Chapter 46 : The Pneumococcus: Population Biology and Virulence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Pneumococcus: Population Biology and Virulence, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap46-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap46-2.gif


Streptococcus pneumoniae disease has been a major cause of mortality throughout human history, causing serious invasive diseases such as pneumonia, bacteremia, septicemia, and meningitis. In common with other bacteria colonizing the nasopharynx, S. pneumoniae rarely causes invasive disease despite its prevalence in the population. The precise regulation of virulence factors in pneumococci is essential as the organism changes from colonizing the nasopharynx and surviving in and invading the lung before entering the bloodstream and cerebrospinal fluid. Studies have found 13 putative two-component signal-transduction systems in S. pneumoniae, and early studies suggest that these systems regulate expression of virulence loci in response to environmental stimuli as has been found in other bacterial pathogens. The S. pneumoniae capsule is an obvious feature of the organism when viewed on blood agar, and it serves a key role in both virulence and immune evasion. Increasing rates of antibiotic resistance have been found in studies in many countries, prompting the most alarmist of commentators to speculate about a return to the preantibiotic era. The pneumococcal capsular polysaccharide was the first virulence factor identified in the species. Pneumococcal capsular polysaccharide genes are not always reliable markers of the strain genetic background, as early studies using multilocus enzyme electrophoresis (MLEE) showed. MLEE examines allelic diversity at a number of housekeeping gene loci by comparing the mobility of their gene products on starch gels. The development of automated DNA sequencing allowed the development of multilocus sequence typing (MLST), which is based on the sound evolutionary theory underlying MLEE.

Citation: Enright M. 2008. The Pneumococcus: Population Biology and Virulence, p 557-563. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch46
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adegbola, R. A.,, P. C. Hill,, O. Secka,, U. N. Ikumapayi,, G. Lahai,, B. M. Greenwood, et al. 2006. Serotype and antimicrobial susceptibility patterns of isolates of Streptococcus pneumoniae causing invasive disease in The Gambia 1996–2003. Trop. Med. Int. Health 11(7): 11281135.
2. Austrian, R., and, J. Gold. 1964. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann. Intern. Med. 60:759776.
3. Barber, M., and, M. Rozwadowska-Dowzenko. 1948. Infection by penicillin-resistant staphylococci. Lancet ii:641644.
4. Bentley, S. D.,, D. M. Aanensen,, A. Mavroidi,, D. Saunders,, E. Rabbinowitsch,, M. Collins, et al. 2006. Genetic analyses of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2:e31.
5. Berry, A. M., and, J. C. Paton. 2000. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 68:133140.
6. Berry, A. M., and, J. C. Paton. 1996. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect. Immun. 64:52555262.
7. Black, S.,, H. Shinefield,, B. Fireman,, E. Lewis,, P. Ray,, J. R. Hansen, et al. 2000. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 19:187195.
8. Brueggemann, A. B.,, D. T. Griffiths,, E. Meats,, T. Peto,, D. W. Crook, and, B. G. Spratt. 2003. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotypeand clone-specific differences in invasive disease potential. J. Infect. Dis. 187:14241432.
9. Canvin, J. R.,, A. P. Marvin,, M. Sivakumaran,, J. C. Paton,, G. J. Boulnois,, P. W. Andrew, et al. 1995. The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J. Infect. Dis. 172:119123.
10. Centers for Disease Control and Prevention (CDC). 2000. Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbid. Mortal. Wkly. Rep. Recomm. Rep. 49:135.
11. Centers for Disease Control and Prevention (CDC). 1997. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbid. Mortal. Wkly. Rep. Reccom. Rep. 46:124.
12. Coffey, T. J.,, C. G. Dowson,, M. Daniels, and, B. G. Spratt. 1995. Genetics and molecular biology of beta-lactam-resistant pneumococci. Microb. Drug Resist. 1:2934.
13. Coffey, T. J.,, C. G. Dowson,, M. Daniels,, J. Zhou,, C. Martin,, B. G. Spratt, et al. 1991. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol. Microbiol. 5:22552260.
14. Coffey, T. J.,, M. C. Enright,, M. Daniels,, J. K. Morona,, R. Morona,, W. Hryniewicz, et al. 1998. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol. Microbiol. 27:7383.
15. Dowson, C. G.,, A. Hutchison, and, B. G. Spratt. 1989. Extensive re-modelling of the transpeptidase domain of penicillin-binding protein 2B of a penicillin-resistant South African isolate of Streptococcus pneumoniae. Mol. Microbiol. 3:95102.
16. Dziejman, M., and, J. J. Mekalanos. 1995. Two-component signal transduction and its role in the expression of bacterial virulence, p. 305317. In J. A. Hoch and, T. J. Silhavy (ed.), Two-Component Signal Transduction. American Society for Microbiology, Washington DC.
17. EARSS. 2004. European Antimicrobial Resistance Surveillance System Annual Report.
18. Enright, M., and, B. Spratt. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144:30493060.
19. Enright, M. C., and, B. G. Spratt. 1999. Multilocus sequence typing. Trends Microbiol. 7:482487.
20. Eskola, J.,, T. Kilpi,, A. Palmu,, J. Jokinen,, J. Haapakoski,, E. Herva, et al. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344:403409.
21. Feikin, D. R., and, K. P. Klugman. 2002. Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines. Clin. Infect. Dis. 35:547555.
22. Feil, E. J.,, B. C. Li,, D. M. Aanensen,, W. P. Hanage, and, B. G. Spratt. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multi-locus sequence typing data. J. Bacteriol. 186:15181530.
23. Feil, E. J.,, M. C. Maiden,, M. Achtman, and, B. G. Spratt. 1999. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol. Biol. Evol. 16:14961502.
24. Feil, E. J.,, J. M. Smith,, M. C. Enright, and, B. G. Spratt. 2000. Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics 154:14391450.
25. Golden, R. L. 1992. Osler’s legacy: the centennial of The Principles and Practice of Medicine. Ann. Intern. Med. 116:255260.
26. Hager, W. D., and, P. S. McDaniel. 1983. Treatment of serious obstetric and gynecologic infections with cefoxitin. J. Reprod. Med. 28:337340.
27. Hanage, W. P.,, K. Auranen,, R. Syrjanen,, E. Herva,, P. H. Makela,, T. Kilpi, et al. 2004. Ability of pneumococcal serotypes and clones to cause acute otitis media: implications for the prevention of otitis media by conjugate vaccines. Infect. Immun. 72:7681.
28. Hausdorff, W. P.,, J. Bryant,, P. R. Paradiso, and, G. R. Siber. 2000. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use. Part I. Clin. Infect. Dis. 30:100121.
29. Hausdorff, W. P.,, G. Siber, and, P. R. Paradiso. 2001. Geographical differences in invasive pneumococcal disease rates and serotype frequency in young children. Lancet 357:950952.
30. Jacobs, M. R.,, H. J. Koornhof,, R. M. Robins-Browne,, C. M. Stevenson,, Z. A. Vermaak,, I. Freiman, et al. 1978. Emergence of multiply resistant pneumococci. N. Engl. J. Med. 299:735740.
31. Lange, R.,, C. Wagner,, A. de Saizieu,, N. Flint,, J. Molnos,, M. Stieger, et al. 1993. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237:223234.
32. Lopez, A. D.,, C. D. Mathers,, M. Ezzati,, D. T. Jamison, and, C. J. Murray. 2006. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:17471757.
33. Lund, E., and, J. Henrichsen. 1978. Laboratory diagnosis, serology and epidemiology of Streptococcus pneumoniae. Methods Microbiol. 12:241262.
34. Maiden, M. C.,, J. A., Bygraves,, E. Feil,, G. Morelli,, J. E. Russell,, R. Urwin, et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95:31403145.
35. Manco, S.,, F. Hernon,, H. Yesilkaya,, J. C. Paton,, P. W. Andrew, and, A. Kadioglu. 2006. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect. Immun. 74:40144020.
36. McDougal, L. K.,, R. Facklam,, M. Reeves,, S. Hunter,, J. M. Swenson,, B. C. Hill, et al. 2001. Analysis of multiply antimicrobial-resistant isolates of Streptococcus pneumoniae from the United States. Antimicrob. Agents Chemother. 36:21762184.
37. McGee, L.,, L. McDougal,, J. Zhou,, B. G. Spratt,, F. C. Tenover,, R. George, et al. 2001. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J. Clin. Microbiol. 39:25652571.
38. Meats, E.,, A. B. Brueggemann,, M. C. Enright,, K. Sleeman,, D. T. Griffiths,, D. W. Crook, et al. 2003. Stability of serotypes during nasopharyngeal carriage of Streptococcus pneumoniae. J. Clin. Microbiol. 41:386392.
39. Mitchell, T. J. 2000. Virulence factors and the pathogenesis of disease caused by Streptococcus pneumoniae. Res. Microbiol. 151:413419.
40. Moxon, E. R., and, J. S. Kroll. 1990. The role of bacterial polysaccharide capsules as virulence factors. Curr. Top. Microbiol. Immunol. 150:6585.
41. Mufson, M. A.,, D. M. Kruss,, R. E. Wasil, and, W. I. Metzger. 1974. Capsular types and outcome of bacteremic pneumococcal disease in the antibiotic era. Arch. Intern. Med. 134:505510.
42. Munoz, R.,, T. J. Coffey,, M. Daniels,, C. G. Dowson,, G. Laible,, J. Casal, et al. 1991. Intercontinental spread of a multiresistant clone of serotype 23F Streptococcus pneumoniae. J. Infect. Dis. 164:302306.
43. Oppenheim, B.,, H. J. Koornhof, and, R. Austrian. 1986. Antibiotic-resistant pneumococcal disease in children at Baragwanath Hospital, Johannesburg. Pediatr. Infect. Dis. 5:520524.
44. Paradisi, F.,, G. Corti, and, R. Cinelli. 2001. Streptococcus pneumoniae as an agent of nosocomial infection: treatment in the era of penicillin-resistant strains. Clin. Microbiol. Infect. 7(Suppl 4): 3442.
45. Pasteur, L. 1881. Note sur la maladie nouvelle provoque par la salive d’un enfant mort de la rage. Bull. Acad. Méd. 10:94103.
46. Schuchat, A.,, K. Robinson,, J. D. Wenger,, L. H. Harrison,, M. Farley,, A. L. Reingold, et al. 1997. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N. Engl. J. Med. 337:970976.
47. Sibold, C.,, J. Wang,, J. Henrichsen, and, R. Hakenbeck. 1992. Genetic relationships of penicillin-susceptible and -resistant Streptococcus pneumoniae strains isolated on different continents. Infect. Immun. 60:41194126.
48. Smith, J. M.,, C. G. Dowson, and, B. G. Spratt. 1991. Localized sex in bacteria. Nature 349:2931.
49. Smith, J. M.,, N. H. Smith,, M. O’Rourke, and, B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:43844388.
50. Spratt, B. G., and, B. M. Greenwood. 2000. Prevention of pneumococcal disease by vaccination: does serotype replacement matter? Lancet 356:12101211.
51. Standish, A. J.,, U. H. Stroeher, and, J. C. Paton. 2005. The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 102:77017706.
52. Sternberg, G. M. 1881. A fatal form of septicaemia in the rabbit, produced by subcutaneous injection of human saliva. An experimental research. Natl. Board Health Bull. 2:781783.
53. Syrjanen, R. K.,, T. M. Kilpi,, T. H. Kaijalainen,, E. E. Herva, and, A. K. Takala. 2001. Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J. Infect. Dis. 184:451459.
54. Throup, J. P.,, K. K. Koretke,, A. P. Bryant,, K. A. Ingraham,, A. F. Chalker,, Y. Ge, et al. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35:566576.
55. Tilghman, R. C., and, M. Finland. 1937. Clinical significance of bacteremia in pneumococcal pneumonia. Arch. Intern. Med. 59:602619.
56. Tilley, S. J.,, E. V. Orlova,, R. J. Gilbert,, P. W. Andrew, and, H. R. Saibil. 2005. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247256.
57. Weiser, J. N.,, D. Bae,, C. Fasching,, R. W. Scamurra,, A. J. Ratner, and, E. N. Janoff. 2003. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100:42154220.
58. Zhou, J.,, M. C. Enright, and, B. G. Spratt. 2000. Identification of the major Spanish clones of penicillin-resistant pneumococci via the Internet using multilocus sequence typing. J. Clin. Microbiol. 38:977986.


Generic image for table
Table 1.

Properties of 10 pneumococcal clones a

Citation: Enright M. 2008. The Pneumococcus: Population Biology and Virulence, p 557-563. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch46

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error