1887

Chapter 14 : Deep-Sea Geomicrobiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Deep-Sea Geomicrobiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap14-2.gif

Abstract:

The rapid development and growth of geomicrobiology can partially be attributed to discoveries in the last several decades of unique extremophiles present in many different harsh environments that play key roles in the biogeochemistry that occurs in these environments. The development of new technologies and experimental approaches in geomicrobiology and in the studies of extremophiles has spawned a revolution that will surely have profound social and economic impact now and in the future. The chapter focuses on the piezophilic members of the extremophiles, with an emphasis on geomicrobiological considerations. The deep sea in general is an oligotrophic environment, except in areas of cold seeps and hydrothermal vents. The pressure-induced changes in fatty acid composition are comparable to those induced by temperature changes and that homeoviscous adaptation of membrane lipids occurs in piezophilic bacteria in response to pressure. The majority of the fatty acids were unsaturated, with one, five, or six double bonds. The biosynthesis of monounsaturated fatty acids was significantly inhibited (10 to 37%) by the addition of cerulenin, whereas the concentrations of polyunsaturated fatty acid (PUFA) increased two to four times. Lipids and stable carbon isotopes preserved in lipids have proven to be excellent biosignatures applied to deep-sea geomicrobiology. Fatty acid compositions of piezophilic bacteria are discussed in this chapter.

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14

Key Concept Ranking

Unsaturated Fatty Acids
0.5534113
Acetyl Coenzyme A
0.505
Fatty Acid Synthase
0.46794733
0.5534113
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Chemical structures of PUFA.

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Three-dimensional views showing the temperature ()-pressure () dependence of the exponential growth rate constant () of strain SC1 (A) and strain PE36 (B) from the North Pacific Ocean. The diagram allows a reasonable, unambiguous determination of , , and of piezophilic bacterial growth (adapted from reference ).

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Total microbial utilization (incorporation plus respiration) of [C]glutamic acid at 3°C and in situ (44 MPa) pressure (filled circles) or atmospheric pressure (open circles) in sediment suspensions prepared from depths of 1, 5, and 15 cm in boxcores from stations A (depth, 4,470 m) and B (depth, 4,850 m). Respiration accounted for 89 to 94% of total substrate utilization at both pressures (adapted from reference ).

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Total microbial utilization (incorporation plus respiration) of [C]glutamic acid at 3°C and in situ (44 MPa) pressure (filled circles) or atmospheric pressure (open circles) in seawater suspensions of particulates from temperature-compromised sediment trap sample A-7 (depth, 4,463 m) and cold trap sample B-20 (depth, 4,830 m). Respiration accounted for 84 to 89% of total substrate utilization at both pressures (adapted from reference ).

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Bacterial fraction of “total” benthic biomass (excluding protozoa) as a function of depth in the ocean (adapted from reference ).

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

G° plotted versus pressure and constant temperature (2°C) for O2 (a), NO3 (b), Fe2O3 (s) (c), and CO (d) reduction reactions.

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Sequence of microbially mediated reduction reactions based on values of electron activity at biological standard state (8 w) at 25°C and 1 bar (10 Pa) (a) and 2°C and 400 bar (4 × 10 Pa) (b). The 8 w values are calculated per Johnson et al. ( ) and Amend and Teske ( ). TEAP, terminal electron-accepting process.

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Representative fatty acids of the five piezophilic genera and Evolutionary distance tree of the domain was taken from reference .

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Summary of possible biosynthetic pathways of fatty acyl chains in piezophilic bacterial membrane lipids (modified from references and with permission of the publishers). The saturated and monounsaturated fatty acids are synthesized by the FAS pathway common to members of the domain which include the aerobic (type I) and anaerobic (type II) branches. The PUFA found in piezophilic bacteria are probably synthesized via the PKS pathway, which appears to be unique to marine bacteria. Biosynthesis of PUFA by an aerobic mechanism through sequential elongation and desaturation reactions appears less likely to occur in piezophilic bacteria. Ac-ACP, acetyl-acyl carrier protein; Mal-ACP, malonyl-acyl carrier protein; DH, dehydrase; ER, enoyl reductase; KR, 3-ketoacyl reductase; KS, 3-ketoacylsynthase.

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

The calculated carbon isotopic fractionation, ε (ε = α -1) × 1,000, of whole cell biomass and selected fatty acids biosynthesized by DSK1 at 0.1, 10, 20, and 50 MPa, where c is defined as α = (1,000 + δ)/(1,000 + δ), δ is the carbon isotopic ratio of substrate (glucose), and δ is that of product (cell biomass and fatty acids).

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch14
1. Abe, F., and, K. Horikoshi. 2001. The biotechnological potential of piezophiles. Trends Biotechnol. 19:102108.
2. Abe, F.,, C. Kato, and, K. Horikoshi. 1999. Pressure-regulated metabolism in microorganisms. Trends Microbiol. 7:447453.
3. Aguilar, A. 1996. Extremophile research in the European Union: from fundamental aspects to industrial expectations. FEMS Microbiol. Rev. 18:8992.
4. Allen, E. E.,, D. Facciotti, and, D. H. Bartlett. 1999. Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 65:17101720.
5. Amend, J. P., and, E. L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 25:175243.
6. Amend, J. P., and, A. Teske. 2005. Expanding frontiers in deep subsurface microbiology. Paleogeogr. Peloclimatol. Paleoecol. 219:131155.
7. Azam, F., and, R. A. Long. 2001. Sea snow microcosms. Nature 414:495498.
8. Baird, B. H.,, D. E. Nivens,, J. H. Parker, and, D. C. White. 1985. The biomass, community structure and spatial distribution of the sedimentary microbiota from a high-energy area of the deep sea. Deep-Sea Res. 32:10891099.
9. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
10. Bartlett, D. H., and, K. A. Bidle. 1999. Membrane-based adaptions of deep-sea piezophiles, p. 503512. In J. Sechbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Boston, MA.
11. Bartlett, D. H.,, E. Chi, and, T. J. Welch. 1996. High pressure sensing and adaptation in the deep-sea bacterium Photobacterium species strain SS9, p. 2936. In R. Hayashi and, C. Balny (ed.), High Pressure Bioscience and Biotechnology. Elsevier Science B. V., Amsterdam, The Netherlands.
12. Bowman, J. P.,, S. A. McCammon,, T. Lewis,, J. H. Skerratt,, J. L. Brown,, D. S. Nichols, and, T. A. McMeekin. 1998. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:16011609.
13. Burton, S. K., and, H. Lappin-Scott. 2005. Geomicrobiology, the hidden depths of the biosphere. Trends Microbiol. 13:401.
14. Cho, B. C., and, F. Azam. 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441443.
15. Chong, P. L.-G., and, A. R. Cossins. 1983. A differential polarized fluorimetric study of the effects of high hydrostatic pressure upon the fluidity of cellular membranes. Biochemistry 22:409415.
16. Colombo, J. C.,, N. Silverberg, and, J. N. Gearing. 1996. Lipid biogeochemistry in the Laurentian Trough. I. Fatty acids, sterols and aliphatic hydrocarbons in rapidly settling particles. Org. Geochem. 25:211226.
17. Coolbear, K. P.,, C. B. Berde, and, K. M. W. Keough. 1983. Gel to liquid crystalline phase transitions of aqueous dispersion of polyunsaturated mixed-acid phosphatidylcholines. Biochemistry 22:14661473.
18. Cossins, A. R., and, A. G. MacDonald. 1984. Homeoviscous theory under pressure. II. The molecular order of membranes from deep-sea fish. Biochim. Biophys. Acta 776:144150.
19. Cossins, A. R., and, M. Sinensky. 1984. Adaptation of membranes to temperature, pressure and exogenous lipids, p. 16. In M. Shinitzky(ed.), Physiology of Membrane Fluidity, vol. II. CRC Press, Boca Raton, FL.
20. Cowan, D. A. 1998. Hot bugs, cold bugs and sushi. Trends Biotechnol. 16:241242.
21. De Barr, H. J. W.,, J. W. Farrington, and, S. G. Wakeham. 1983. Vertical flux of fatty acids in the North Atlantic Ocean. J. Mar. Res. 41:1941.
22. DeLong, E. F.,, D. G. Franks, and, A. A. Yayanos. 1997. Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63:21052108.
23. DeLong, E. F., and, A. A. Yayanos. 1985. Adaptation of membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:11011103.
24. DeLong, E. F., and, A. A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol. 51:730737.
25. Deming, J. W. 1985. Bacterial growth in deep-sea sediment trap and boxcore samples. Mar. Ecol. Prog. Ser. 25:305312.
26. Deming, J. W., and, J. A. Baross. 2000. Survival, dormancy, and nonculturable cells in extreme deep-sea environments, p. 147198. In R. R. Colwell and, D. J. Grimes(ed.), Nonculturable Microorganisms in the Environment. ASM Press, Washington, DC.
27. Deming, J. W., and, R. R. Colwell. 1982. Barophilic bacteria associated with the digestive tracts of abyssal holothurians. Appl. Environ. Microbiol. 44:12221230.
28. Deming, J. W., and, R. R. Colwell. 1985. Observation of barophilic microbial activity in samples of sediment and intercepted particulates from the Demerara abyssal plain. Appl. Environ. Microbiol. 50:1002 1006.
29. Deming, J. W.,, H. Hada,, R. R. Colwell,, K. R. Luehrsen, and, G. E. Fox. 1984. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J. Gen. Microbiol. 130:19111920.
30. Deming, J. W.,, L. K. Somers,, W.L. Strauble, and, M. T. McDonell. 1988. Isolation of an obligately barophilic bacterium and description of a new genus, Nogi, Y., Colwellia gen-nov. Syst. Appl. Microbiol. 10:152155.
31. D’Hondt, S.,, B. B. Jørgensen,, D. J. Miller,, A. Batzke,, R. Blake,, B. A. Cragg,, H. Cypionka,, G. R. Dickens,, T. Ferdelman,, K.-U. Hinrichs,, N. G. Holm,, R. A. Mitterer,, Spivack,, G. Wang,, B. Bekins,, B. Engelen,, K. Ford,, G. Gettemy,, S. D. Rutherford,, H. Sass,, C. G. Skilbeck,, I. W. Aiello, G. Guèrin,, C. H. House,, F. Inagaki,, P. Meister,, T. Naehr,, S. Niitsuma,, R. J. Parkes,, A. Schippers,, D. C. Smith,, A. Teske,, J. Wiegel,, C. N. Padilla, and, J. L. S. Acosta. 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306:22162221.
32. Drobnis, E. Z.,, L.M. Crowe, and, T. Berger. 1993. Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265:432437.
33. Eardly, D. F.,, M. W. Carton,, J.M. Gallagher, and, J. W. Patching. 2001. Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic. Prog. Oceanogr. 50:245259.
34. Erwin, E., and, K. Bloch. 1964. Biosynthesis of unsaturated fatty acids in microorganisms. Science 143:10061012.
35. Fang, J.,, M. J. Barcelona,, T. A. Abrajano, Jr.,, C. Kato, and, Y. Nogi. 2002. Isotopic composition of fatty acids isolated from the extremely piezophilic bacteria from the Mariana Trench at 11,000 meters. Mar. Chem. 80:19.
36. Fang, J.,, M.J. Barcelona,, C. Kato, and, Y. Nogi. 2000. Biochemical function and geochemical significance of novel phospholipids isolated from extremely barophilic bacteria from the Mariana Trench at a depth of 11,000 meters. Deep-Sea Res. 47:11731182.
37. Fang, J., and, C. Kato. 2002. Piezophilic bacteria: taxonomy, diversity, adaptation, and potential biotechnological applications, p. 4780. In M. Fingerman(ed.), Recent Advances in Marine Biotechnology, vol. 8. Science Publishers, Inc., Enfield, NH.
38. Fang, J., and, C. Kato. FAS or PKS, lipid biosynthesis and stable carbon isotope fractionation in deep-sea piezophilic bacteria, p. 190200. In A. Méndez-Vilas(ed.), Communicating Current Research and Educational Topics and Trends in Applied Microbiology, vol. 1. The Formatex Microbiology Book Series, Formatex Center, Badajoz, Spain.
39. Fang, J.,, C. Kato,, T. Sato,, O. Chan, and, D. S. McKay. 2004. Polyunsaturated fatty acids in piezophilic bacteria: biosynthesis or dietary uptake? Comp. Biochem. Physiol. B 137:455461.
40. Fang, J.,, C. Kato,, T. Sato,, O. Chan,, T. Peeples, and, K. Niggemeyer. 2003. Phospholipid fatty acid profiles of piezophilic bacteria from the deep sea. Lipids 38:885887.
41. Fang, J.,, M. Uhle,, K. Billmark,, D. H. Bartlett, and, C. Kato. 2005. Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica DSK1. Geochim. Cosmochim. Acta 70:17531760.
42. Garrison, T. 2005. Oceanography: an Invitation to Marine Science, 5th ed. Brooks/Cole, Belmont, CA.
43. Gauthier, G.,, M. Gauthier, and, R. Christen. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45:755761.
44. Gonzalezbaro, M. D., and, R.J. Pollero. 1998. Fatty acid metabolism of Macrobrachium borellii—dietary origin of arachidonic and eicosapentaenoic acids. Comp. Biochem. Physiol. 119:747752.
45. Harvey, H. R.,, M. D. Richardson, and, J. S. Patton. 1984. Lipid composition and vertical distribution of bacteria in aerobic sediments of the Venezuela Basin. Deep-Sea Res. 31:403413.
46. Hayes, J. M. 1993. Factors controlling 13C contents of sedimentary compounds: principles and evidence. Mar. Geol. 13:111125.
47. Hazel, J. R. 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 57:1942.
48. Horneck, G. 2000. The microbial world and the case for Mars. Planet. Space Sci. 48:10531063.
49. Hugenholtz, P.,, B. M. Goebel, and, N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:47654774.
50. Jackson, B. E., and, M. J. McInerney. 2002. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454456.
51. Johnson, J. W.,, E. H. Oelkers, and, H. C. Helgeson. 1992. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 500 bar and 0 to 1000°C. Comput. Geosci. 18:899947.
52. Jørgensen, B. B. 1982. Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature 296:643645.
53. Jøstensen, J.-P., and, B. Landfald. 1997. High prevalence of polyunsaturated-fatty-acid producing bacteria in arctic invertebrates. FEMS Microbiol. Lett. 151:95101.
54. Kaneda, T. 1991. Iso-fatty and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55:288302.
55. Karner, M.,, E. F. DeLong, and, D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507510.
56. Kato, C.,, L. Li,, Y. Nogi,, Y. Nakamura,, J. Tamaoka, and, K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64:15101513.
57. Kato, C.,, N. Masui, and, K. Horikoshi. 1996. Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin Trench. J. Mar. Biotechnol. 4:9699.
58. Kato, C., and, Y. Nogi. 2001. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol. Ecol. 35:223230.
59. Kato, C.,, T. Sato, and, K. Horikoshi. 1995. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers. Conserv. 4:19.
60. Kato, C.,, H. A. Tamegai,, R. Ikegami,, R. Usami, and, K. Horikoshi. 1996. Open reading frame 3 of the barotolerant bacterium strain DSS12 is complementary with cydD in Escherichia coli: cydD functions are required for cell stability at high pressure. J. Biochem. 120:301305.
61. Kiorboe, T., and, G. A. Jackson. 2001. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46:13091318.
62. Li, L.,, C. Kato,, Y. Nogi, and, K. Horikoshi. 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar. Biotechnol. 1:391400.
63. Liesack, W.,, H. Weyland, and, E. Stackebrandt 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed culture of strict barophilic bacteria. Microb. Ecol. 21:191198.
64. Macdonald, A. G. 1975. Physiological Aspects of Deep Sea Biology. Cambridge University Press, Cambridge, United Kingdom.
65. Macdonald, A. G. 1984. The effects of pressure on the molecular structure and physiological function of cell membranes. Philos. Trans. R. Soc. Lond. B. 304:4768.
66. MacDonell, M. T., and, R. R. Colwell. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6:171182.
67. Madigan, M. T., and, B. L. Marrs. 1997. Extremophiles. Sci. Am. 276:8287.
68. Madigan, M. T.,, J. M. Martinko, and, J. Parker. 2003. Brock Biology of Microorganisms, 10th ed. Prentice Hall, Upper Saddle River, NJ.
69. Madigan, M. T., and, A. Oren. 1999. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol. 2:265269.
70. Marsh, D. 1990. Handbook of Lipid Bilayers. CRC Press, Boca Raton, FL.
71. McElhaney, R. N. 1984. The structure and function of the Acholeplasma laidlawii plasma membrane. Biochim. Biophys. Acta 779:142.
72. Metz, J. G.,, P. Roessler,, D. Facciotti,, C. Leverine,, F. Dittrich,, M. Lassner,, R. Valentine,, K. Lardizabal,, F. Domergue,, A. Yamada,, K. Yazawa,, V. Knauf, and, J. Browse. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290293.
73. Monson, K. D., and, J. M. Hayes. 1980. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. J. Biol. Chem. 255:1143511441.
74. Morita, N.,, M. Tanaka, and, H. Okuyama. 2000. Biosynthesis of fatty acids in the docosahexaenoic acid-producing bacterium Moritella marina MP-1. Biochem. Soc. Trans. 28:943945.
75. Morita, N.,, A. Ueno,, M. Tanaka.,, S. Ohgiya,, K. Kawasaki,, I. Yumoto,, K. Ishizaka, and, H. Okuyama. 1999. Cloning and sequencing of clustered genes involved in fatty acid biosynthesis from the docosahexaenoic acid-producing bacterium, Vibrio marinustrain MP-1.Biotechnol Lett. 21:641644.
76. Morita, R. Y. 1986. Pressure as an extreme environment, p. 171185. In R. A. Herbertand, G. A. Codd(ed.), Microbes in Extreme Environments. Academic Press, London, United Kingdom.
77. Mozhaev, V. V.,, K. Heremans,, J. Frank,, P. Masson, and, C. Balny. 1994. Exploring the effects of high hydrostatic pressure in biotechnological applications. Trends Biotechnol. 12:493501.
78. Nagata, T.,, H. Fukuda,, R. Fukuda, and, I. Koike. 2000. Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol. Oceanogr. 45:426435.
79. Nakayama, A.,, Y. Yano, and, K. Yoshida. 1994. New method for isolating barophiles from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Appl. Environ. Microbiol. 60:42104212.
80. Nichols, D. S. 2003. Prokaryotes and the input of polyunsaturated fatty acids into the marine food web. FEMS Microbiol. Lett. 219:17.
81. Nichols, D. S., and, T. A. McMeekin. 2002. Biomarker techniques to screen for bacteria that produce polyunsaturated fatty acids. J. Microbiol. Methods 48:161170.
82. Nogi, Y.,, S. Hosoya,, C. Kato, and, K. Horikoshi. 2004. Colwellia piezophila sp. nov., a novel piezophilic Colwellia species from deep-sea sediments of the Japan Trench. Int. J. Syst. Evol. Microbiol. 54:16271631.
83. Nogi, Y., and, C. Kato. 1999. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench, and Moritella yayanosii sp. nov., a new barophilic bacterial species. Extremophiles 3:7177.
84. Nogi, Y.,, C. Kato, and, K. Horikoshi. 1998. Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch. Microbiol. 170:331338.
85. Nogi, Y.,, C. Kato, and, K. Horikoshi. 1998. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J. Gen. Appl. Microbiol. 44:289295.
86. Nogi, Y.,, C. Kato, and, K. Horikoshi. 2002. Psychromonas kaikoi sp. nov., isolation of novel piezophilic bacteria from the deepest cold-seep sediments in the Japan Trench. Int. J. Syst. Evol. Microbiol. 52:1527 1532.
87. Nogi, Y.,, N. Masui, and, C. Kato. 1998. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:17.
88. Parkes, R. J.,, G. Webster,, B. A. Cragg,, A. J. Weightman,, C. J. Newberry,, T. G. Ferdelman,, J. Kallmeyer,, B. B. Jørgensen,, I. W. Aiello, and, J. C. Fry. 2005, Deep sub-seafloor prokaryotes stimulated at interfaces over geologic time. Nature 436:390394.
89. Patching, J. W., and, D. Eardly. 1997. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community. Deep-Sea Res. 44:16551670.
90. Pluschke, G., and, P. Overath. 1981. Function of phospholipids in Escherichia coli. J. Biol. Chem. 256:32073212.
91. Poremba, K.,, D. Eardly, and, J. W. Patching. 1994. Dynamics of microbial abundance and activity in deep-sea sediment of the Northeast Atlantic. Microbiol. Eur. 2:2225.
92. Quinn, P. J. 1976. Molecular Biology of Cell Membranes. McMillan, London, United Kingdom.
93. Rothschild, L. J., and, R. L. Mancinelli. 2001. Life in extreme environments. Nature 409:10921101.
94. Rowe, G. T., and, J. W. Deming. 1985. The role of bacteria in the turnover of organic carbon in deep-sea sediments. J. Mar. Res. 43:925950.
95. Rowe, G. T.,, M. Sibuet,, J. W. Deming,, A. Khripounoff,, J. Tietjen,, S. Macko, and, R. Theroux. 1991. “Total” sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Mar. Ecol. Prog. Ser. 79:99114.
96. Russell, N. J. 1988. Functions of lipids: structural roles and membrane functions, p. 279365. In C. Rat-ledgeand, S. G. Wilkinson(ed.), Microbial Lipids, vol. II. Academic Press, London, United Kingdom.
97. Russell, N. J., and, D.S. Nichols. 1999. Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767779.
98. Rusterholtz, K., and, M. Pohlschroder. 1999. Where are the limits of life? Cell 96:469470.
99. Sakata, S.,, J. M. Hayes,, A. R. McTaggart,, R. A. Evans,, K. J. Leckrone, and, R. K. Togasaki. 1997. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of biomarker records. Geochim. Cosmochim. Acta 61:53795389.
100. Schippers, A.,, L. N. Neretin,, J. Kallmeyer,, T. G. Ferdelman,, B. A. Cragg,, R. J. Parkes, and, B. B. Jørgensen 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861864.
101. Schouten, S.,, W. C. K. Breteler,, P. Blokker,, N. Schogt,, W. I. C. Rijpstra,, K. Grice,, M. Baas, and, J.S. Sinninghe Damsté. 1998. Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim. Cosmochim. Acta 62:13971406.
102. Schwartz, J. R.,, J. D. Walker, and, R. R. Colwell. 1974. Growth of deep-sea bacteria on hydrocarbons at ambient and in situ pressure. Dev. Ind. Microbiol. 15:239249.
103. Silvius, J. R. 1982. Thermotropic lipid phase transitions of pure lipids in model membranes and their modifications by membrane proteins, p. 239281. In P. C. Costand, O. H. Griffith(ed.), Lipid-Protein Interactions, vol. 2. John Wiley and Sons, Inc., New York, NY.
104. Sinensky, M. 1974. Homeoviscous adaptation—a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71:522525.
105. Somero, G. N. 1992. Adaptations to high hydrostatic pressure. Annu. Rev. Physiol. 54:557577.
106. Stetter, K. O. 1999. Extremophiles and their adaptation to hot environments. FEBS Lett. 452:2225.
107. Tabor, P. S.,, J. W. Deming,, K. Ohwada, and, R. R. Colwell. 1982. Activity and growth of microbial populations in pressurized deep-sea sediments and animal gut samples. Appl. Environ. Microbiol. 44:413422.
108. Tabor, P. S.,, K. Ohwada, and, R. R. Colwell. 1981. Filterable marine bacteria found in the deep sea: distribution, taxonomy, and response to starvation. Microb. Ecol. 7:6783.
109. Takami, H.,, A. Inoue,, F. Fuji, and, K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152:279285.
110. Tamegai, H.,, C. Kato, and, K. Hirokoshi. 1998. Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. strain DSSI2. J. Biochem. Mol. Biol. Biophys. 1:213220.
111. Tanaka, M. A. Ueno,, K. Kawasaki,, I. Yumoto,, S. Ohgiya,, T. Hoshino,, K. Ishizaki,, H. Okuyama, and, N. Morita. 1999. Isolation of clustered genes that are notably homologous to the eicosapentaenoic acid biosynthesis gene cluster from the docosahexaenoic acid-producing bacterium Vibrio marinus strain MP-1. Biotechnol. Lett. 21:939945.
112. Teece, M. A.,, M. L. Fogel,, M. E. Dollhopf, and, K. H. Nealson. 1999. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org. Geochem. 30:15711579.
113. Tornabene, T. G. 1985. Lipid analysis and the relationship to chemotaxonomy. Methods Microbiol. 18: 209234.
114. Veld, G. I.,, A. J. Driessen, and, W. N. Konings. 1993. Bacterial solute transport proteins in their lipid environment. FEMS Microbiol. Rev. 12:293314.
115. Wakeham, S. G., and, E. A. Canuel. 1988. Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: implications for particle dynamics. J. Mar. Res. 46:183213.
116. Wakeham, S. G.,, J. H. Hedges,, C. Lee,, M. L. Peterson, and, P. I. Hernes. 1997. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep-Sea Res. Part II 44:21312162.
117. Wakeham, S. G., and, C. Lee. 1993. Production, transport, and alteration of particulate organic matter in the marine water column, p. 145169. In M. H. Engeland, S. A. Macko(ed.), Organic Geochemistry, Principles and Applications. Plenum Press, New York, NY.
118. Wallis, J. G.,, J. L. Watts, and, J. Browse. 2002. Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biol. Sci. 27:467473.
119. Weber, G., and, H. G. Drickamer. 1983. The effect of high pressure upon proteins and other biomolecules. Q. Rev. Biophys. 16:89112.
120. Whitman, W. B.,, D. C. Coleman, and, J. W. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:65786583.
121. Wirsen, C. O.,, H. W. Jannasch,, S. G. Wakeham, and, E. A. Canuel. 1987. Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Curr. Microbiol. 14:319322.
122. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rüger,, D. D. Kegel, and, N. Glansdorff. 2003. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:533538.
123. Yanagibayashi, M.,, Y. Nogi,, L. Li, and, C. Kato. 1999. Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol. Lett. 170:271279.
124. Yano, Y.,, A. Nakayama, and, K. Yoshida. 1997. Distribution of polyunsaturated fatty acids in bacteria presented in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. Microbiol. 63:25722577.
125. Yayanos, A. A. 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. USA 83:95429546.
126. Yayanos, A. A. 1995. Microbiology to 10500 meters in the deep sea. Annu. Rev. Microbiol. 49:777805.
127. Yayanos, A. A. 1998. Empirical and theoretical aspects of life at high pressure in the deep sea, p. 4792. In K. Horikoshi and, W. D. Grant(ed.), Extremophiles, Microbial Life in Extreme Environments. John Wiley and Sons, Inc., New York, NY.
128. Yayanos, A. A. 1999. The influence of nutrition on the physiology of piezophilic bacteria. In C. R. Bell,, M. Brylinsky, and, P. Johnson-Green (ed.), Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada, 1999.
129. Yayanos, A. A. 2001. Deep-sea piezophilic bacteria. Methods Microbiol. 30:615635.
130. Yayanos, A. A., and, E. F. DeLong. 1987. Deep-sea bacterial fitness to environmental temperatures and pressures, p. 1732. In H. W. Jannasch,, R. E. Marquis, and, A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, London, United Kingdom.
131. Yayanos, A. A., and, A. S. Dietz. 1982. Death of a hadal deep-sea bacterium after decompression. Science 220:497498.
132. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808810.
133. Yayanos, A. A.,, A.S. Dietz, and, R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana Trench. Proc. Natl. Acad. Sci. USA 78:52125215.
134. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1982. Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl. Environ. Microbiol. 44:13561361.
135. Yayanos, A. A.,, R. Van Boxtel, and, A. S. Dietz. 1984. High-pressure-temperature gradient instrument: use for determining the temperature and pressure limits of bacterial growth. Appl. Environ. Microbiol. 48: 771776.
136. Yazawa, K. 1996. Production of eicosapentaenoic acid from marine bacteria. Lipids 31:S297S300.

Tables

Generic image for table
Table 1.

Piezophilic microorganisms isolated from various sources

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Generic image for table
Table 2.

Fatty acid compositions of piezophilic bacteria

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14
Generic image for table
Table 3.

Stable carbon isotopic composition of fatty acids in DSK1 grown on glucose at various pressures

Citation: Fang J, Bazylinski D. 2008. Deep-Sea Geomicrobiology, p 237-264. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error