1887

Chapter 6 : High Hydrostatic Pressure Resistance and Survival Strategies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

High Hydrostatic Pressure Resistance and Survival Strategies, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap06-2.gif

Abstract:

This chapter highlights aspects of hydrostatic pressure (HHP) inactivation and survival strategies of the human pathogen . The resistance of to the damaging effects of freezing, drying, and heat is remarkable for a non-spore-forming bacterium. The majority of all major food-borne outbreaks of listeriosis appear to be caused by serovar 4b strains. The major regulator of virulence genes in is PrfA. PrfA binds to a palindromic recognition sequence (PrfA box) located in the promoter region of regulated genes. The underlying mechanism has been identified for a number of isolates and is described in this chapter. Clearly, the variability in HHP resistance of different species, strains, and even cells within a population makes the proper design of HHP treatments that would allow for adequate reductions of bacteria a challenging task. Bacteria have several stress responses that provide ways to specifically produce mutations and respond to selective pressure. These include the SOS response, the general stress response, the heat shock response, and the stringent response. The underlying mechanisms can be a DNA polymerase that synthesizes errorcontaining DNA, recombination-dependent generation of mutations, or recombinationin dependent generation of mutation (e.g., strand slippage). Extensive application of functional genomics tools may rapidly increase one's knowledge of bacterial stress responses and survival mechanisms, including the characterization of stress-induced mutator phenotypes and the occurrence of stable subpopulations of pathogens that are more resistant to inactivation treatments than the wild-type population.

Citation: Wells-Bennik M, Karatzas K, Moezelaar R, Abee T. 2008. High Hydrostatic Pressure Resistance and Survival Strategies, p 101-115. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch6

Key Concept Ranking

Sigma Factor SigmaB
0.42822707
Heat Shock Response
0.41234177
General Stress Response
0.4014495
0.42822707
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Reductions in viable numbers of wild-type cells after exposure to different pressures for 20 min at 20°C. Cells were grown in brain heart infusion broth at 30°C with shaking (160 rpm). Cells were harvested (i) in mid-exponential phase and resuspended in -(2-acetamido)2-aminoethanesulfonic acid (ACES) buffer before treatment (●), (ii) in stationary phase and resuspended in ACES buffer before treatment (○), and (iii) in mid-exponential phase and resuspended in semiskimmed milk before treatment (▲). Data are also presented in reference .

Citation: Wells-Bennik M, Karatzas K, Moezelaar R, Abee T. 2008. High Hydrostatic Pressure Resistance and Survival Strategies, p 101-115. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Visualization of exponentially grown cells of wild-type Scott A (A) and the piezotolerant mutant AK01 (B) with electron microscopy. Bars, 500 nm (A) and 200 nm (B). Reprinted from reference .

Citation: Wells-Bennik M, Karatzas K, Moezelaar R, Abee T. 2008. High Hydrostatic Pressure Resistance and Survival Strategies, p 101-115. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Protein and DNA sequences of the glycine-rich region of of The piezotolerant mutant strain AK01 lacks a GGT codon sequence in the glycine-rich region ( ). Mutations in this region were found at relatively high frequencies in other piezotolerant isolates ( ).

Citation: Wells-Bennik M, Karatzas K, Moezelaar R, Abee T. 2008. High Hydrostatic Pressure Resistance and Survival Strategies, p 101-115. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch06
1. Abee, T., and, J. A. Wouters. 1999. Microbial stress response in minimal processing. Int. J. Food Microbiol. 50:6591.
2. Adegoke, G. O.,, H. Iwahashi, and, Y. Komatsu. 1997. Inhibition of Saccharomyces cerevisiae by combination of hydrostatic pressure and monoterpenes. J. Food Sci. 62:404405.
3. Aertsen, A.,, K. Vanoirbeek,, P. De Spiegeleer,, J. Sermon,, K. Hauben,, A. Farewell,, T. Nystrom, and, C. W. Michiels. 2004. Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli. Appl. Environ. Microbiol. 70:26602666.
4. Alpas, H.,, N. Kalchayanand,, F. Bozoglu, and, B. Ray. 2000. Interactions of high hydrostatic pressure, pressurisation temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of food-borne pathogens. Int. J. Food Microbiol. 60:3342.
5. Alpas, H.,, N. Kalchayanand,, F. Bozoglu,, A. Sikes,, C. P. Dunne, and, B. Ray. 1999. Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Appl. Environ. Microbiol. 65:42484251.
6. Arroyo, G.,, P. D. Sanz, and, G. Préstamo. 1999. Response to high pressure, low temperature treatment in vegetables: determination of survival rates of microbial populations using flow cytometry and detection of peroxidase activity using confocal microscopy. J. Appl. Microbiol. 86:544556.
7. Becker, L. A.,, S. N. Evans,, R. W. Hutkins, and, A. K. Benson. 2000. Role of sigma B in adaptation of Listeria monocytogenes to growth at low temperature. J. Bacteriol. 182:70837087.
8. Benson, A. K., and, W. G. Haldenwang. 1993. The σB-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J. Bacteriol. 175:19291935.
9. Brackett, R. E. 1988. Presence and persistence of Listeria monocytogenes in food and water. Food Technol. 4:162164.
10. Buchrieser, C.,, C. Rusniok,, F. Kunst,, P. Cossart, P. and Glaser for the Listeria Consortium. 2003. Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 35:207213.
11. Buzrul, S., and, H. Alpas. 2004. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: a preliminary study. FEMS Microbiol. Lett. 238:2936.
12. Cabanes, D.,, P. Dehoux,, O. Dussurget,, L. Frangeul, and, P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10:238245.
13. Casadei, M. A., and, B. M. Mackey. 1997. The effect of growth temperature on pressure resistance of Escherichia coli, p. 281282. In K. Heremans(ed.), High Pressure Research in the Biosciences and Biotechnology. Leuven University Press, Leuven, Belgium.
14. Cetin, M. S.,, C. Zhang,, R. W. Hutkins, and, A. K. Benson. 2004. Regulation of transcription of compatible solute transporters by the the general stress response sigma factor, sigma B, in Listeria monocytogenes J. Bacteriol. 186:794802.
15. Cheftel, C. 1995. Review: high-pressure, microbial inactivation and preservation. Food Sci. Technol. Int. 1:7590.
16. Cossart, P. 2002. Molecular and cellular basis of the infection by Listeria monocytogenes, an overview. Int. J. Med. Microbiol. 291:401409.
17. Cotter, P. D., and, C. Hill. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67:429453.
18. Derré, I.,, G. Rapoport, and, T. Msadek. 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol. Microbiol. 31:117131.
19. Derré, I.,, G. Rapoport, and, T. Msadek. 2000. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37°C. Mol. Microbiol. 38:335347.
20. Doumith, M.,, C. Cazalet,, N. Simoes,, L. Frangeul,, C. Jacquet,, F. Kunst,, P. Martin,, P. Cossart,, P. Glaser, and, C. Buchrieser. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72:10721083.
21. Ferreira, A.,, C. P. O’Byrne, and, K. J. Boor. 2001. Role of σBin heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl. Environ. Microbiol. 67:4454 4457.
22. Foster, P. L. 2005. Stress responses and genetic variation in bacteria. Mutat. Res. 569:311.
23. Gahan, C. G., and, C. Hill. 2005. Gastrointestinal phase of Listeria monocytogenes infection. J. Appl. Microbiol. 98:13451353.
24. Garcia-Graells, C.,, C. Valckx, and, C. W. Michiels. 2000. Inactivation of Escherichia coli and Listeria innocua in milk by combined treatment with high hydrostatic pressure and the lactoperoxidase system. Appl. Environ. Microbiol. 66:41734179.
25. Gervilla, R.,, V. Ferragut, and, B. Guamis. 2000. High pressure inactivation of microorganisms inoculated into ovine milk of different fat contents. J. Dairy Sci. 83:674682.
26. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K. D. Entian,, H. Fsihi,, F. Garcia-del Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J. C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J. A. Vazquez-Boland,, H. Voss,, J. Wehland, and, P. Cossart. 2001. Comparative genomics of Listeria species. Science 294:849852.
27. Gottesman, S.,, S. Wickner, and, M. R. Maurizi. 1997. Protein quality control: triage by chaperones and proteases. Genes Dev. 11:815823.
28. Gould, G. H. 2000. Emerging technologies in food preservation and processing in the last 40 years, p. 523. In G. V. Barbosa-Cánovas and, G. W. Gould(ed.), Innovations in Food Processing. Technomic Publishing Co., Inc. D/B ATP Ltd., Hitchin Herts, United Kingdom.
29. Hauben, K. J. A.,, D. H. Bartlett,, C. C. F. Soontjens,, K. Cornelis,, E. Y. Wuytack, and, C. W. Michiels. 1997. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl. Environ. Micro biol. 63:945950.
30. Hecker, M.,, W. Schumann, and, U. Völker. 1996. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19:417428.
31. Hecker, M., and, U. Völker. 1998. Nonspecific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigma B regulon. Mol. Microbiol. 29:11291136.
32. Heremans, K. 1982. High pressure effects on proteins and other biomolecules. Annu. Rev. Biophys. Bioeng. 11:121.
33. Hill, C.,, P. D. Cotter,, R. D. Sleator, and, C. G. M. Gahan. 2002. Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. Int. Dairy J. 12:273283.
34. Holtmann, G., and, E. Bremer. 2004. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J. Bacteriol. 186:16831693.
35. Hormann, S.,, C. Scheyhing,, J. Behr,, M. Pavlovic,, M. Ehrmann, and, R. F. Vogel. 2006. Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451(T). Proteomics 6:18781885.
36. Iwahashi, H.,, S. Fujii,, K. Obuchi,, S. C. Kaul,, A. Sato, and, Y. Komatsu. 1993. Hydrostatic pressure is like high temperature and oxidative stress in the damage it causes to yeast. FEMS Microbiol. Lett. 108:5358.
37. Iwahashi, H.,, S. C. Kaul,, K. Obuchi, and, Y. Komatsu. 1991. Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol. Lett. 80:325328.
38. Joyce, E. A.,, K. Chan,, N. R. Salama, and, S. Falkow. 2002. Redefining bacterial populations: a postgenomic reformation. Nature 3:462473.
39. Kalchayanand, N.,, A. Sikes,, C. P. Dunne, and, B. Ray. 1998. Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J. Food Prot. 61:425431.
40. Karatzas, K. A.,, E.P.W. Kets,, E.J. Smid, and, M.H. Bennik 2001. The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. J. Appl. Microbiol. 90:463469.
41. Karatzas, K. A.,, V. P. Valdramidis, and, M. H. Wells-Bennik. 2005. Contingency locus in ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl. Environ. Microbiol. 71:83908396.
42. Karatzas, K. A.,, J. A. Wouters,, C. G. Gahan,, C. Hill,, T. Abee, and, M. H. Bennik. 2003. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol. Microbiol. 49:12271238.
43. Karatzas, K.A.G., and, M. H. J. Bennik. 2002. Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68:31833189.
44. Kathariou, S. 2002. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65:18111829.
45. Knorr, D. 1994. Hydrostatic pressure treatment of foods: microbiology, p. 159175. In G. W. Gould(ed.), New Methods of Food Preservation. Blakie, London, United Kingdom.
46. Krüger, E.,, D. Zühlke,, E. Witt,, H. Ludwig, and, M. Hecker. 2001. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J. 20:852863.
47. Kuipers, O. P. 1999. Genomics for food biotechnology: prospects of the use of high-throughput technologies for the improvement of food microorganisms. Curr. Opin. Biotechnol. 10:511516.
48. Lund, B. M.,, T. C. Baird-Parker, and, G. W. Gould. 2000. The Microbiological Safety and Quality of Food, vol. 2. Aspen Publishers, Gaithersburg, MD.
49. MacDonald, A. G. 1992. Effects of high hydrostatic pressure on natural and artificial membranes, p. 6774. In C. Balny,, R. Hayashi,, K. Heremans, and, P. Masson(ed.), High Pressure and Biotechnology. Paris INSERM/John Libbey, Paris, France.
50. Mackey, B. M.,, K. Forestiére, and, N. Isaacs. 1995. Factors affecting the resistance of Listeria monocytogenes to high hydrostatic pressure. Food Biotechnol. 9:111.
51. McClements, J. M.,, M. F. Patterson, and, M. Linton. 2001. The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk. J. Food Prot. 64: 514#x2013;522.
52. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin, and, R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607625.
53. Metrick, C.,, D. G. Hoover, and, D. F. Farkas. 1989. Effects of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella. J. Food Sci. 54:15471549.
54. Milohanic, E.,, P. Glaser,, J. Y. Coppee,, L. Frangeul,, Y. Vega,, J. A. Vazquez-Boland,, F. Kunst,, P. Cossart, and, C. Buchrieser. 2003. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47:16131625.
55. Mogk, A.,, G. Homuth,, C. Scholz,, L. Kim,, F. X. Schmid, and, W. Schumann. 1997. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16:45794590.
56. Mozhaev, V. V.,, K. Heremans,, J. Frank,, P. Masson, and, C. Balny. 1996. High pressure effects on protein structure and function. Proteins Struct. Funct. Genet. 24:8191.
57. Nelson, K. E.,, D. E. Fouts,, E. F. Mongodin,, J. Ravel,, R. T. DeBoy,, J. F. Kolonay,, D. A. Rasko,, S. V. Angiuoli,, S. R. Gill,, I. T. Paulsen,, J. Peterson,, O. White,, W. C. Nelson,, W. Nierman,, M. J. Beanan,, L. M. Brinkac,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, D. H. Haft,, J. Selengut,, S. Van Aken,, H. Khouri,, N. Fedorova,, H. Forberger,, B. Tran,, S. Kathariou,, L. D. Wonderling,, G. A. Uhlich,, D. O. Bayles,, J. B. Luchansky, and, C. M. Fraser. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:23862395.
58. Pagán, R.,, S. Jordan,, A. Benito, and, B. Mackey. 2001. Enhanced acid sensitivity of pressure-damaged Escherichia coli O157 cells. Appl. Environ. Microbiol. 67:19831985.
59. Pagán R.,, P. Mañas,, J. Raso, and, S. Condón. 1999. Bacterial resistance to ultrasonic waves under pressure at nonlethal (manosonication) and lethal (manothermosonication) temperatures. Appl. Environ. Microbiol. 65:297300.
60. Palou, E.,, A. López-Malo,, G. V. Barbosa-Cánovas, and, B. G. Swanson. 1999. High-pressure treatment in food preservation, p. 533576. In M. S. Rahman(ed.), Handbook of Food Preservation. Dekker, New York, NY.
61. Patterson, M. F.,, M. Quinn,, R. Simpson, and, A. Gilmour. 1995. The sensitivity of vegetative pathogens to high hydrostatic pressure in phosphate buffered saline and foods. J. Food Prot. 58:524529.
62. Ramnath, M.,, K. B. Rechinger,, L. Jansch,, J. W. Hastings,, S. Knochel, and, A. Gravesen. 2003. Development of a Listeria monocytogenes EGDe partial proteome reference map and comparison with the protein profiles of food isolates. Appl. Environ. Microbiol. 69:33683376.
63. Raso, J.,, R. Pagán,, S. Condon, and, F. J. Sala. 1998. Influence of temperature and pressure on the lethality of ultrasound. Appl. Environ. Microbiol. 64:465471.
64. Rocha, E.P.C.,, I. Matic, and, F. Taddei. 2002. Over-representation of repeats in stress response genes: a strategy to increase versatility under stressful conditions? Nucleic Acids Res. 30:18861894.
65. Schlech, W. F.,III. 2001. Food-borne listeriosis. Clin. Infect. Dis. 32:15181519.
66. Sikkema, J.,, J. A. M.deBont, and, B. Poolman. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269:80228028.
67. Smelt, J. P. P. M. 1998. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 9:152158.
68. Smiddy, M.,, R. D. Sleator,, M. F. Patterson,, H. Hill, and, A. L. Kelly. 2004. Role for compatible solutes in glycine betaine and L-carnitine in listerial barotolerance. Appl. Environ. Microbiol. 70:75557557.
69. Sofos, J. N. 2002. Stress-adapted, cross-protected: a concern? Food Technol. 56:22.
70. Takahashi, K.,, H. Ishii, and, H. Ishikawa. 1993. Sterilization of bacteria and yeast by hydrostatic pressurization at low temperature: effect of temperature, pH and the concentration of proteins, carbohydrates and lipids, p. 244249. In R. Hayashi(ed.), High Pressure Bioscience and Food Science. San-Ei Publishing Co., Kyoto, Japan.
71. Tay, A.,, T. H. Shellhammer,, A. E. Yousef, and, G. W. Chism. 2003. Pressure death and tailing behavior of Listeria monocytogenes strains having different barotolerances. J. Food Prot. 66:20572061.
72. Turley, C. 2000. Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol. Ecol. 33:8999.
73. Van Schaik, W., and, T. Abee. 2005. The role of sigma B in the stress response of Gram-positive bacteria— targets for food preservation and safety. Curr. Opin. Biotechnol. 16:218224.
74. Vásquez-Boland, J. A.,, M. Kuhn,, P. Berche,, T. Chakraborty,, G. Domínguez-Bernal,, W. Goebel,, B. Gonzalez-Zorn,, J. Wehland, and, J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14:584640.
75. Vurma, M.,, Y. K. Chung,, T. H. Shellhammer,, E. J. Turek, and, A. E. Yousef. 2006. Use of phenolic compounds for sensitizing Listeria monocytogenes to high-pressure processing. Int. J. Food Microbiol. 106:263 269.
76. Washburn, M. P., and, J. R. YatesIII. 2000. Analysis of the microbial proteome. Curr. Opin. Microbiol. 3:292297.
77. Welch, T. J.,, A. Farewell,, F. C. Neidhardt, and, D. H. Bartlett. 1993. Stress response of Escherichia coli to elevated hydrostatic pressure. J. Bacteriol. 175:71707177.
78. Wells, J. M., and, M. H. Bennik. 2003. Genomics of food-borne bacterial pathogens. Nutr. Res. Rev. 16: 2135.
79. Wemekamp-Kamphuis, H. H.,, A. K. Karatzas,, J. A. Wouters, and, T. Abee. 2002. Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure. Appl. Environ. Microbiol. 68:456463.
80. Wemekamp-Kamphuis, H. H.,, J. A. Wouters,, P. P.L. A. de Leeuw,, T. Hain,, T. Chakraborty, and, T. Abee. 2004. Identification of sigma factor σB-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 70:3457 3466.
81. Wouters, P. C.,, E. Glaasker, and, J.P.P.M. Smelt. 1998. Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl. Environ. Microbiol. 64:509514.
82. Yang, H.,, E. Wolff,, M. Kim,, A. Diepand, and, J. H. Miller. 2005. Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol. Microbiol. 53:283295.
83. Yuan, G., and, S. L. Wong. 1995. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J. Bacteriol. 177:64626468.
84. Zuber, U., and, W. Schumann. 1994. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis J. Bacteriol. 176:13591363.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error