1887

Chapter 8 : Response to High Hydrostatic Pressure

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Response to High Hydrostatic Pressure, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap08-2.gif

Abstract:

Life is within a Euclidean space (with the usual Euclidean metric), as there are only three essential axes for sustaining life. The first is the source of energy, the second is water, and the third is a range of conditions that the organism can tolerate, meaning how much of a stress an organism can cope with. The major source for energy and carbon in the yeast is glucose, and glycolysis is the general pathway for conversion of glucose to pyruvate. This chapter describes the effects of short exposures of to lethal and sublethal pressures, with a focus on cellular inactivation/resistance and stress response, respectively. High hydrostatic pressure (HHP) exerts a broad effect within eukaryotic cells, with characteristics similar to common stresses, such as temperature, ethanol, and oxidative stresses. Yeast cells in stationary phase, which undergo growth arrest and a variety of morphological and physiological changes, are more resistant to pressure than proliferating cells. Application of HHP in the food processing industry has stimulated the effort to understand the impact of pressure in combination with other parameters, such as high or low temperature, on cell viability. Hydrostatic pressure also interferes with cellular membrane structure, increasing the order of lipid molecules, especially in the vicinity of proteins. The heat shock response in is one of the best-studied pathways of eukaryotic cells, and pretreatment with a mild heat stress leads to protection against more severe heat shock and several other stresses, including HHP.

Citation: Fernandes P. 2008. Response to High Hydrostatic Pressure, p 145-166. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch8

Key Concept Ranking

RNA Polymerase II
0.51282054
Glycogen Debranching Enzyme
0.4546104
Protein Phosphatase 1
0.4475557
0.51282054
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Effect of HHP on different wild-type yeast cells. Cells from logarithmic phase were submitted to various hydrostatic pressures for 30 min each time. Cell survival is expressed as percentage of viable cells. The standard deviations are smaller than the symbols used.

Citation: Fernandes P. 2008. Response to High Hydrostatic Pressure, p 145-166. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Transmission electron micrographs of a thin section through Y440 wild-type cells. (a and b) Typical cell at atmospheric pressure. (b) Detailed image illustrating the appearance of the cell wall, cell membrane, and Golgi apparatus. (c and d) Cell submitted to 200 MPa for 30 min. The cell outer shape was almost unaffected. The arrow points to a broken nuclear membrane. (d) Detail of the cell membrane. (e and f) Heat shock-pretreated cell (40°C for 60 min) submitted to HHP of 200 MPa. (f) Detailed image showing a lamellar structure flanking the cell membrane. CM, cell membrane; CW, cell wall; NM, nuclear membrane; N, nucleus; V, vacuoles; M, mitochondria; G, Golgi apparatus; ER, endoplasmic reticulum. The bar in panel a represents 0.8 µm; the bars in panels b, d, and f represent 0.3 µm; and the bars in panels c and e represent 0.5 µm. Reprinted from ( ) with permission of the publisher.

Citation: Fernandes P. 2008. Response to High Hydrostatic Pressure, p 145-166. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Fluorescent micrographs of cells stained for F-actin with rhodamine-conjugated phalloidin. (a) Untreated cells evidencing the cell cycle-specific organization of microfilaments; (b to f) cells treated with 100 (b), 150 (c), 200 (d), 250 (e), and 300 (f) MPa. Reprinted from ( ) with permission of the publisher.

Citation: Fernandes P. 2008. Response to High Hydrostatic Pressure, p 145-166. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Global gene expression profile in functional categories. Black bars and white bars represent the percentages of induced and repressed genes, respectively. The classification is based on the MIPS database, available on the web. Reprinted from ( ) with permission of the publisher.

Citation: Fernandes P. 2008. Response to High Hydrostatic Pressure, p 145-166. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch08
1. Abbott, A. 1999. A post-genomic challenge: learning to read patterns of protein synthesis. Nature 402:715720.
2. Abe, F. 2004. Piezophysiology of yeast: occurrence and significance. Cell. Mol. Biol. 50:437445.
3. Alexandre, H.,, V. Ansanay-Galeote,, S. Dequin, and, B. Blondin. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498:98103.
4. Ayscough, K.,, N. M. Hajibagheri,, R. Watson, and, G. Warren. 1993. Stacking of Golgi cisternae in Schizosaccharomyces pombe requires intact microtubules. J. Cell Sci. 106:12271237.
5. Bard, M.,, D. A. Bruner,, C. A. Pierson,, N. D. Lees,, B. Biermann,, L. Frye,, C. Koegel, and, R. Barbuch. 1996. Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Proc. Natl. Acad. Sci. USA 93:186190.
6. Bartlett, D.,, M. Glaser, and, R. Welti. 1997. Membrane penetration depth and lipid phase preference of acyllabeled dansyl phosphatidylcholines in phosphatidylcholine vesicles. Biochim. Biophys. Acta 1328:4854.
7. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
8. Botstein, D.,, D. Amberg,, J. Mulholland,, T. Huffaker,, A. Adams,, D. Dubrim, and, T. Stearns. 1997. The yeast cytoskeleton, p. 190. In E. W. Jones,, J. R. Pringle, and, J. R. Broach (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. 3. Cell Cycle and Cell Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
9. Boy-Marcotte, E.,, G. Lagniel,, M. Perrot,, F. Bussereau,, A. Boudsocq,, M. Jacquet, and, J. Labarre. 1999. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1pregulons. Mol. Microbiol. 33:274283.
10. oy-Marcotte, E.,, D. Tadi,, M. Perrot,, H. Boucherie, and, M. Jacquet. 1996. High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae. Microbiology 142:459467.
11. Cartwright, C. P.,, F. J. Veazey, and, A. H. Rose. 1987. Effect of ethanol on activity of the plasma-membrane ATPase and accumulation of glycine by Saccharomyces cerevisiae. J. Gen. Microbiol. 133:857865.
12. Chen, C., and, C. W. Tseng. 1997. Effect of high hydrostatic pressure on the temperature dependence of Saccharomyces cerevisiae and Zygosaccharomyces rouxii. Process Biochem. 32:337343.
13. Chi, Z., and, N. Arneborg. 1999. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J. Appl. Microbiol. 86:1047 1052.
14. Chiang, K. T.,, M. Shinyashiki,, C. H. Switzer,, J. S. Valentine,, E. B. Gralla,, D. J. Thiele, and, J. M. Fukudo. 2000. Effects of nitric oxide on the copper-responsive transcription factor Ace1 in Saccharomyces cerevisiae: cytotoxic and cytoprotective actions of nitric oxide. Arch. Biochem. Biophys. 377:296303.
15. Costa, V., and, P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol. Asp. Med. 22:217246.
16. Costa, V.,, E. Reis,, A. Quintanilha, and, P. Moradas-Ferreira. 1993. Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch. Biochem. Biophys. 300:608614.
17. Craig, E.A. 1992. The heat shock response of Saccharomyces cerevisiae, p. 501–537.In E. W. Jones,, J. R. Pringle, and, J. R. Broach The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. 2. Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
18. Domitrovic, T.,, P. M. B. Fernandes, and, E. Kurtenbach. 2005. Hydrostatic pressure induces transcription via the stress response element (STRE) of Saccharomyces cerevisiae. Proceedings of the XXXIV Annual Meeting of the Brazilian Society of Biochemistry and Molecular Biology. CD-ROM.
19. Domitrovic, T.,, F. L. Palhano,, C. Barja-Fidalgo,, M. DeFreitas,, M. T. D. Orlando, and, P. M. B. Fernandes. 2003. Role of nitric oxide in the response of Saccharomyces cerevisiae cells to heat shock and high hydrostatic pressure. FEMS Yeast Res. 3:341346.
20. Dubrin, D. G.,, H. D. Jones, and, K. F. Wertman. 1993. Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site. Mol. Biol. Cell 4:12771294.
21. Estruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev. 24:469486.
22. Estruch, F., and, M. Carlson. 1993. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:38723881.
23. Fernandes, P. M. B.,, T. Domitrovic,, C. M. Kao, and, E. Kurtenbach. 2004. Genome expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett. 556:153160.
24. Fernandes, P. M. B.,, M. Farina, and, E. Kurtenbach. 2001. Effect of hydrostatic pressure on the morphology and ultrastructure of wild-type and trehalose synthase mutant cells of Saccharomyces cerevisiae. Lett. Appl. Microbiol. 32:4246.
25. Fernandes, P. M. B.,, A. D. Panek, and, E. Kurtenbach. 1997. Effect of hydrostatic pressure on a mutant of Saccharomyces cerevisiae deleted in the trehalose-6-phosphate synthase gene. FEMS Microbiol. Lett. 152: 1721.
26. Gabriel, M., and, M. Kopecká. 1995. Disruption of the actin cytoskeleton in budding yeast results in formation of an aberrant cell wall. Microbiology 141:891899.
27. Garreau, H.,, R. N. Hasan,, G. Renault,, F. Estruch,, E. Boy-Marcotte, and, M. Jacquet. 2000. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146:21132120.
28. Gasch, A. P.,, P. T. Spellman,, C. M. Kao,, O. Carmel-Harel,, M. B. Eisen,, G. Storz,, D. Botstein, and, P. O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11:42414257.
29. Gross, M., and, R. Jaenicke. 1994. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur. J. Biochem. 221:617630.
30. Gygi, S. P.,, Y. Rochon,, B. R. Franza, and, R. Aebersold. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19:17201730.
31. Hartmann, C., and, A. Delgado. 2004. Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. J. Biomech. 37:977987.
32. Heremans, K. A. H. 1982. High pressure effects upon proteins and other biomolecules. Annu. Rev. Biophys. Bioeng. 11:121.
33. Ideker, T.,, V. Thorsson,, J. A. Ranish,, R. Christmas,, J. Buhler,, J. K. Eng,, R. Bumgarner,, D. R. Goodlett,, R. Aebersold, and, L. Hood. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934.
34. Iwahashi, H.,, S. C. Kaul,, K. Obuch, and, Y. Komatsu. 1991. Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol. Lett. 80:325328.
35. Iwahashi, H.,, S. Nwaka, and, K. Obuchi. 2000. Evidence for contribution of neutral trehalase in barotolerance of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 66:51825185.
36. Iwahashi, H.,, H. Shimizu,, M. Odani, and, Y. Komatsu. 2003. Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae. Extremophiles 7:291298.
37. Jamieson, D. J. 1998. Oxidative stress responses of the Saccharomyces cerevisiae. Yeast 14:15111527.
38. Jones, R. P. 1989. Biological principles for effects of ethanol. Enzyme Microb. Technol. 11:130153.
39. Kajiwara, S.,, A. Shirai,, T. Fujii,, T. Toguri,, K. Nakamura, and, K. Ohtaguchi. 1996. Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana. Appl. Environ. Microbiol. 62:43094313.
40. Karreman, R. J.,, W. F. Brandt, and, G. G. Lindsey. 2005. The yeast Saccharomyces cerevisiae stress response protein HSP 12 decreases the gel strength of agarose used as a model system for the [-glucan layer of the cell wall. Carbohydr. Polym. 60:193198.
41. Karreman, R. J.,, E. Dague,, F. Gaboriaud,, F. Quilès,, J. F. Duval, and, G. G. Lindsey. 2007. The stress response protein Hsp12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall. Biochim. Biophys. Acta 1774:131137.
42. Kobori, H.,, M. Sato,, A. Tameike,, K. Hamada,, S. Shimada, and, M. Osumi. 1996. Changes in microfilaments and microtubules of yeasts induced by pressure stress, p. 8394. In R. Hayashi and, C. Balny (ed.), High Pressure Bioscience and Biotechnology. Elsevier Science, B. V. Amsterdam, The Netherlands.
43. Lammi, M. J.,, M. A. Elo,, R. K. Sironen,, H. M. Karjalainen,, K. Kaarniranta, and, H. J. Helminen. 2004. Hydrostatic pressure-induced changes in cellular protein synthesis. Biorheology 41:309313.
44. Macdonald, A. G. 1984. The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos. Trans. R. Soc. Lond. B 304:4768.
45. Martinez-Pastor, M. T.,, G. Marchler,, C. Schuller,, A. Marchler-Bauer,, H. Ruis, and, F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:22272235.
46. Mentre, P.,, L. Hamraoui,, G. Hui Bon Hoa, and, P. Debey. 1999. Pressure-sensitivity of endoplasmic reticulum membrane and nucleolus as revealed by electron microscopy. Cell. Mol. Biol. 45:353362.
47. Mentré, P., and, G. Hui Bon Hoa. 2001. Effects of high hydrostatic pressures on living cells: a consequence of the properties of macromolecules and macromolecule-associated water. Int. Rev. Cytol. 201:184.
48. Monkada, S.,, R. M. J. Palmer, and, E. A. Higgs. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43:109141.
49. Motshwene, P.,, R. Karreman,, G. Kgari,, W. Brandt, and, G. Lindsey. 2004. LEA (late embryonic abundant)-like protein Hsp 12 (heat-shock protein 12) is present in the cell wall and enhances the barotolerance of the yeast Saccharomyces cerevisiae. Biochem. J. 377:769774.
50. Osumi, M.,, M. Sato,, H. Kobori,, Z. H. Feng,, S. A. Ishijima,, K. Hamada, and, S. Shimada. 1996. Morphological effects of pressure stress on yeasts, p. 3746. In R. Hayashi and, C. Balny (ed.), High Pressure Bioscience and Biotechnology. Elsevier Science, B. V. Amsterdam, The Netherlands.
51. Palhano, F. L.,, H. L. Gomes,, M. T. D. Orlando,, E. Kurtenbach, and, P. M.B. Fernandes. 2004. Pressure response in the yeast Saccharomyces cerevisiae: from cellular to molecular approaches. Cell. Mol. Biol. 50:447457.
52. Palhano, F. L.,, M. T.D. Orlando, and, P. M.B. Fernandes. 2004. Induction of baroresistance by hydrogen peroxide, ethanol and cold-shock in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 233:139145.
53. Penninckx, M. J. 2002. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2:295305.
54. Perrier-Cornet, J. M.,, M. Hayert, and, P. Gervais. 1999. Yeast cell mortality related to a high-pressure shift: occurrence of cell membrane permeabilization. J. Appl. Microbiol. 87:17.
55. Perrier-Cornet, J. M.,, S. Tapin,, S. Gaeta, and, P. Gervais. 2005. High-pressure inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum at subzero temperatures. J. Biotechnol. 115:405412.
56. Piper, P. W. 1997. The yeast heat shock response, p. 7589. In W. H. Mager and, S. Hohmann (ed.), Yeast Stress Response. R. G. Landes Co., Austin, TX.
57. Quinn, P. J.,, F. Joo, and, L. Vigh. 1989. The role of unsaturated lipids in membrane structure and stability. Prog. Biophys. Mol. Biol. 53:71103.
58. Riezman, H. 2004. Why do cells require heat shock proteins to survive heat stress? Cell Cycle 3:6163.
59. Sahara, T.,, T. Goda, and, S. Ohgiya. 2002. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J. Biol. Chem. 277:5001550021.
60. Sajbidor, J., and, J. Grego. 1992. Fatty acid alterations in Saccharomyces cerevisiae exposed to ethanol stress. FEMS Microbiol. Lett. 93:1316.
61. Sales, K.,, W. Brandt,, E. Rumbak, and, G. Lindsey. 2000. The LEA-like protein HSP12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim. Biophys. Acta 1463:267278.
62. Sanchez, Y.,, J. Taulin,, K. A. Borkovich, and, S. Lindquist. 1992. Hsp104 is required for tolerance to many forms of stress. EMBO J. 11:23572364.
63. Seymour, I. J., and, P. W. Piper. 1999. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145:231239.
64. Reference deleted.
65. Siderius, M., and, W. H. Mager. 1997. General stress response: in search of a common denominator, p. 213230. In W. H. Mager and, S. Hohmann (ed.), Yeast Stress Response. R. G. Landes Co., Austin, TX.
66. Singer, M. A., and, S. Lindquist. 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16:460468.
67. Smits, G. J., and, S. Brul. 2005. Stress tolerance in fungi—to kill a spoilage yeast. Curr. Opin. Biotechnol. 16:225230.
68. Suzuki, K.,, Y. Miyosaka, and, Y. Taniguchi. 1971. The effect of pressure on deoxyribonucleic acid. J. Biochem. 69:595598.
69. Swan, T. M., and, K. Watson. 1998. Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol. Lett. 169:191197.
70. Takahashi, K.,, T. Kubo,, K. Kobayashi,, J. Imanishi,, M. Takigawa,, Y. Arai, and, Y. Hirasawa. 1997. Hydrostatic pressure influences mRNA expression of transforming growth factor-beta 1 and heat shock protein 70 in chondrocyte-like cell line. J. Orthop. Res. 15:150158.
71. Tamura, K.,, M. Miyashita, and, H. Iwahashi. 1998. Stress tolerance of pressure-shocked Saccharomyces cerevisiae. Biotechnol. Lett. 20:11671169.
72. Varela, J.C. S., and, W. H. Mager. 1996. Response of Saccharomyces cerevisiae to changes in external osmolarity. Microbiology 142:721731.
73. Weber, G., and, H. G. Drickamer. 1983. The effect of high pressure upon proteins and other biomolecules. Q. Rev. Biophys. 16:89112.
74. Wharton, D. A. 2002. Life at the Limits. Organisms in Extreme Environments. University Press, Cambridge, United Kingdom.
75. Wilson, B. A.,, M. Khalil,, F. Tamanoi, and, J. F. Cannon. 1993. New activated Ras2 mutations identified in Saccharomyces cerevisiae. Oncogene 8:34413445.
76. Yale, J., and, H. J. Bohnert. 2001. Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276:1599616007.
77. Yancey, P. H. 2005. Organic osmolytes as compatibles, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208:28192830.
78. You, K. M.,, C. Rosenfield, and, D. C. Knipple. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69:14991503.
79. Zara, S.,, G. Antonio Farris,, M. Budroni, and, A. T. Bakalinsky. 2002. Hsp12 is essential for biofilm formation by a Sardinian wine strain of S. cerevisiae. Yeast 19:269276.
80. Zimmerman, A. M. 1971. High pressure studies in cell biology. Int. Rev. Cytol. 30:147.
81. Zimmerman, A. M. 1970. High Pressure Effects on Cellular Processes. Academic Press, New York, NY.

Tables

Generic image for table
Table 1.

Up-regulated characterized genes after 30 min of HHP (200 MPa)

Citation: Fernandes P. 2008. Response to High Hydrostatic Pressure, p 145-166. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error