1887

Chapter 12 : Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap12-2.gif

Abstract:

This chapter focuses on the isolation, taxonomy, and diversity of piezophilic microorganisms and their habitats. Based upon several studies the authors have indicated that cultivated psychrophilic and piezophilic deep-sea bacteria could be affiliated with one of five genera within the subgroup: , , , , and , which was formally classified as ‘’an unidentified genus’’. The chapter describes taxonomic features of the piezophilic genera. For handling piezophiles for further study, JAMSTEC developed a deep-sea baropiezophile and thermophile isolation and cultivation system, referred to as the DEEPBATH system. The DEEPBATH system consists of four separate devices: (1) a pressure-retaining sampling device, (2) a dilution device under pressure conditions, (3) an isolation device, and (4) a cultivation device. From the analyses of 16S rRNA gene sequences after cultivation at 65 MPa, two groups of the bacterial genera and were identified. The authors have analyzed the microbial community structures by the terminal restriction fragment length polymorphism for the bacterial 16S rRNA gene and determined that the community is drastically changed at different pressure conditions of cultivation using the DEEPBATH system. Piezophiles are characterized by high levels of unsaturated fatty acids in their cell membrane layers, but long-chain polyunsaturated fatty acid (PUFA) like EPA and DHA are not necessarily required for high-pressure growth. The diversity of piezophilic bacteria is closely linked with the global deep-sea ocean circulation, but some of the closed oceans, like the Japan Sea, also contain piezophilic bacteria taxonomically similar to deep-sea microbes in the open oceans.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.48980072
0.48980072
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Characterization of piezophilic growth properties.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Phylogenetic tree showing the relationships between isolated deep-sea piezophilic bacteria (in bold) within the subgroup determined by comparing 16S rRNA gene sequences using the neighbor-joining method (references for species description are indicated in the text). The scale represents the average number of nucleotide substitutions per site. Bootstrap values (percent) are shown for frequencies above the threshold of 50%.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The DEEPBATH system. The system is composed of four devices: (1) a pressure-retaining sampling device, (2) a dilution device under pressure conditions, (3) an isolation device, and (4) a cultivation device. The system is controlled by the monitoring and control console.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Changes in major fatty acid profiles during five consecutive high-pressure cultivations (65 MPa) of deep-sea sediment samples using the DEEPBATH system.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Phylogenetic tree showing the relationships of the species within the subgroup constructed based on 16S rRNA gene sequences with the neighbor-joining method. The scale represents the average number of nucleotide substitutions per site. Bootstrap values (percent) were calculated from 1,000 trees. Psychrophilic and/or piezophilic bacteria are shown in bold.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

The deep ocean circulation (data from reference ). The Japan Sea, a closed ocean, is indicated by the star.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Growth profiles of the isolated bacteria from the Japan Sea sediment under different pressure conditions.

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch12
1. Allen, E. E.,, D. Facciotti, and, D. H. Bartlett. 1999. Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 65:17101720.
2. Arakawa, S.,, Y. Nogi,, T. Sato,, Y. Yoshida,, R. Usami, and, C. Kato. 2006. Diversity of piezophilic microorganisms in the closed ocean Japan Sea. Biosci. Biotechnol. Biochem. 70:749752.
3. Bartlett, D. H. 1999. Microbial adaptations to the psychrosphere/piezosphere. J. Mol. Microbiol. Biotechnol. 1:93100.
4. Beijerinck, M. W. 1889. Le Photobacterium luminosum, bactérie luminosum de la mer Nord. Arch. Neerl. Sci. 23:401427.
5. Bowman, J. P.,, J. J. Gosink,, S. A. McCammon,, T. E. Lewis,, D. S. Nichols,, P. D. Nichols,, J. H. Skerratt,, J. T. Staley, and, T. A. McMeekin. 1998. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov., and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6w3). Int. J. Syst. Bacteriol. 48:11711180.
6. Bowman, J. P.,, S. A. McCammon,, D. S. Nichols,, J. H. Skerratt,, S. M. Rea,, P. D. Nichols, and, T. A. McMeekin. 1997. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5w3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47:10401047.
7. Colwell, R. R., and, R. Y. Morita. 1964. Reisolation and emendation of description of Vibrio marinus (Russell) Ford. J. Bacteriol. 88:831837.
8. DeLong, E. F.,, D. G. Franks, and, A. A. Yayanos. 1997. Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63:21052108.
9. DeLong, E. F., and, A. A. Yayanos. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:11011103.
10. DeLong, E. F., and, A. A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol. 51:730737.
11. Deming, J. W.,, H. Hada,, R. R. Colwell,, K. R. Luehrsen, and, G. E. Fox. 1984. The nucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J. Gen. Microbiol. 130:19111920.
12. Deming, J. W.,, L. K. Somers,, W. L. Straube,, D. G. Swartz, and, M. T. Macdonell. 1988. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst. Appl. Microbiol. 10:152160.
13. Fang, J.,, M. J. Barcelona,, Y. Nogi, and, C. Kato. 2000. Biochemical function and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Mariana Trench at 11,000 meters. Deep-Sea Res. 147:11731182.
14. Fang, J.,, O. Chan,, C. Kato,, T. Sato,, T. Peeples, and, K. Niggemeyer. 2003. Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 38:885887.
15. Gamo, T.,, N. Momoshima, and, S. Tolmachyov. 2001. Recent upward shift of the deep convection system in the Japan Sea, as inferred from the geochemical tracers tritium, oxygen, and nutrients. Geophys. Res. Lett. 28:41434146.
16. Imai, E.,, H. Honda,, K. Hatori,, A. Brack, and, K. Matsuno. 1999. Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831833.
17. Inagaki, F.,, Y. Sakihama,, A. Inoue,, C. Kato, and, K. Horikoshi. 2002. Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ. Microbiol. 4:277 294.
18. Jensen, M. J.,, B. M. Tebo,, P. Baumann,, M. Mandel, and, K. H. Nealson. 1980. Characterization of Alteromonas hanedai (sp. nov.), a non-fermentative luminous species of marine origin. Curr. Microbiol. 3:311315.
19. Kato, C. 1999. Barophiles (piezophiles), p. 91111. In K. Horikoshiand, K. Tsujii (ed.), Extremophiles in Deep-Sea Environments. Springer-Verlag, Tokyo, Japan.
20. Kato, C. 2006. The handling of piezophilic microorganisms. Methods Microbiol. 35:733741.
21. Kato, C., and, K. Horikoshi. 1996. Gene expression under high pressure. Prog. Biotechnol. 13:5966.
22. Kato, C.,, L. Li,, Y. Nakamura,, Y. Nogi,, J. Tamaoka, and, K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64:15101513.
23. Kato, C.,, K. Nakasone,, M. H. Qureshi, and, K. Horikoshi. 2000. How do deep-sea microorganisms respond to changes in environmental pressure?, p. 277291. In K. B. Storeyand, J. M. Storey (ed.), Cell and Molecular Response to Stress, vol. 1. Environmental Stressors and Gene Responses. Elsevier Science B. V., Amsterdam, The Netherlands.
24. Kato, C., and, Y. Nogi. 2001. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol. Ecol. 35:223230.
25. Kato, C.,, T. Sato, and, K. Horikoshi. 1995. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers. Conserv. 4:19.
26. Kato, C.,, T. Sato,, Y. Nogi, and, K. Nakasone. 2004. Piezophiles: high pressure-adapted marine bacteria. Mar. Biotechnol. 6:S195S201.
27. Kyo, M.,, T. Tuji,, H. Usui, and, T. Itoh. 1991. Collection, isolation and cultivation system for deep-sea microbes study: concept and design. Oceans 1:419423.
28. Leonardo, M. R.,, D. P. Moser,, E. Barbieri,, C. A. Brantner,, B. J. MacGregor,, B. J. Paster,, E. Stackebrandt, and, K. H. Nealson. 1999. Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int. J. Syst. Bacteriol. 49:1341 1351.
29. MacDonell, M. T., and, R. R. Colwell. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6:171182.
30. Makemson, J. C.,, N. R. Fulayfil,, W. Landry,, L. M. Van Ert,, C. F. Wimpee,, E. A. Widder, and, J. F. Case. 1997. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int. J. Syst. Bacteriol. 47:10341039.
31. Margesin, R., and, Y. Nogi. 2004. Psychropiezophilic microorganisms. Cell. Mol. Biol. 50:429436.
32. Maruyama, A.,, D. Honda,, H. Yamamoto,, K. Kitamura, and, T. Higashihara. 2000. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int. J. Syst. Evol. Microbiol. 50:835846.
33. Mountfort, D. O.,, F. A. Rainey,, J. Burghardt,, F. Kasper, and, E. Stackebrant. 1998. Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch. Microbiol. 169:231238.
34. Nakasone, K.,, A. Ikegami,, C. Kato,, R. Usami, and, K. Horikoshi. 1998. Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149154.
35. Nakasone, K.,, A. Ikegami,, H. Kawano,, R. Usami,, C. Kato, and, K. Horikoshi. 2002. Transcriptional regulation under pressure conditions by the RNA polymerase σ54 factor with a two component regulatory system in Shewanella violacea. Extremophiles 6:8995.
36. Nakasone, K.,, H. Mori,, T. Baba, and, C. Kato. 2003. Whole-genome analysis of piezophilic and psychrophilic microorganism. Kagaku to Seibutu 41:3239. (In Japanese.)
37. Nogi, Y.,, S. Hosoya,, C. Kato, and, K. Horikoshi. 2004. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int. J. Syst. Evol. Microbiol. 54:16271631.
38. Nogi, Y., and, C. Kato. 1999. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench, and Moritella yayanosii sp. nov., a new barophilic bacterial species. Extremophiles 3:7177.
39. Nogi, Y.,, C. Kato, and, K. Horikoshi. 1998. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J. Gen. Appl. Microbiol. 44:289295.
40. Nogi, Y.,, C. Kato, and, K. Horikoshi. 1998. Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch. Microbiol. 170:331338.
41. Nogi, Y.,, C. Kato, and, K. Horikoshi. 2002. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int. J. Syst. Evol. Microbiol. 52:1527 1532.
42. Nogi, Y.,, N. Masui, and, C. Kato. 1998. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:17.
43. Owen, R.,, R. M. Legros, and, S. P. Lapage. 1978. Base composition, size and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J. Gen. Microbiol. 104:127138.
44. Schmitz, W. J., Jr. 1995. On the interbasin-scale thermohaline circulation. Rev. Geophys. 33:151173.
45. Seo, H. J.,, S. S. Bae,, J. -H. Lee, and, S. -J. Kim. 2005. Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int. J. Syst. Evol. Microbiol. 55:16611666.
46. Stetter, K. O. 1993. Life at the upper temperature border, p. 195219. In J. Van Tran Than,, K. Van Tran Than,, J. C. Mounolou,, J. Schneiderand, C. McKay (ed.), Frontiers of Life. Frontières, Gif-sur-Yvette, France.
47. Urakawa, H.,, K. Kita-Tsukamoto,, S. E. Steven,, K. Ohwada, and, R. R. Colwell. 1998. A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol. Lett. 165:373378.
48. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Laauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D. H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:14591461.
49. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rüger,, D. D. Kegel, and, N. Glansdorff. 2003. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:533538.
50. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rüger,, D. D. Kegel, and, N. Glansdorff. 2003. Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:527532.
51. Yanagibayashi, M.,, Y. Nogi,, L. Li, and, C. Kato. 1999. Changes in the microbial community in Japan Trench sediment from a depth of 6,292 m during cultivation without decompression. FEMS Microbiol. Lett. 170:271279.
52. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49:777805.
53. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808810.
54. Zobell, C. E., and, F. H. Johnson. 1949. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bacteriol. 57:179189.

Tables

Generic image for table
Table 1.

Whole-cell fatty acid composition of piezophilic isolates (type strains)

Citation: Kato C, Nogi Y, Arakawa S. 2008. Isolation, Cultivation, and Diversity of Deep-Sea Piezophiles, p 203-217. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error