1887

Chapter 1 : High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap01-2.gif

Abstract:

This chapter aims to give an outline of the effect of high hydrostatic pressure on proteins, lipids, nucleic acids, and their interactions and provide a thermodynamic and kinetic framework to describe these effects. The pressure effects of single-component systems (e.g., a protein in solution) are then related to the viability of microorganisms under extremes of high hydrostatic pressure. A temperature increase will cause a volume expansion, and an increase in pressure will cause a reduction in volume. If, however, as in the case of water, the forces are strong, then an increase in temperature might actually decrease the volume, as is observed between 0 and 4°C, where it reaches its maximum density under ambient pressure conditions. The above-mentioned general principles become even clearer when the effect of pressure on the melting temperature (dT/dp) of solid hydrocarbons and ice is considered. Proteins similar to the prion proteins involved in bovine spongiform encephalopathy and Creutzfeldt-Jakob’s disease also occur, for instance, in yeasts. Mapping structural features of biomolecules in the pressure-temperature plane is an important research topic for the molecular biologist to see which state of biomolecules is physiologically relevant. Mapping structural features of biomolecules in the pressure-temperature plane is an important research topic for the molecular biologist to see which state of biomolecules is physiologically relevant.

Citation: Meersman F, Heremans K. 2008. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology, p 1-17. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch1

Key Concept Ranking

Outer Membrane Proteins
0.4881024
Bovine Spongiform Encephalopathy
0.428145
Transmissible Spongiform Encephalopathies
0.4232797
0.4881024
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Isokineticity profiles of the inactivation of a bacterium and a yeast as a function of a combined pressure and temperature treatment. For first-order reactions the decimal reduction time () is inversely proportional to the inactivation rate (). Similar differences in stability have been observed for proteins ( ). (Redrawn after references and .)

Citation: Meersman F, Heremans K. 2008. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology, p 1-17. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Pressure-temperature phase diagram of proteins. In zone IΔ and are positive, in zone IIΔ is negative and is positive, and in zone III both and are negative.

Citation: Meersman F, Heremans K. 2008. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology, p 1-17. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Highly schematic representation of the pressure-induced (top) and temperature-induced (bottom) denaturation of a protein. The circles represent water molecules. The first step of the pressure-induced denaturation is the insertion of water without much change in the conformation. For the temperature-induced denaturation the first step is a change in conformation of the protein.

Citation: Meersman F, Heremans K. 2008. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology, p 1-17. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Pressure-temperature phase diagram of different phospholipid bilayer systems in aqueous suspension. Single component bilayers are considered. Note the different slopes of DOPE and DOPC which are both di- unsaturated, compared to the mono--unsatured POPC. DPPC, 1,2-dipalmitoyl--glycero-3-phosphatidylcholine; DMPC, 1,2-dimyristoyl--glycero-3-phosphatidylcholine; DEPC, 1,2-dielaidoyl--glycero-3-phosphatidylcholine; POPC, 1-palmitoyl-2-oleoyl-glycero-3-phosphatidylcholine; DOPE, 1,2-dioleoyl--glycero-3-phosphatidylethanolamine; DOPC, 1,2-dioleoyl--glycero-3-phosphatidylcholine. (Adapted from reference .)

Citation: Meersman F, Heremans K. 2008. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology, p 1-17. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch01
1. Abe, F. 2004. Piezophysiology of yeast: occurrence and significance. Cell. Mol. Biol. 50:437445.
2. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
3. Bridgman, P. W. 1914. The coagulation of albumen by pressure. J. Biol. Chem. 19:511512.
4. Cacace, M. G.,, E.M. Landau, and, J. J. Ramsden. 1997. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys. 30:241277.
5. Chalikian, T. V. 2003. Volumetric properties of proteins. Annu. Rev. Biophys. Biomol. Struct. 32:207235.
6. Dubins, D. N.,, A. Lee,, R. B. Macgregor, Jr., and, T. V. Chalikian. 2001. On the stability of double stranded nucleic acids. J. Am. Chem. Soc. 123:92549259.
7. Epand, R. M. 1998. Lipid polymorphism and protein-lipid interactions. Biochim. Biophys. Acta 1376:353368.
8. Fernandes, P. M. B.,, T. Domitrovic,, C. M. Cao, and, E. Kurtenbach. 2004. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett. 556:153160.
9. Fernández García, A.,, P. Heindl,, H. Voigt,, M. Büttner,, P. Butz,, N. Tauber,, B. Tauscher, and, E. Pfaff. 2005. Dual nature of the infectious prion protein revealed by high pressure. J. Biol. Chem. 280:98429847.
10. Fujita, Y., and, Y. Noda. 1978. Effect of hydration on the thermal stability of protein as measured by differential scanning calorimetry. Bull. Chem. Soc. Jpn. 52:23492352.
11. Gibbs, A., and, G. N. Somero. 1990. Pressure adaptation of teleost gill Na+/K+-ATPase: role of lipid and protein moieties. J. Comp. Physiol. B 160:431439.
12. Goossens, K.,, L. Smeller,, J. Frank, and, K. Heremans. 1996. Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy. Eur. J. Biochem. 236:254262.
13. Hashizume, C.,, K. Kimura, and, R. Hayashi. 1995. Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci. Biotech. Biochem. 59:14551458.
14. Hawley, S. A. 1971. Reversible pressure-temperature unfolding of chymotrypsinogen. Biochemistry 10: 24362442.
15. Hawley, S. A., and, R. M. Macleod. 1974. Pressure-temperature stability of DNA in neutral salt solutions. Biopolymers 13: 14171426.
16. Heremans, K., and, L. Smeller. 1997. Pressure versus temperature behaviour of proteins. Eur. J. Solid State Inorg. Chem. 34:745758.
17. Heremans, K., and, L. Smeller. 1998. Protein structure and dynamics at high pressure. Biochim. Biophys. Acta 1386:353370.
18. Heremans, K., and, F. Wuytack. 1980. Pressure effect on the Arrhenius discontinuity in Ca2+-ATPase from sarcoplasmic reticulum. FEBS Lett. 117:161163.
19. Hummer, G.,, S. Garde,, A. E. Garcia,, M. E. Paulaitis, and, L. R. Pratt. 1998. The pressure dependence of hydrophobic interactions is consistent with the observed pressure unfolding of proteins. Proc. Natl. Acad. Sci. USA 95:15521555.
20. Ishii, A.,, T. Sato,, M. Wachi,, K. Nagai, and, C. Kato. 2004. Effect of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:19651972.
21. Kunugi, S.,, Y. Yamazaki,, K. Takano,, N. Tanaka, and, M. Akashi. 1999. Effects of ionic additives and ionic comonomers on the temperature and pressure responsive behavior of thermoresponsive polymers in aqueous solutions. Langmuir 15:40564061.
22. Landh, T. 1995. From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett. 369:1317.
23. Lindquist, S.,, S. Krobitsch,, L. Li, and, N. Sondheimer. 2001. Investigating protein conformation-based inheritance and disease in yeast. Philos. Trans. R. Soc. Lond. B 356:169176.
24. Ludwig, H.,, W. Scigalla, and, B. Sojka. 1996. Pressure- and temperature-induced inactivation of microorganisms, p. 346363. In J. L. Markley,, C. Royer, and, D. Northrup (ed.), High Pressure Effects in Molecular Biophysics and Enzymology. Oxford University Press, Oxford, United Kingdom.
25. Luzzati, V. 1997. Biological significance of lipid polymorphism: the cubic phases. Curr. Opin. Struct. Biol. 7:661668.
26. Macdonald, A. G. 2002. Ion channels under high pressure. Comp. Biochem. Physiol. A 131:587593.
27. Meersman, F., and, C. M. Dobson. 2006. Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties. Biochim. Biophys. Acta 1764:452460.
28. Meersman, F.,, C. M. Dobson, and, K. Heremans. 2006. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem. Soc. Rev. 35:908917.
29. Meersman, F.,, L. Smeller, and, K. Heremans. 2002. Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin. Biophys. J. 82:26352644.
30. Meersman, F.,, L. Smeller, and, K. Heremans. 2005. Extending the pressure-temperature state diagram of myoglobin. Helv. Chim. Acta 88:546556.
31. Meersman, F.,, L. Smeller, and, K. Heremans. 2006. Protein stability and dynamics in the pressure-temperature plane. Biochim. Biophys. Acta 1764:346354.
32. Meersman, F.,, J. Wang,, Y. Wu, and, K. Heremans. 2005. Pressure effect on the hydration properties of poly(Nisopropylacrylamide) in aqueous solution studied by FTIR spectroscopy. Macromolecules 38:89238928.
33. Mohana-Borges, R.,, F. A. B. Pacheco,, F. J. R. Sousa,, D. Foguel,, D. F. Almeida, and, J. L. Silva. 2000. LexA repressor forms stable dimers in solution—the role of specific DNA in tightening protein-protein interactions. J. Biol. Chem. 275:47084712.
34. Molina-Höppner, A.,, W. Doster,, R. F. Vogel, and, M. G. Gänzle. 2004. Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl. Environ. Microbiol. 70:20132020.
35. Oliveira, A. C.,, L. P. Gaspar,, A. T. Da Poian, and, J. L. Silva. 1994. Arc repressor will not denature under pressure in the absence of water. J. Mol. Biol. 240:184187.
36. Randolph, T. W.,, M. Seefeldt, and, J. F. Carpenter. 2002. High hydrostatic pressure as a tool to study protein aggregation and amyloidosis. Biochim. Biophys. Acta 1595:224234.
37. Rayan, G., and, R. B. Macgregor,Jr. 2005. Comparison of the heat- and pressure-induced helix-coil transition of two DNA copolymers. J. Phys. Chem. B 109:1555815565.
38. Reyns, K. M. F. A.,, C. C. F. Soontjens,, K. Cornelis,, C. A. Weemaes,, M. E. Hendrickx, and, C. W. Michiels. 2000. Kinetic analysis and modelling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii. Int. J. Food Microbiol. 56:199210.
39. Ritz, M.,, M. Freulet,, N. Orange, and, M. Federighi. 2000. Effects of high hydrostatic pressure on membrane proteins of Salmonella typhimurium. Int. J. Food Microbiol. 55:115119.
40. Royer, C. A. 2002. Revisiting volume changes in pressure-induced protein unfolding. Biochim. Biophys. Acta 1595:201209.
41. Royer, C. A.,, A. E. Chakerian, and, K. S. Matthews. 1990. Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy. Biochemistry 29:49594966.
42. Rubens, P., and, K. Heremans. 2000. Pressure-temperature gelatinization phase diagram of starch: an in situ Fourier transform infrared study. Biopolymers 54:524530.
43. Seki, K., and, M. Toyoshima. 1998. Preserving tardigrades under pressure. Nature 395:853854.
44. Silva, J. L.,, A. C. Oliveira,, A. M. O. Gomes,, L. M. T. R. Lima,, R. Mohana-Borges,, A. B. F. Pacheco, and, D. Foguel. 2002. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. Biochim. Biophys. Acta 1595:250265.
45. Silva, J. L., and, G. Weber. 1993. Pressure stability of proteins. Annu. Rev. Phys. Chem. 44:89113.
46. Smeller, L. 2002. Pressure-temperature phase diagrams of biomolecules. Biochim. Biophys. Acta 1595:11 29.
47. Sojka, B., and, H. Ludwig. 1997. Effects of rapid pressure changes on the inactivation of Bacillus subtilis spores. Pharm. Ind. 59:436438.
48. Suzuki, K. 1960. Studies on the kinetics of protein denaturation under high pressure. Rev. Phys. Chem. Jpn. 29:4956.
49. Torrent, J.,, M. T. Alvarez-Martinez,, F. Heitz,, J. P. Liautard,, C. Balny, and, R. Lange. 2003. Alternative prion structural changes revealed by high pressure. Biochemistry 42:13181325.
50. Torrent, J.,, J. P. Connelly,, M. G. Coll,, M. Ribó,, R. Lange, and, M. Vilanova. 1999. Pressure versus heat-induced unfolding of ribonuclease A: the case of hydrophobic interactions within a chain-folding initiation site. Biochemistry 38:1595215961.
51. Van Opstal, I.,, S. C. M. Vanmuysen,, E. Y. Wuytack,, B. Masschalck, and, C. W. Michiels. 2005. Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Int. J. Food Microbiol. 98:179191.
52. Wilson, R. G., Jr.,, J. E. Trogadis,, S. Zimmerman, and, A. M. Zimmerman. 2001. Hydrostatic pressure induced changes in the cytoarchitecture of pheochromocytoma (PC-12) cells. Cell Biol. Int. 25:649665.
53. Winter, R. 2002. Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim. Biophys. Acta 1595:160184.
54. Wroblowski, B.,, J. F. Diaz,, K. Heremans, and, Y. Engelborghs. 1996. Molecular mechanisms of pressure induced conformational changes in BPTI. Proteins 25:446455.
55. Zhang, Y., and, P. S. Cremer. 2006. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10:658663.
56. Zipp, A., and, W. Kauzmann. 1973. Pressure unfolding of metmyoglobin. Biochemistry 12:42174228.

Tables

Generic image for table
Table 1.

ΔV associated with specific biochemical reactions (25ºC)

Citation: Meersman F, Heremans K. 2008. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology, p 1-17. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error