1887

Chapter 7 : Effects of Pressure on Lactic Acid Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Effects of Pressure on Lactic Acid Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap07-2.gif

Abstract:

This chapter focuses on the high hydrostatic pressure (HHP)-mediated stress responses of selected strains of Lactic acid bacteria (LAB). The selected strains included subsp. MG1363, TMW1460, and DSM20451. The chapter discusses the cellular basis of a sublethal injury demonstrated to reside in the impaired or rerouted metabolism, membrane integrity and functionality, and effects on ribosomal biosynthesis. The study of cross tolerances provides some insight into the sensors, pathways, and effectors of HHP stress. Studies of the stress response, not only on the proteome level, often seem to give contradictory results at first glance even if they are done with the same bacterium. This is because two types of stress responses must be distinguished with respect to the experimental setup. First, bacteria can be exposed to a shock for minutes, which they would not survive for long, and are subsequently held under optimum conditions in a recovery phase. Second, bacteria can be grown at suboptimal growth conditions, typically at 10% of their maximal growth rate, for several hours. The current understanding of HHP-induced microbial inactivation of vegetative cells enables establishment of HHP food processes from a microbial food safety point of view. The challenge to use HHP in microbial studies has, however, changed its focus, looking at HHP as a tool to study macromolecular interaction in cellular systems or models thereof.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7

Key Concept Ranking

Microbial Ecology
0.80042887
Lactic Acid Bacteria
0.49902907
0.80042887
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Time course of HHP inactivation of demonstrating areas of sublethal injury.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Range of sublethal pressure stress in . (a) Metabolic activity as determined by maltose consumption (bars) and survival (lines) upon 20 min of HHP treatment of two different strains (black and grey). (b) Filamentation upon growth at 45 MPa (10% of maximal growth velocity).

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Effect of pressure treatment at 20°C on metabolic activity (▼), membrane integrity (○), and viability (●) of MG1363.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Different effects of solutes on the metabolic activity and membrane integrity of MG1363 after treatment with 300 MPa at 20°C. Metabolic activity and membrane integrity were determined as described by Ulmer et al. ( ).

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Cross-protection in as determined by survival of prestressed cells to a second stress of the same or another type.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Changes in the intracellular pH of subsp. Samples were treated at 300 MPa and 20°C in milk buffer. The compression rate was 200 MPa min; the ramp-up time was 90 s (shaded area). The measurement of the intracellular pH was performed as described by Molina-Gutierrez et al. ( ).

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Two-dimensional electrophoretic analysis of cytoplasmic protein extracts of left untreated and after incubation for 1 h at 80 MPa. Proteins were silver stained. High-pressure-affected proteins are indicated by arrows. Isoelectric points and molecular weights are indicated.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

HHP-induced generation of genetic diversity. (a) Induction of transcription of IS elements in by high pressure. was subjected to 45 MPa (black bars) or 80 MPa (grey bars) for 30 min, and transcription ratios (high pressure to atmospheric pressure) of several transposable elements were determined. Data were normalized against transcription; shown are the means of three independent experiments. (b) High-pressure-induced changes of hybridization patterns of ISLsf of EcoRV-digested DNA was hybridized with a probe for of ISLsf Lane 1 shows genomic DNA of the ancestor. Lanes 2 through 5 show genomic DNA after 1 growth cycle at 0.1 MPa (lane 2), 25 growth cycles at 0.1 MPa (lane 3), 1 growth cycle at 50 MPa (lane 4), and 25 growth cycles at 50 MPa (lane 5). Lane 6 shows DNA markers. Hybridization with a probe for of ISLsf resulted in the same pattern. The arrow indicates the loss of a fragment in high-pressure-treated cells.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Summary of HHP-sensitive cellular targets identified and studied in LAB. Indicated are methods cited in the text, which were used to study these cellular functions. PI, propidium iodide; PI*DNA, fluorescent complex of PI with DNA; TOTO, 1,1’(4,4,8,8-tetramethyl-4,8-diazaundecamethylene) bis[4-(3-methyl-2,3-dihydrobenzo-1,3-thiazolyl-2-methylidene)quinolinium] tetraiodide; TOTO*DNA, fluorescent complex of TOTO with DNA; DISC3( ), dipropylthiadicarbocyanin iodide; cFDASE, carboxyfluorescein diacetate lyase; INT, 2-(-iodophenyl)-3-(-nitrophenyl)-5-phenyltetrazolium chloride; EB, ethidium bromide; EB*DNA, fluorescent complex of EB with DNA. Laurdan was used for measurements of membrane fluidity.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Cellular processes along increasing pressure.

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch07
1. Aertsen, A., and, C. W. Michiels. 2005. Diversify or die: generation of diversity in response to stress. Crit. Rev. Microbiol. 31:6978.
2. Aertsen, A.,, R. Van Houdt,, K. Vanoirbeek, and, C. W. Michiels. 2004. An SOS response induced by high pressure in Escherichia coli. J. Bacteriol. 186:61336141.
3. Aertsen, A.,, K. Vanoirbeek,, P. De Spiegeleer,, J. Sermon,, K. Hauben,, A. Farewell,, T. Nyström, and, C. W. Michiels. 2004. Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli. Appl. Environ. Microbiol. 70:26602666.
4. Anata, E., and, D. Knorr. 2003. Pressure induced thermotolerance of Lactobacillus rhamnosus GG. Food Res. Int. 36:991997.
5. Beney, L., and, P. Gervais. 2001. Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl. Microbiol. Biotechnol. 57:3442.
6. Bolotin, A.,, P. Wincker,, S. Mauger,, O. Jaillon,, K. Malarme,, J. Weissenbach,, D. Ehrlich, and, A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11:731753.
7. Boutibonnes, P.,, B. Gillot, and, Y. Auffray. 1991. Heat-shock induces thermotolerance and inhibition of lysis in a lysogenic strain of Lactococcus lactis. Int. J. Food Microbiol. 14:19.
8. Broadabent, J. R., and, C. Lin. 1999. Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology 39:88109.
9. Broadbent, J. R.,, C. J. Oberg, and, H. Wang. 1997. Attributes of the heat shock response in three species of dairy Lactobacillus. Syst. Appl. Microbiol. 20:1219.
10. Broeze, R. J.,, C. J. Solomon, and, D. H. Broeze. 1978. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134:861874.
11. Caldas, T.,, S. Laalami, and, G. Richarme. 2000. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J. Biol. Chem. 275:855860.
12. Casadei, M. A.,, P. Manas,, G. Niven,, E. Needs, and, B. M. Mackay. 2002. Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl. Environ. Microbiol. 68:59655972.
13. Chastanet, A., and, T. Msadek. 2003. clpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in gram-positive bacteria. J. Bacteriol. 185:683687.
14. Crowe, J. H.,, A. E. Oliver,, F. A. Hoekstra, and, L. M. Corwe. 1997. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35:20.
15. De Angelis, M.,, L. Bini,, V. Pallini,, P. S. Cocconcelli, and, M. Gobbetti. 2001. The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147:18631873.
16. De la Cruz, J.,, D. Kressler, and, P. Linder. 1999. Unwinding RNA in Saccharomyces cerevisiae:DEAD-box proteins and related families. Trends Biochem. Sci. 24:192198.
17. Drews, O.,, W. Weiss,, G. Reil,, H. Parlar,, R. Wait, and, A. Görg. 2002. High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis. Proteomics 2:765774.
18. Duwat, P.,, S. D. Ehrlich, and, A. Gruss. 1999. Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol. Microbiol. 31:845858.
19. Ehrmann, M. A.,, C. H. Scheyhing, and, R. F. Vogel. 2001. In vitro stability and expression of green fluorescent protein under high pressure conditions. Lett. Appl. Microbiol. 32:230234.
20. Erickson, H. P. 1997. FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol. 7:362367.
21. Eriksson, S.,, R. Hurme, and, M. Rhen. 2002. Low-temperature sensors in bacteria. Philos. Trans. R. Soc. Lond. B 357:887893.
22. Erkmen, O. 2001. Mathematical modelling of Escherichia coli inactivation under high pressure carbon dioxide. J. Biosci. Bioeng. 92:3943.
23. Fachin, D.,, A. van Loey,, A. Indrawati,, L. Ludikhuyze, and, M. Hendrickx. 2002. Thermal and high-pressure inactivation of tomato polygalacturonase: a kinetic study. J. Food Sci. 67:16101615.
24. Farewell, A., and, F. C. Neidhardt. 1998. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180:47044710.
25. Foster, J. W. 2000. Microbial response to acid stress, p. 99115. In G. Storzand, R. Hengge-Aronis(ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
26. Friedman, H.,, P. Lu, and, A. Rich. 1969. An in vivo block in the initiation of protein synthesis. Cold Spring Harbor Symp. Quant. Biol. 34:255260.
27. Fujii, S.,, H. Iwahashi,, K. Obuchi, and, Y. Komatsu. 1996. Characterization of a barotolerant mutant of the yeast Saccharomyces cerevisiae:importance of trehalose content and membrane fluidity. FEMS Microbiol. Lett. 141:97101.
28. Gaidenko, T. A., and, C. W. Price. 1998. General stress transcription factor rB and sporulation transcription factor rH each contribute to survival of Bacillus subtilis under extreme growth conditions. J. Bacteriol. 180:37303733.
29. Gänzle, M. G.,, K. V. Kilimann,, C. Hartmann,, R. F. Vogel, and, A. Delgado. 2007. Data mining and fuzzy modelling of high pressure inactivation pathways of Lactococcus lactis. Innovative Food Sci. Emerg. Technol. 8:461468.
30. Gänzle, M. G.,, H. M. Ulmer, and, R. F. Vogel. 2001. High pressure inactivation of Lactobacillus plantarum in a model beer system. J. Food Sci. 66:11751181.
31. Geeraerd, A. H.,, C. H. Herremanns,, L. R. Ludikhuyze,, M. E. Hendrickx, and, J. F. van Impe. 1998. Modeling the kinetics of isobaric-isothermal inactivation of Bacillus subtilis c-amylase with artificial neural networks. J. Food Eng. 36:263279.
32. Glaasker, E.,, W. N. Konings, and, B. Poolman. 1996. Glycine betaine fluxes in Lactobacillus plantarum during osmostasis and hyper- and hypo-osmotic shock. J. Biol. Chem. 271:1006010065.
33. Gualerzi, C. O.,, A. M. Giuliodori, and, C. L. Pon. 2003. Transcriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331:527539.
34. Guillot, A.,, D. Obis, and, M. Y. Mistou. 2000. Fatty acid membrane composition and activation of glycinebetaine transport in Lactococcus lactis subjected to osmotic stress. Int. J. Food Microbiol. 55:4751.
35. Haebel, P. W.,, S. Gutmann, and, N. Ban. 2004. Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. Curr. Opin. Struct. Biol. 14:5865.
36. Hartke, A.,, S. Bouche,, J. C. Giard,, A. Benachour,, P. Boutibonnes, and, Y. Auffray. 1996. The lactic acid stress response of Lactococcus lactis. Curr. Microbiol. 33:194199.
37. Hauben, K. J.,, D. H. Bartlett,, C. C. Soontjens,, K. Cornelis,, E. Y. Wuytack, and, C. W. Michiels. 1997. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl. Environ. Microbiol. 63:945950.
38. Hörmann, S.,, C. Scheyhing,, J. Behr,, M. Pavlovic,, M. Ehrmann, and, R. F. Vogel. 2006. Comparative approach to characterize the high pressure stress response of Lactobacillus sanfranciscensis DSM 20451T. Proteomics 6:18781885.
39. Ishii, A.,, K. Nakasone,, T. Sato,, M. Wachi,, M. Sugai,, K. Nagai, and, C. Kato. 2002. Isolation and characterization of the dcw cluster from the piezophilic deep-sea bacterium Shewanella violacea. J. Biochem. 132:183188.
40. Ishii, A.,, T. Oshima,, T. Sato,, K. Nakasone,, H. Mori, and, C. Kato. 2005. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9:6573.
41. Ishii, A.,, T. Sato,, M. Wachi,, K. Nagai, and, C. Kato. 2004. Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:19651972.
42. Kaarniranta, K.,, M. A. Elo,, R. K. Sironen,, H. M. Karjalainen,, H. J. Helminen, and, M. J. Lammi. 2003. Stress responses of mammalian cells to high hydrostatic pressure. Biorheology 40:8792.
43. Karatzas, K. A., and, M. H. Bennik. 2002. Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68:31833189.
44. Kato, C., and, K. Horikoshi. 1996. Gene expression under high pressure, p. 5966. In R. Hayashiand, C. Balmy(ed.), High Pressure Bioscience and Biotechnology. Elsevier Science, Amsterdam, The Netherlands.
45. Kato, C.,, T. Sato,, M. Smorawinska, and, K. Horikoshi. 1994. High pressure conditions stimulate expression of chloramphenicol acetyltransferase regulated by the lac promoter in Escherichia coli. FEMS Microbiol. Lett. 122:9196.
46. Kilimann, K. V.,, C. Hartmann,, A. Delgado,, R. F. Vogel, and, M. G. Gänzle. 2005. A fuzzy logic-based model for the multistage high-pressure inactivation of Lactococcus lactis ssp. cremoris MG1363. Int. J. Food Microbiol. 98:89105.
47. Reference deleted.
48. Lee, D.U.,, V. Heinz, and, D. Knorr. 2001. Biphasic inactivation kinetics for Escherichia coli in liquid whole egg by high hydrostatic pressure treatments. Biotechnol. Progr. 17:10201025.
49. Leslie, S. B.,, E. Israeli,, B. Lighthart,, J. H. Crowe, and, L. M. Crowe. 1995. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61:35923597.
50. Ludikhuyze, L. R.,, I. Van den Broech,, C. A. Weemaes,, C. H. Herremans,, J. F. Van Impe,, M. E. Hendrickx, and, P. P. Tobback. 1997. Kinetics for isobaric-isothermal inactivation of Bacillus subtilis c-amylase. Biotechnol. Progr. 13:532538.
51. Marquis, R. E., and, G. R. Bender. 1980. Isolation of a variant of Streptococcus faecalis with enhanced barotolerance. Can. J. Microbiol. 26:371376.
52. Mckay, L. L., and, K. A. Baldwin. 1990. Applications for biotechnology—present and future improvements in lactic acid bacteria. FEMS Microbiol. Rev. 87:314.
53. Mechold, U., and, H. Malke. 1997. Characterization of the stringent and relaxed responses of Streptococcus equisimilis. J. Bacteriol. 179:26582667.
54. Molenaar, D.,, A. Hagting,, H. Alkema,, A. Driessen, and, W. N. Konings. 1993. Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J. Bacteriol. 175:54385444.
55. Molina-Gutierrez, A.,, B. Rademacher,, M. G. Gänzle, and, R. F. Vogel. 2002. Effect of sucrose and sodium chloride on the survival and metabolic activity of Lactococcus lactis under high-pressure conditions. Trends High Pressure Biosci. Biotechnol. 19:295302.
56. Molina-Gutierrez, A.,, V. Stippl,, A. Delgado,, M. G. Gänzle, and, R. F. Vogel. 2002. In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Appl. Environ. Microbiol. 68:43994406.
57. Molina-Höppner, A.,, T. Sato,, C. Kato,, M. G. Gänzle, and, R. F. Vogel. 2003. Effects of pressure on cell morphology and cell division of lactic acid bacteria. Extremophiles 7:511516.
58. Padan, E., and, T. A. Krulwich. 2000. Sodium stress, p. 117130. In G. Storz and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
59. Pavlovic, M.,, S. Hörmann,, R. F. Vogel, and, M. A. Ehrmann. 2005. Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis. Arch. Microbiol. 184: 1117.
60. Perrier-Cornet, J. M.,, M. Hayert, and, P. Gervais. 1999. Yeast cell mortality related to a high-pressure shift: occurrence of cell membrane permeabilization. J. Appl. Microbiol. 87:17.
61. Robey, M.,, A. Benito,, R. H. Hutson,, C. Pascual,, S. F. Park, and, B. M. Mackey. 2001. Variation of resistance to high hydrostatic pressure in natural isolates of Escherichia coli O157:H7. Appl. Environ. Microbiol. 67:49014907.
62. Sato, T.,, C. Kato, and, K. Horikoshi. 1995. The effect of high pressure on gene expression by the lac and tac promoters in Escherichia coli. J. Mar. Biotechnol. 3:8992.
63. Sato, T.,, T. Miwa,, A. Ishii,, C. Kato,, M. Wachi,, M. Nagai,, M. Aizawa, and, K. Horikoshi. 2002. The dynamism of Escherichia coli under high hydrostatic pressure repression of the FtsZ-ring formation and chromosomal DNA condensation, p. 233238. In R. Hayashi(ed.), Trends in High Pressure Bioscience and Biotechnology. Elsevier, Amsterdam, The Netherlands.
64. Scheyhing, C. H.,, S. Hörmann,, M. A. Ehrmann, and, R. F. Vogel. 2004. Barotolerance is inducible by preincubation under hydrostatic pressure, cold-, osmotic- and acid-stress conditions in Lactobacillus sanfranciscensis DSM 20451T. J. Appl. Microbiol. 39:284289.
65. Schwab, C., and, M. G. Gänzle. 2006. Effect of membrane lateral pressure on the expression of fructosyltransferases in Lactobacillus reuteri. Syst. Appl. Microbiol. 29:8999.
66. Schwarz, J. R., and, J. V. Landau. 1972. Hydrostatic pressure effects on Escherichia coli: site of inhibition of protein synthesis. J. Bacteriol. 109:945948.
67. Schwarz, J. R., and, J. V. Landau. 1972. Inhibition of cell-free protein synthesis by hydrostatic pressure. J. Bacteriol. 112:12221227.
68. Sharma, A.,, J. H. Scott,, G. D. Cody,, M. L. Fogel,, R. M. Hazen,, R. J. Hemley, and, W. T. Huntess. 2002. Microbial activity at gigapascal pressures. Science 295:15141516.
69. Smith, W.,, D. Pope, and, J. V. Landau. 1975. Role of bacterial ribosome subunits in barotolerance. J. Bacteriol. 124:582584.
70. Stiles, M. E., and, W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36:129.
71. Sun, Q., and, W. Margolin. 1998. FtsZ dynamics during the division cycle of live Escherichia coli cells.J. Bacteriol. 180:20502056.
72. Tanner, N. K., and, P. Linder. 2001. DEAD/H box RNA helicases: from genetic motors to specific dissociation functions. Mol. Cell 8:251262.
73. Tannock, G. W. 1999. Analysis of the intestinal microflora, a renaissance. Antonie Leeuwenhoek 76:265 278.
74. ter Steeg, P. F.,, J. C. Hellemons, and, A. E. Kok. 1999. Synergistic actions of nisin, sublethal ultrahigh pressure, and reduced temperature on bacteria and yeast. Appl. Environ. Microbiol. 65:41484154.
75. Timasheff, S. N.,, J. C. Lee,, E. P. Pittz, and, N. Tweedy. 1976. The interaction of tubulin and other proteins with structure-stabilizing solvents. J. Colloid Interface Sci. 55:658663.
76. Ulmer, H. M.,, M. G. Gänzle, and, R. F. Vogel. 2000. Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1.460. Appl. Environ. Microbiol. 66:39663973.
77. Ulmer, H. M.,, H. Herberhold,, S. Fahsel,, M. G. Gänzle,, R. Winter, and, R. F. Vogel. 2002. Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum. Appl. Environ. Microbiol. 68:10881095.
78. Van Bogelen, R. A., and, F. C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:55895593.
79. van de Guchte, M.,, P. Serror,, C. Chervaux,, T. Smokvina,, S. D. Ehrlich, and, E. Maguin. 2002. Stress responses in lactic acid bacteria. Antonie Leeuwenhoek 82:187216.
80. vandenBoom, T., and, J. E. Cronan. 1989. Genetics and regulation of bacterial lipid metabolism. Annu. Rev. Microbiol. 43:317343.
81. Vogel, R. F.,, M. A. Ehrmann,, M. G. Gänzle,, C. Kato,, M. Korakli,, C. H. Scheyhing,, A. Molina-Gutierrez,, H. M. Ulmer, and, R. Winter. 2002. High pressure response of lactic acid bacteria, p. 249255.In Proceedings of 2nd International Conference on High Pressure Bioscience and Biotechnology.
82. Weart, R. B.,, S. Nakano,, B. E. Lane,, P. Zuber, and, P. A. Levin. 2005. ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol. Microbiol. 57:238249.
83. Withey, J., and, D. Friedman. 2002. The biological roles of translation. Curr. Opin. Microbiol. 5: 154159.
84. Wouters, P.,, E. Glaasker, and, J.P. P. M. Smelt. 1998. Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl. Environ. Microbiol. 64:509514.

Tables

Generic image for table
Table 1.

Genes responsive to high pressure (45 MPa for 30 min) as determined by array hybridization and/or real-time PCR

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7
Generic image for table
Table 2.

Susceptibilities of wild-type and the pressure-adapted mutant to various antibiotics acting on the ribosomes or on translational processes

Citation: Vogel R, Ehrmann M. 2008. Effects of Pressure on Lactic Acid Bacteria, p 117-144. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error