1887

Chapter 15 : Deep-Sea Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Deep-Sea Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap15-2.gif

Abstract:

This chapter focuses on issues related to collection and isolation of deep-sea fungi, direct detection in deep-sea sediments, diversity and biomass, growth and physiology, adaptations, and their biotechnological applications. The presence of fungi in oceanic waters and the deep sea has been sporadically reported in the past. Their presence in shells collected from deep-sea waters at a depth of 4,610 m was the first report on deep-sea fungi. Immunofluorescence has been widely used to detect specific fungi in terrestrial and in a few marine substrates. The authors used this for detecting one of the commonly isolated fungi, (isolate A 4634), from deep-sea sediments of the Central Indian Basin. The deep-sea fungi when grown under elevated pressure synthesized extracellular protease, albeit in very low quantities in comparison with that produced under 0.1 MPa. (NIOCC20) isolated by the authors from deep-sea sediments produced cold-active alkaline serine protease, whereas obtained from a terrestrial habitat did not. This might be due to differences in strains but may also indicate the adaptation that deep-sea fungi have undergone for their survival. Study of the cold shock or stress proteins or genes produced in response to hydrostatic pressure shock in fungi using proteomics and microarray technology will help to understand the response in eukaryotic organisms to pressure. New techniques for retrieval of sediment samples with in situ pressure, isolation, and culture of the vast diversity of organisms from the deep sea will open new vistas in deep-sea biology.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figures 1 and 2.
Figures 1 and 2.

Calcofluor-stained fungal hyphae (arrows) visible under an epifluorescence microscope after dissolution of a carbonate shell with EDTA.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

(a) Direct visualization of a fungal hypha after treating a deep-sea sediment with the optical brightener calcofluor; (b) epifluorescence and bright-field microscopy showing a fungal hypha and sediment particles; (c) bright-field microscopy highlights only the sediment and masks the fungal hyphae ( ).

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

(a) Detection of hypha of (isolate A 4634) from a deep-sea sediment treated with fluorescein isothiocyanate-tagged polyclonal antibodies raised against the fungus; (b) the same hypha as in panel a, viewed under bright-field microscopy.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Rosette sampler with several bottles fitted to a conductivity, temperature, and depth measuring device (CTD) frame for collecting oceanic water samples from different depths.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

ZoBell sampler for collecting water samples for microbiological studies. Reprinted with kind permission from Lorenz ( ).

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Water sampler for collecting water samples with in situ pressure and a transfer unit. Original figure ( ) modified by Lorenz and reproduced with kind permission from Lorenz ( ).

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Multiple corer for collecting deep-sea sediment cores. Reprinted from the Oktopus Gmbh catalog with kind permission from G. Schriever.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Box corer for collecting a large volume of sediments. Courtesy A. B. Valsangkar, Geological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa, India.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

A graduated polyvinyl chloride cylinder for collecting sediment subsamples from a box corer. Courtesy A. B. Valsangkar, Geological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa, India.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.
Figure 11.

Frequency of isolation of fungi from deep-sea sediments of the Central India Basin during the cruises AAS 34, AAS 46, and AAS 61 in April 2001, June 2002, and March 2003, respectively.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.
Figure 12.

species isolated from deep-sea sediments with abnormal morphology, showing hyphae in place of metulae (arrows).

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13.
Figure 13.

Deep-sea fungus showing abnormal swellings (arrow) when grown under 20 MPa.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.
Figure 14.

Germinating conidia showing unusual enlargements.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15.
Figure 15.

Protease synthesis by two deep-sea fungi, A. and a sp., when grown at different pressure and temperature combinations.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16.
Figure 16.

Effect of pressure and temperature conditions on the activity of protease from A. ustus and a Graphium sp. (produced under 0.1 MPa and 30°C).

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.
Figure 17.

Microconidiation in a sp., where a conidium gives rise to conidia (arrows) directly without an intervening phase of hyphal growth ( ).

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.
Figure 18.

Effect of sucrose concentration on percentage of conidia germinated under 10 MPa.

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch15
1. Abe, F., and, K. Horikoshi. 2000. Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol. Cell Biol. 20:80938102.
2. Abe, F., and, K. Horikoshi. 2001. The biotechnological potential of pieozophiles. Trends Biotechnol. 19:102108.
3. Abe, F.,, C. Kato, and, K. Horikoshi. 1999. Pressure-regulated metabolism in microorganisms. Trends Microbiol. 7:447453.
4. Abe, F.,, C. Kato, and, K. Horikoshi. 2004. Extremophiles: pressure, p. 154–159. In T. A. Bull Microbial Diversity and Bioprospecting. ASM Press, Washington, DC.
5. Adu, J. K., and, J. M. Oades. 1978. Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biol. Biochem. 10:117122.
6. Arao, T. 1999. In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate. Soil Biol. Biochem. 31:10151020.
7. Arao, T.,, Y. Suzuki, and, K. Tamura. 2002. Effects of saccharide in medium on stress tolerance of yeast. Prog. Biotechnol. 19:331342.
8. Bailey, V. L.,, J. L. Smith, and, H. Bolton,Jr. 2002. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol. Biochem. 34:9971007.
9. Balser, T. C.,, K. K. Treseder, and, M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprophytic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601604.
10. Banks, J. N.,, S. J. and Cox,, B. J. Northway. 1993. Polyclonal and monoclonal antibodies to field and storage fungi. Int. Biodeterior. Biodegrad. 32:137144.
11. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
12. Bauer, H.,, A. Kasper-Giebl,, M. Löflund,, H. Giebl,, R. Hitzenberger,, F. Zibuschka, and, H. Puxbaum. 2002. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 64:109119.
13. Bills, G. F., and, J. D. Polishook. 1994. Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187198.
14. Buchalo, A. S.,, E. Nevo,, S. P. Wasser,, A. Oren, and, H. P. Molitoris. 1997. First records of fungal life in the extremely hypersaline Dead Sea, p. 178. Abstr. 4th Int. Marine Biotechnol. Conf., 22–29 Sep. 1997, Sorrento, Paetsum, Otranto, Pugochiuso, Italy.
15. Corliss, J. B.,, J. A. Baross, and, S. E. Hoffman. 1981. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol. Acta 4(Suppl.):5969.
16. Damare, S., and, C. Raghukumar. 11 November 2007. Fungi and macroaggregation in deep-sea sediments. Microb. Ecol. doi:10.1007/S00248-007-9334-4.
17. Damare, S.,, C. Raghukumar,, U. D. Muraleedharan, and, S. Raghukumar. 2006. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb. Technol. 39:172181.
18. Damare, S.,, C. Raghukumar, and, S. Raghukumar. 2006. Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res. Part I 53:1427.
19. Delong, E. F., and, A. A. Yayanos. 1985. Adaptation of the membrane lipids of a deep–sea bacterium to changes in hydrostatic pressure. Science 228:11011103.
20. Deming, J. W., and, J. A. Baross. 1993. The early diagenesis of organic matter: bacterial activity, p. 119 144.In M. H. Engel and, S. Macko Organic Geochemistry: Principles and Applications. Plenum Press, New York, NY.
21. Fernandes, P. M. B.,, A. D. Panek, and, E. Kurtenbach. 1997. Effect of hydrostatic pressure on a mutant of Saccharomyces cerevisiae deleted in the trehalose-6-phosphate synthase gene. FEMS Microbiol. Lett. 152:1721.
22. Friese, C. F., and, M. F. Allen. 1991. Tracking fates of exotic and local VA mycorrhizal fungi: methods and patterns. Agric. Ecosyst. Environ. 34:8796.
23. Fujii, S.,, H. Iwahashi,, K. Obuchi,, T. Fujii, and, Y. Komatsu. 1996. Characterization of a barotolerant mutant of the yeast Saccharomyces cerevisiae: importance of trehalose content and membrane fluidity. FEMS Microbiol. Lett. 141:97101.
24. Gessner, M. O., and, S. Y. Newell. 2001. Biomass, growth rate, and production of filamentous fungi in plant litter, p. 390408.In C. J. Hurst,, M. McInerney,, L. Stetzenbach,, G. Knudsen, and, M. Walter Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, DC.
25. Golubic, S.,, G. Radtke, and, T. L. Campion-Alsumard. 2005. Endolithic fungi in marine ecosystems. Trends Microbiol. 13:229235.
26. Hamamato, T., and, K. Horikoshi. 1993. Deep-sea microbiology research within the Deepstar program. J. Mar. Biotechnol. 1:119124.
27. Hamamato, T.,, M. Kaneda,, T. Kudo, and, K. Horikoshi. 1995. Characterization of a protease from a psychrophilic Vibrio sp. strain 5709. J. Mar. Biotechnol. 2:219222.
28. Höhnk, W. 1961. A further contribution to the oceanic mycology. Rapp. P.-V. Reun. Cons. Int. Explor. Mer. 149:202208.
29. Höhnk, W. 1969. Uber den pilzlichen Befall kalkiger Hartteile von Meerestieren. Ber. Dtsch. Wiss. Komm. Meeresforsch. 20:129140.
30. Ittekot, V. 1996. Particle flux in the ocean: introduction, p. 16.In V. Ittekot,, P. Schafer,, S. Honjo, and, P. J. Depetris Particle Flux in the Ocean. John Wiley & Sons Ltd., New York, NY.
31. Iwahashi, H.,, S. C. Kaul,, K. Obuchi, and, Y. Komatsu. 1991. Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol. Lett. 80:325328.
32. Jahnke, R. A., and, G. A. Jackson. 1992. The spatial distribution of sea floor oxygen consumption in the Atlantic and Pacific oceans. NATO ASI Ser. Ser. C 160:295308.
33. Jannasch, H. W.,, C. O. Wirsen, and, K. W. Doherty. 1996. A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria. Appl. Environ. Microbiol. 62:15931596.
34. Jannasch, H. W.,, C. O. Wirsen, and, C. L. Winget. 1973. A bacteriological pressure-retaining deep-sea sampler and culture vessel. Deep-Sea Res. 20:661664.
35. Julseth, C. R., and, W. E. Inniss. 1990. Induction of protein synthesis in response to cold shock in the psychrotrophic yeast Trichosporon pullulans. Can. J. Microbiol. 36:519524.
36. Karl, D. M., and, J. E. Dore. 2001. Microbial ecology at sea: sampling, subsampling and incubation considerations, p. 1351.In J. H. Paul Methods in Marine Microbiology. Academic Press, London, United Kingdom.
37. Kato, C.,, L. Li,, Y. Nogi,, Y. Nakamura,, J. Tamoaka, and, K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64:15101513.
38. Kato, C.,, N. Masui, and, K. Horikoshi. 1996. Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin trench. J. Mar. Biotechnol. 4:9699.
39. Klein, D. A., and, M. W. Paschke. 2000. A soil microbial community structural-functional index: the microscopy-based total active/active fungal bacterial (TA/AFB) biovolumes ratio. Appl. Soil Ecol. 14:257 268.
40. Kohlmeyer, J. 1977. New genera and species of higher fungi from the deep sea (1615–5315m). Rev. Mycol. 41:189206.
41. Kohlmeyer, J., and, E. G. Kohlmeyer 1979. Marine Mycology. The Higher Fungi. Academic Press, New York, NY.
42. Komatsu, Y.,, S. C. Kaul,, H. Iwahashi, and, K. Obuchi. 1990. Do heat shock proteins provide protection against freezing? FEMS Microbiol. Lett. 72:159162.
43. Komatsu, Y.,, K. Obuchi,, H. Iwahashi,, S. C. Kaul,, M. Ishimura,, G. M. Fahy, and, W. F. Rall. 1991. Deuterium oxide, dimethylsulfoxide and heat shock confer protection against hydrostatic pressure damage in yeast. Biochem. Biophys. Res. Commun. 174:11411147.
44. Kriss, A. E., and, E. I. Zaichkin. 1971. Distribution of barotolerant microorganisms in soil. Mikrobiologii 40:558562.
45. Landau, J. V., and, D. H. Pope. 1980. Recent advances in the area of barotolerant protein synthesis in bacteria and implications concerning barotolerant and barophilic growth. Adv. Aquat. Microbiol. 2:4976.
46. Lee, C.,, R. W. Howarth, and, B. L. Howes. 1980. Sterols in decomposing Spartina alterniflora and the use of Ergosterol in estimating the contribution of fungi to detrital nitrogen. Limnol. Oceanogr. 25:290 303.
47. Lopez-Garcia, P.,, F. Rodriguez-Valera,, C. Pedros-Allo, and, D. Moreira. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603607.
48. Lorenz, R. 1993. Kultivierung Marine Pilze unter erhöhtem hydrostatischen Drück. Ph.D. thesis. University of Regensburg, Regensburg, Germany.
49. Lorenz, R., and, H.P. Molitoris. 1992. High pressure cultivation of marine fungi: apparatus and method. Colloq. INSERM/ 224:537539. John Libbey Eurotext Ltd.
50. Lorenz, R., and, H. P. Molitoris. 1997. Cultivation of fungi under simulated deep-sea conditions. Mycol. Res. 11:13551365.
51. Margesin, R., and, F. Schinner. 1999. Biotechnological Applications of Cold-Adapted Organisms. Springer-Verlag, Berlin, Germany.
52. Mille-Lindblom, C.,, E. Wachenfeldt, and, L. J. Tranvik. 2004. Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. J. Microbiol. Methods 59:253262.
53. Miller, J. D., and, N. J. Whitney. 1981. Fungi of the Bay of Fundi. III. Geofungi in the marine environment. Mar. Biol. 65:6168.
54. Moore, J. C.,, K. McCann, and, P. C. Reutier. 2005. Modeling trophic pathways, nutrient cycling and dynamic stability of soils. Pedobiologia 49:499510.
55. Möttonen, M.,, E. Jarvinen,, T. J. Hokkanen,, T. Kuuluvainen, and, R. Ohtonen. 1999. Spatial distribution of Ergosterol in the organic layer of a mature Scots pine (Pinus sylvestris L.) forest. Soil Biol. Biochem. 31:503516.
56. Mouzouras, R. 1986. Patterns of timber decay caused by marine fungi, p. 341354. In S. T. Moss The Biology of Marine Fungi. Cambridge University Press, Cambridge, United Kingdom.
57. Mudge, S. M., and, C. E. Norris. 1997. Lipid biomarkers in the Conwy Estuary (North Wales, UK): a comparison between fatty alcohols and sterols. Mar. Chem. 57:6184.
58. Müller, V., and, P. V. Sengbusch. 1983. Visualization of aquatic fungi (Chytridiales) parasitizing on algae by means of induced fluorescence. Arch. Hydrobiol. 97:471485.
59. Newell, S. Y. 1989. Litterbags, leaf tags, and decay of nonabscised intertidal leaves. Can. J. Bot. 67:2224 2227.
60. Newell, S. Y. 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J. Exp. Mar. Biol. Ecol. 200:187206.
61. Newell, S. Y. 2000. Methods for determining biomass and productivity of mycelial marine fungi, p. 6991. In K. D. Hyde and, S. B. Pointing Marine Mycology—a Practical Approach. Fungal Diversity Press, Hong Kong, Hong Kong.
62. Newell, S. Y. 2001. Fungal biomass and productivity. Methods Microbiol. 30:357372.
63. Newell, S. Y., and, R. D. Fallon. 1991. Towards a method for measuring instantaneous fungal growth rates in field samples. Ecology 72:15471559.
64. Nielsen, T. B.,, M. Ishii, and, O. Kirk. 1999. Lipases A and B from the yeast Candida antarctica, p. 4961. In R. Margesin and, F. Schinner Biotechnological Applications of Cold-Adapted Organisms. Springer-Verlag, Berlin, Germany.
65. Ohgiya, S.,, T. Hoshino,, H. Okuyama,, S. Tanaka, and, K. Ishizaki. 1999. Biotechnology of enzymes from cold-adapted microorganisms, p. 1734. In R. Margesin and, F. Schinner Biotechnological Applications of Cold-Adapted Organisms. Springer-Verlag, Berlin, Germany.
66. Perkins, R. D., and, S. D. Halsey. 1971. Geologic significance of microboring fungi and algae in Carolina shelf sediments. J. Sediment. Petrol. 41:843853.
67. Perkins, R. D., and, C. I. Tsentas. 1976. Microbial infestation of carbonate substrates planted on the St. Croix shelf, West Indies. Bull. Geol. Soc. Am. 87:16151628.
68. Poulicek, M.,, G. Goffinet,, C. Jeuniaux,, A. Simon, and, M. F. Voss-Foucart. 1988. Early diagenesis of skeletal remains in marine sediments: a 10 year study, p. 107–124. In Recherches Oceanographiques en mer Mediterranee (Biologie, Chimie, Geologie, Physique). Institute de Recherches Marines et d’Interactions Air-Mer.
69. Poulicek, M.,, R. Machiroux, and, C. Toussaint. 1986. Chitin diagenesis in deep water sediments, p. 523 530. In R. Muzzarelli,, C. Jeunix, and, G. W. Gooday Chitin in Nature and Technology. Plenum Press, New York, NY.
70. Raghukumar, C. 2005. Diversity and adaptations of deep-sea microorganisms, p. 5370. In T. Satyanarayana and, B. N. Joshi Microbial Diversity: Current Perspectives and Potential Applications. I. K. International Pvt. Ltd., New Delhi, India.
71. Raghukumar, C.,, P. A. Loka Bharathi,, Z. A. Ansari,, S. Nair,, B. Ingole,, G. Sheelu,, C. Mohandass,, B. N. Nath, and, N. Rodrigues. 2001. Bacterial standing stock, meiofauna and sediment-nutrient characteristics: indicators of benthic disturbance in the Central Indian Ocean. Deep-Sea Res. Part II 48:33813399.
72. Raghukumar, C., and, S. Raghukumar. 1998. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat. Microb. Ecol. 15:153163.
73. Raghukumar, C.,, S. Raghukumar,, S. Sharma, and, D. Chandramohan. 1992. Endolithic fungi from deep-sea calcareous substrate: isolation and laboratory studies, p. 39. In B. N. Desai Oceanography of the Indian Ocean. Oxford & IBH, New Delhi, India.
74. Raghukumar, C.,, S. Raghukumar,, G. Sheelu,, S. M. Gupta,, B. Nagender Nath, and, B. R. Rao. 2004. Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep-Sea Res. Part I 51:17591768.
75. Raghukumar, C.,, G. Sheelu,, P. A. Lokabharathi,, S. Nair, and, C. Mohandass. 2000. Microbial biomass and organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin. Mar. Geores. Geotechnol. 19:116.
76. Raghukumar, S. 1990. Speculation on niches occupied by fungi in the sea with relation to bacteria. Proc. Indian Acad. Sci. Plant Sci. 100:129138.
77. Ravindran, J.,, C. Raghukumar, and, S. Raghukumar. 2001. Fungi in Porites lutea: association with healthy and diseased corals. Dis. Aquat. Org. 47:219228.
78. Rossier, C.,, T. Ton-That, and, G. Turian. 1977. Microcyclic microconidiation in Neurospora crassa. Exp. Mycol. 1:5262.
79. Roth, F. J.,, P. A. Orpurt, andJr.,, D.G. Ahearn. 1964. Occurrence and distribution of fungi in a subtropical marine environment. Can. J. Bot. 42:375383.
80. Ruess, L.,, M. M. Haggblom,, E.J. G. Zapata, and, J. Dighton. 2002. Fatty acids of fungi and nematodes— possible biomarkers in the soil food chain? Soil Biol. Biochem. 34:745756.
81. Ruess, L.,, A. Tinuv,, D. Haubert,, H.H. Richnow,, M. M. Haggblom, and, S. Scheu. 2005. Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biol. Biochem. 37:945953.
82. Sathe, V., and, S. Raghukumar. 1991. Fungi and their biomass in detritus of the seagrass Thalassia hemprichii (Ehrenberg) Ascherson. Bot. Mar. 34:272277.
83. Saxena, R. K.,, N. Khurana,, R.C. Kuhud, and, R. Gupta. 1992. D-Glucose soluble starch, a novel medium for inducing microcyclic conidiation in Aspergillus. Mycol. Res. 96:490494.
84. Seiter, K.,, C. Hensen,, J. Schroter, and, M. Zabel. 2004. Organic carbon content in surface sediments— defining regional provinces. Deep-Sea Res. Part I 51:20012026.
85. Seitz, L. M.,, D. B. Sauer,, R. Burroughs,, H. E. Mohr, and, J.D. Hubbard. 1979. Ergosterol as a measure of fungal growth. Phytopathology 69:12021203.
86. Shimizu, H.,, H. Iwahashi, and, Y. Komatsu. 2002. The stress response against high hydrostatic pressure in Saccharomyces cerevisiae. Prog. Biotechnol. 19:265270.
87. Shinn, E. A.,, G.A. Smith,, J.M. Prospero,, P. Betzer,, M. L. Hayes,, R.T. Barber. 2000. African dust and the demise of Caribbean coral reefs. Geophys. Res. Lett. 27:30293032.
88. Stahl, P. D., and, T.B. Parkin. 1996. Relationship of soil ergosterol concentration and fungal biomass. Soil Biol. Biochem. 28:847855.
89. Takami, H. 1999. Isolation and characterization of microorganisms from deep-sea mud, p. 326. In K. Horikoshi and, K. Tsujii Extremophiles in Deep-Sea Environments. Springer, Tokyo, Japan.
90. Takami, H.,, A. Inoue,, F. Fuji, and, K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152:279285.
91. Takami, H.,, K. Kobata,, T. Nagahama,, H. Kobayashi, and, K. Horikoshi. 1999. Biodiversity in deep-sea sites near the south part of Japan. Extremophiles 3:97102.
92. Turley, C. M. 1993. The effect of pressure on leucine and thymidine incorporation by free-living bacteria and by bacteria attached to sinking oceanic particles. Deep-Sea Res. Part I 40:21932206.
93. Turley, C. M., and, J.L. Dixon. 2002. Bacterial numbers and growth in surficial deep-sea sediments and phytodetritus in the NE Atlantic: relationships with particulate organic carbon and total nitrogen. Deep-Sea Res. Part I 49:815826.
94. Van Veen, J. A., and, E.A. Paul. 1979. Conversion of biovolume measurements of soil organisms, grown under various moisture tensions, to biomass and their nutrient content. Appl. Environ. Microbiol. 37:686 692.
95. Welch, T. J., and, D.H. Bartlett. 1998. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27:977.
96. Welch, T. J.,, A. Farewell,, F.C. Neidhart, and, D.H. Bartlett. 1993. Stress response of Escherichia coli to elevated hydrostatic pressure. J. Bacteriol. 175:71707177.
97. White, D. C.,, R.J. Bobbie,, J.S. Nickels,, J.D. King, and, R.J. Bobbie. 1980. Non–selective biochemical methods for the determination of fungal mass and community structure in estuarine detrital microflora. Bot. Mar. 23:239250.
98. Zaunstöck, B., and, H.P. Molitoris. 1995. Germination of fungal spores under deep-sea conditions. Abstr. VI Int. Mar. Mycol. Symp. Portsmouth.

Tables

Generic image for table
Table 1.

Fungi reported or isolated from deep-sea sources

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Generic image for table
Table 2.

Comparison of different methods of isolation and media to culture fungi from deep-sea sediments

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Generic image for table
Table 3.

Comparison of growth yields of terrestrial and deep-sea fungi under atmospheric pressure and simulated deep-sea conditions

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15
Generic image for table
Table 4.

of the purified protease of the deep-sea fungus NIOCC20 measured under different conditions

Citation: Raghukumar C, Damare S. 2008. Deep-Sea Fungi, p 265-291. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error