and, P. Dunn. 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50:124.
3. Aronson, A. I.,, C. Bell, and, B. Fulroth. 2005. Plasmid-encoded regulator of extracellular proteases in Bacillus anthracis. J. Bacteriol. 187:31333138.
4. Aronson AI. 1993. Insecticidal toxins, p. 953963. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, DC.
5. Ash, C.,, J. A. Farrow,, M. Darsh,, E. Stackebrandt, and, M. D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus and related species on the baseis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41:343346.
6. Berry, C.,, S. O’Neil,, E. Ben-Dov,, A. F. Jones,, L. Murphy,, M. A. Quail, et al. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68:50825095.
7. Bongiorni, C.,, R. Stoessel,, D. Shoemaker, and, M. Perego. 2006. Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J. Bacteriol. 188:487498.
8. Bragg, T. S., and, D. L. Robertson. 1989. Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene 81:4554.
9. Carlson, C. R.,, D. A. Caugant, and, A. B. Kolsto. 1994. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60:17191725.
10. Christensen, K. A.,, B. A. Krantz, and, R. J. Collier. 2006. Assembly and disassembly kinetics of anthrax toxin complexes. Biochemistry 45:23802386.
11. Collier, R. J., and, J. A. Young. 2003. Anthrax toxin. Annu. Rev. Cell. Dev. Biol. 19:4570.
12. Collier, R. J. 1999. Mechanism of membrane translocation by anthrax toxin: insertion and pore formation by protective antigen. J. Appl. Microbiol. 87:283.
13. Collins, M. D., and, A. K. East. 1998. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J. Appl. Microbiol. 84:517.
14. Daffonchio, D.,, A. Cherif,, L. Brusetti,, A. Rizzi,, D. Mora,, A. Boudabous, et al. 2003. Nature of polymorphisms in 16S-23S rRNA gene intergenic transcribed spacer fingerprinting of BacillusB and related genera. Appl. Environ. Microbiol. 69:51285137.
15. De Palmenaer, D.,, C. Vermeiren, and, J. Mahillon. 2004. IS231-MIC231 elements from Bacillus cereus sensu lato are modular. Mol. Microbiol. 53:457467.
16. Drysdale, M.,, A. Bourgogne, and, T. M. Koehler. 2005. Transcriptional analysis of the Bacillus anthracis capsule regulators. J. Bacteriol. 187:51085114.
17. Easterday, W. R.,, M. N. Van Ert,, T. S. Simonson,, D. M. Wagner,, L. J. Kenefic,, C. J. Allender, et al. 2005. Use of single nucleotide polymorphisms in the plcR gene for specific identification of Bacillus anthracis. J. Clin. Microbiol. 43:19951997.
18. Fouet, A.,, J. C. Sirard, and, M. Mock. 1994. Bacillus anthracis pXO1 virulence plasmid encodes a type 1 DNA topoisomerase. Mol. Microbiol. 11:471479.
19. Fouet, A.,, K. L. Smith,, C. Keys,, J. Vaissaire,, C. Le Doujet,, M. Levy, et al. 2002. Diversity among French Bacillus anthracis isolates. J. Clin. Microbiol. 40:47324734.
20. Friedlander, A. M. 1986. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261:71237126.
21. Gierczynski, R.,, S. Kaluzewski,, A. Rakin,, M. Jagielski,, A. Zasada,, A. Jakubczak, et al. 2004. Intriguing diversity of Bacillus anthracis in eastern Poland—the molecular echoes of the past outbreaks. FEMS Microbiol. Lett. 239:235240.
22. Gladstone, G. P. 1946. Immunity to anthrax: protective antigen present in cell-free culture filtrates. Br. J. Exp. Pathol. 27:349348.
23. Gonzalez, J. M.,, H. T. Dulmage, and, B. C. Carlton. 1981. Correlation between plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5:352365.
24. Green, B. D.,, L. Battisti,, T. M. Koehler,, C. B. Thorne, and, B. E. Ivins. 1985a. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49:291297.
25. Guidi-Rontani, C.,, Y. Pereira,, S. Ruffie,, J. C. Sirard,, M. Weber-Levy, and, M. Mock. 1999. Identification and characterization of a germination operon on the virulence plasmid pXO1 of Bacillus anthracis. Mol. Microbiol. 33:407414.
26. Han, C. S.,, G. Xie,, J. F. Challacombe,, M. R. Altherr,, S. S. Bhotika,, D. Bruce, et al. 2006. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol. 188:33823390.
27. Helgason, E.,, D. A. Caugant,, I. Olsen, and, A. B. Kolsto. 2000a. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J. Clin. Microbiol. 38:16151622.
28. Helgason, E.,, O. A. Okstad,, D. A. Caugant,, H. A. Johansen,, A. Fouet,, M. Mock, et al. 2000b. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66:26272630.
29. Helgason, E.,, N. J. Tourasse,, R. Meisal,, D. A. Caugant, and, A. B. Kolsto. 2004. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl. Environ. Microbiol. 70:191201.
30. Hill, K. K.,, L. O. Ticknor,, R. T. Okinaka,, M. Asay,, H. Blair,, K. A. Bliss, et al. 2004. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 70:10681080.
31. Hoffmaster, A. R.,, K. K. Hill,, J. E. Gee,, C. K. Marston,, B. K. De,, T. Popovic,, D. Sue,, P. P. Wilkins,, S. B. Avashia,, R. Drumgoole,, C. H. Helma,, L. O. Ticknor,, R. T. Okinaka, and, P. J. Jackson. 2006. Characterization of Bacillus cereus isolates associated with fatal pneumonias: isolates are closely related to B. anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 44:33523360.
32. Hoffmaster, A. R., and, T. M. Koehler. 1999. Autogenous regulation of the Bacillus anthracis pag operon. J. Bacteriol. 181:44854492.
33. Hoffmaster, A. R.,, J. Ravel,, D. A. Rasko,, G. D. Chapman,, M. D. Chute,, C. K. Marston, et al. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 101:84498454.
34. Janniere, L.,, A. Gruss, and, S. D. Ehrlich. 1993. Plasmids, p. 625. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, DC.
35. Keim, P.,, A. Kalif,, J. Schupp,, K. Hill,, S. E. Travis,, K. Richmond, et al. 1997. Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J. Bacteriol. 179:818824.
36. Keim, P.,, L. B. Price,, A. M. Klevytska,, K. L. Smith,, J. M. Schupp,, R. Okinaka, et al. 2000. Multiplelocus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol. 182:29282936.
37. Keim, P.,, M. N. Van Ert,, T. Pearson,, A. J. Vogler,, L. Y. Huynh, and, D. M. Wagner. 2004. Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect. Genet. Evol. 4:205213.
38. Klee, S. R.,, O. Muhsin,, B. Appel,, C. Boesch,, H. Ellerbrook,, D. Jacob, et al. 2006. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J. Bacteriol. 188:53335344.
39. Koehler, T. M.,, Z. Dai, and, M. Kaufman-Yarbray. 1994. Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J. Bacteriol. 176:586595.
40. Koehler, T. M. 2002. Bacillus anthracis genetics and virulence gene regulation, p. 144164. In T. M. Koehler, (ed.), Anthrax. Springer-Verlag, Heidelberg.
41. Krywienczyk, H.,, H. T. Dulmage, and, P. G. Fast. 1978. Occurrence of two serologically distinct groups within Bacillus thuringiensis serotype 3ab var. kurstaki. J. Invertebr. Pathol. 31:372375.
42. Lacy, D. B., and, R. J. Collier. 2002. Structure and function of anthrax toxin. Curr. Top. Microbiol. Immunol. 271:6185.
43. Lan, R., and, P. R. Reeves. 2001. When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol. 9:419424.
44. Leendertz, F. H.,, H. Ellerbrok,, C. Boesch,, E. Couacy-Hymann,, K. Matz-Rensing,, R. Hakenbeck, et al. 2004. Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430:451452.
45. Leonard, C.,, Y. Chen, and, J. Mahillon. 1997. Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology 143:25372547.
46. Liddington, R.,, A. Pannifer,, P. Hanna,, S. Leppla, and, R. J. Collier. 1999. Crystallographic studies of the anthrax lethal toxin. J. Appl. Microbiol. 87:282.
47. Mahillon, J.,, R. Rezsohazy,, B. Hallet, and, J. Delcour. 1994. IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93:1326.
48. Makino, S.,, I. Uchida,, N. Terakado, and, M. Yoshikawa. 1989. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 177:66196624.
49. Mignot, T.,, M. Mock,, D. Robichon,, A. Landier,, D. Lereclus, et al. 2001. The incompatibility beween the plcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol. Microbiol. 42:11891198.
50. Mikesell, P.,, B. E. Ivins,, J. D. Ristroph, and, T. M. Dreier. 1983. Evidence for plasmid mediated toxin production in Bacillus anthracis. Infect. Immun. 39:371376.
51. Miller, C. J.,, J. L. Elliott, and, R. J. Collier. 1999. Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38:1043210441.
52. Mock, M.,, E. Labruyere,, P. Glaser,, A. Danchin, and, A. Ullmann. 1988. Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene 64:277284.
53. Okinaka, R. T.,, K. Cloud,, O. Hampton,, A. R. Hoffmaster,, K. K. Hill,, P. Keim, et al. 1999. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181:65096515.
54. Okinaka, R.,, T. Pearson, and, P. Keim. 2006. Anthrax, but not Bacillus anthracis? PLoS Pathog. 2(111): e122. doi:10.1371/journal.ppat.0020122.
55. Okstad, O. A.,, M. Gominet,, B. Purnelle,, M. Rose,, D. Lereclus, and, A. B. Kolsto. 1999. Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145:31293138.
56. Pannifer, A. D.,, T. Y. Wong,, R. Schwarzenbacher,, M. Renatus,, C. Petosa,, J. Bienkowska, et al. 2001. Crystal structure of the anthrax lethal factor. Nature 414:229233.
57. Pannucci, J.,, R. T. Okinaka,, R. Sabin, and, C. R. Kuske. 2002a. Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J. Bacteriol. 184:134141.
58. Pannucci, J.,, R. T. Okinaka,, E. Williams,, R. Sabin,, L. O. Ticknor, and, C. R. Kuske. 2002b. DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics 3:34.
59. Pearson, T.,, J. D. Busch,, J. Ravel,, T. D. Read,, S. D. Rhoton,, J. M. U’Ren, et al. 2004. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc. Natl. Acad. Sci. USA 101:1353613541.
60. Priest, F. G.,, M. Barker,, L. W. Baillie,, E. C. Holmes, and, M. C. Maiden. 2004. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 186:79597970.
61. Priest, F. G. 1993. Systematics and ecology of Bacillus, p. 316. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick, (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, DC.
62. Rasko, D. A.,, J. Ravel,, O. A. Okstad,, E. Helgason,, R. Z. Cer,, L. Jiang,, K. A. Shores,, D. E. Fouts,, N. J. Tourasse,, S. V. Angiuoli,, J. Kolonay,, W. C. Nelson,, A. B. Kolsto,, C. M. Fraser, and, T. D. Read. 2004. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32:977988.
63. Read, T. D.,, S. N. Peterson,, N. Tourasse,, L. W. Baillie,, I. T. Paulsen,, K. E. Nelson, et al. 2003. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:8186.
64. Robertson, D. L.,, M. T. Tippetts, and, S. H. Leppla. 1988. Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase. Gene 73:363371.
65. Saile, E., and, T. M. Koehler. 2006. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl. Environ. Microbiol. 72:31683174.
66. Schnepf, E.,, N. Crickmore,, J. Van Rie,, D. Lereclus,, J. Baum,, J. Feitelson, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775806.
67. Smith, H.,, J. Keppie,, J. L. Stanley, and, P. W. Harris-Smith. 1955. The chemical basis of the virulence of Bacillus anthracis. IV. Secondary shock as the major factor in death of guinea-pigs from anthrax. Br. J. Exp. Pathol. 36:323335.
68. Smith, K. L.,, V. DeVos,, H. Bryden,, L. B. Price,, M. E. Hugh-Jones, and, P. Keim. 2000. Bacillus anthracis diversity in Kruger National Park. J. Clin. Microbiol. 38:37803784.
69. Stanley, J. L., and, H. Smith. 1961. Purification of factor I and recognition of a third factor of the anthrax toxin. J. Gen. Microbiol. 26:4963
70. Thorne, C. B. 1993. Bacillus anthracis, p. 113126. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick, (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, DC.
71. Tinsley, E., and, S. A. Khan. 2006. A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J. Bacteriol. 188:28292835.
72. Tippetts, M. T., and, D. L. Robertson. 1988. Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase. J. Bacteriol. 170:22632266.
73. Turnbull, P. C. B. 2002. Introduction: anthrax history, disease and ecology, p. 120. In T. Koehler, (ed.) Anthrax. Springer-Verlag, Berlin Heidelberg, Germany.
74. Uchida, I.,, S. Makino,, C. Sasakawa,, M. Yoshikawa,, C. Sugimoto, and, N. Terakado. 1993. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol. Microbiol. 9:487496.
75. Uchida, I.,, T. Sekizaki,, K. Hashimoto, and, N. Terakado. 1985b. Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid. J. Gen. Microbiol. 131:363367.
76. Van Ert, M. N.,, W. R. Easterday,, L. Y. Huynh,, R. T. Okinaka,, M. E. Hugh-Jones et al. 2007. Global genetic population structure of Bacillus anthracis. PLoS ONE 2:e461. doi:10. 1371/journal.pone.0000461.
77. Van Ness, G. B. 1971. Ecology of anthrax. Science 172:13031307.
78. Vietri, N. J.,, R. Marrero,, T. A. Hoover, and, S. L. Welkos. 1995. Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene 152:19.
79. Welkos, S. L.,, J. R. Lowe,, F. Eden-McCutchan,, M. Vodkin,, S. H. Leppla, and, J. J. Schmidt. 1988. Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69:287300.
80. Zhang, R., and, C. T. Zhang. 2003. Identification of genomic islands in the genome of Bacillus cereus by comparative analysis with Bacillus anthracis. Physiol. Genomics 16:1923.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error