1887

Chapter 16 : Physiology and Biochemistry of at Elevated Pressures

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Physiology and Biochemistry of at Elevated Pressures, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap16-2.gif

Abstract:

was originally isolated from the vicinity of a hydrothermal vent at a depth of 2,600 m, making it an ideal candidate for studies of pressure effects on the physiology of a deep-sea archaeon. This chapter summarizes the effects of pressure on selected proteins, lipids, and gene expression levels of , one of the few known hyperthermophilic piezophiles, and presents a few prospects for future research. Methane has been used to measure growth rates of at elevated pressures. Pressure effects on protein folding and reaction rates are based on Le Chatelier’s principle. Although it is difficult to generalize, some trends have emerged from recent studies of pressure effects on protein stability, at least below 200 MPa. Archaeal lipids consist primarily of isoprenoid hydrocarbons and alkylglycerol ether-derived polar lipids not found in bacteria or eukaryotes. The chapter has summarized how pressure affects the growth, membrane composition, and gene expression profiles of , as well as pressure effects on the activity and stability of several of the organism’s key enzymes. These studies have thus expanded our understanding of how pressure affects the biochemistry and physiology of a hyperthermophilic piezophile. One strategy for addressing this question is to examine pressure effects on the activity of transcriptional regulators. For example, piezotolerant host strains might be generated with the aim of using pressure as an operational variable to regulate recombinant protein production.

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16

Key Concept Ranking

Scanning Electron Microscopy
0.43913704
Ribosome Binding Site
0.41884044
0.43913704
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Life in the temperature-pressure plane. Horizontal solid lines represent three isobars where life is known to exist: atmospheric pressure (line A), the isobar in the depths of the Red Sea (line B), and the isobar near the deep-sea hydrothermal vents from which was isolated (line C). Vertical lines represent the isotherms of the cold deep sea (line D) and the Mediterranean Sea (E). Question marks represent uncertainty with regard to the upper temperature and pressure limits of life. Reproduced from reference .

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Distribution of hyperthermophilic archaea isolated from deep-sea hydrothermal vents (○), coastal marine hydrothermal vents and terrestrial hot springs (●), and an oil field reservoir (▲). was isolated from the EPR at 21°N, indicated by “e” (○). Reprinted from reference 98 with permission of the publisher.

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Schematic of the hyperbaric bioreactor with gas recycle designed by Miller, Shah, Nelson, and Clark. DP, digital pressure gauge; TC, electronic temperature controller; M, motor; OT, oxygen trap; GC, gas chromatograph; AGC, anaerobic glove chamber; PG, pressure generator; GB, gas booster; LC, liquid compressor; RP, recirculation pump; F, filter; SL, gas sample loop. Reproduced from the protocol by Nelson and Clark in reference 29.

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Doubling times calculated from methane production rates as a function of pressure at 86°C (●) and 90°C (○). Based on data from reference .

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Schematic of the 1.15-liter high-pressure, high-temperature bioreactor system designed by Park and Clark. SSR, solid-state relay; TC, temperature controller; OT, oxygen trap; CA, compressed air; RG, regulator. Reproduced from reference .

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Scanning electron microscopy images of after decompression for 5 min or 1 s. Cell rupture resulted in a negligible apparent turbidity increase when samples of grown at 260 atm and 80°C were rapidly (<1 s) decompressed. However, after a 5-min decompression period, an increase in turbidity was evident. Adapted from reference .

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Structure of the archaeol (A), caldarchaeol (B), and the unique macrocyclic archaeol (macrocyclic diether) (C) lipids of

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815646.ch16
1. Abe, F., and, K. Horikoshi. 2001. The biotechnological potential of piezophiles. Trends Biotechnol. 19:102108.
2. Abe, F., and, K. Horikoshi. 2000. Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol. Cell Biol. 20:80938102.
3. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
4. Bidle, K. A., and, D. H. Bartlett. 1999. RecD function is required for high-pressure growth of a deep-sea bacterium. J. Bacteriol. 181:23302337.
5. Boonyaratanakornkit, B.,, J. Cordova,, C. B. Park, and, D. S. Clark. 2006. Pressure affects transcription profiles of Methanocaldococcus jannaschii despite the absence of barophilic growth under gas-transfer limitation. Environ. Microbiol. 8:20312035.
6. Boonyaratanakornkit, B. B.,, L. Y. Miao, and, D. S. Clark. 2007. Transcriptional responses of the deep-sea hyperthermophile Methanocaldococcus jannaschii under shifting extremes of temperature and pressure. Extremophiles 11:495503.
7. Boonyaratanakornkit, B. B.,, C. B. Park, and, D. S. Clark. 2002. Pressure effects on intra- and intermolecular interactions within proteins. Biochim. Biophys. Acta 1595:235249.
8. Boonyaratanakornkit, B. B.,, A. J. Simpson,, T. A. Whitehead,, C. M. Fraser,, N. M. A. El-Sayed, and, D. S. Clark. 2005. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ. Microbiol. 7:789797.
9. Bult, C. J.,, O. White,, G. J. Olsen,, L. Zhou,, R. D. Fleischmann,, G. G. Sutton,, J. A. Blake,, L. M. FitzGerald,, R. A. Clayton,, J. D. Gocayne,, A. R. Kerlavage,, B. A. Dougherty,, J. F. Tomb,, M. D. Adams,, C. I. Reich,, R. Overbeek,, E. F. Kirkness,, K. G. Weinstock,, J. M. Merrick,, A. Glodek,, J. L. Scott,, N. S. Geoghagen, and, J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:10581073.
10. Ettema, T. J. G.,, W. M. de Vos, and, J. van der Oost. 2005. Discovering novel biology by in silico archaeology. Nat. Rev. Microbiol. 3:859869.
11. Frankenberg, R. J.,, M. Andersson, and, D. S. Clark. 2003. Effect of temperature and pressure on the proteolytic specificity of the recombinant 20S proteasome from Methanococcus jannaschii. Extremophiles 7:353360.
12. Hei, D. J., and, D. S. Clark. 1994. Pressure stabilization of proteins from extreme thermophiles. Appl. Environ. Microbiol. 60:932939.
13. Jones, W. J.,, J. A. Leigh,, F. Mayer,, C. R. Woese, and, R. S. Wolfe. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136: 254261.
14. Kaneshiro, S. M., and, D. S. Clark. 1995. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii. J. Bacteriol. 177:36683672.
15. Konisky, J.,, P. C. Michels, and, D. S. Clark. 1995. Pressure stabilization is not a general property of thermophilic enzymes—the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii. Appl. Environ. Microbiol. 61:27622764.
16. MacDonald, G. A. 1987. The role of membrane fluidity in complex processes under high pressure, p. 207 223. In H. W. Jannasch,, R. E. Marquis, and, A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, London, United Kingdom.
17. Makarova, K. S.,, L. Aravind,, M. Y. Galperin,, N. V. Grishin,, R. L. Tatusov,, Y. I. Wolf, and, E. V. Koonin. 1999. Comparative genomics of the archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res. 9:608628.
18. Marteinsson, V. T.,, A. L. Reysenbach,, J. L. Birrien, and, D. Prieur. 1999. A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3:277282.
19. Michels, P. C., and, D. S. Clark. 1997. Pressure-enhanced activity and stability of a hyperthermophilic pro-tease from a deep-sea methanogen. Appl. Environ. Microbiol. 63:39853991.
20. Michels, P. C.,, D. Hei, and, D. S. Clark. 1996. Pressure effects on enzyme activity and stability at high temperatures. Adv. Protein Chem. 48:341376.
21. Miller, J. F.,, E. L. Almond,, N. N. Shah,, J. M. Ludlow,, J. A. Zollweg,, W. B. Streett,, S. H. Zinder, and, D. S. Clark. 1988. High pressure-temperature bioreactor for studying pressure temperature relationships in bacterial growth and productivity. Biotechnol. Bioeng. 31:407413.
22. Miller, J. F.,, C. M. Nelson,, J. M. Ludlow,, N. N. Shah, and, D. S. Clark. 1989. High pressure-temperature bioreactor—assays of thermostable hydrogenase with fiber optics. Biotechnol. Bioeng. 34:10151021.
23. Miller, J. F.,, N. N. Shah,, C. M. Nelson,, J. M. Ludlow, and, D. S. Clark. 1988. Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl. Environ. Microbiol. 54:30393042.
24. Nelson, C. M.,, M. R. Schuppenhauer, and, D. S. Clark. 1991. Effects of hyperbaric pressure on a deep-sea archaebacterium in stainless-steel and glass-lined vessels. Appl. Environ. Microbiol. 57:35763580.
25. Ouhammouch, M.,, R. E. Dewhurst,, W. Hausner,, M. Thomm, and, E. P. Geiduschek. 2003. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc. Natl. Acad. Sci. USA 100:5097 5102.
26. Park, C. B.,, B. B. Boonyaratanakornkit, and, D. S. Clark. 2006. Toward the large scale cultivation of hyperthermophiles at high-temperature and high-pressure. Methods Microbiol. 35:109126.
27. Park, C. B., and, D. S. Clark. 2002. Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii. Appl. Environ. Microbiol. 68:14581463.
28. Prieur, D.,, G. Erauso, and, C. Jeanthon. 1995. Hyperthermophilic life at deep-sea hydrothermal vents. Planet. Space Sci. 43:115122.
29. Robb, F. T. 1995. Archaea: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY.
30. Rohrbach, R. P., and, M. J. Maliarik. 15 November 1983. Increasing the stability of amyloglucosidase. U.S. patent 4,415,656.
31. Rother, M., and, W. W. Metcalf. 2005. Genetic technologies for Archaea. Curr. Opin. Microbiol. 8:745751.
32. Royer, C. A.,, A. E. Chakerian, and, K. S. Matthews. 1990. Macromolecular binding equilibria in the Lac repressor system—studies using high-pressure fluorescence spectroscopy. Biochemistry 29:49594966.
33. Sharma, A.,, J. H. Scott,, G. D. Cody,, M. L. Fogel,, R. M. Hazen,, R. J. Hemley, and, W. T. Huntress. 2002. Microbial activity at gigapascal pressures. Science 295:15141516.
34. Sun, M. M.,, N. Tolliday,, C. Vetriani,, F. T. Robb, and, D. S. Clark. 1999. Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Protein Sci. 8:1056 1063.
35. Thauer, R. K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:23772406.
36. Tolgyesi, F.,, C. S. Bode,, L. Smeller,, D. R. Kim,, K. K. Kim,, K. Heremans, and, J. Fidy. 2004. Pressure activation of the chaperone function of small heat shock proteins. Cell. Mol. Biol. 50:361369.
37. Tumbula, D. L., and, W. B. Whitman. 1999. Genetics of Methanococcus: possibilities for functional genomics in Archaea. Mol. Microbiol. 33:17.
38. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D. H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:14591461.
39. Welch, T. J., and, D. H. Bartlett. 1998. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27:977985.
40. Yayanos, A. A. 2002. Are cells viable at gigapascal pressures? Science 297:295.
41. Yayanos, A. A. 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. USA 83:95429546.

Tables

Generic image for table
Table 1.

Effect of elevated pressure on thermal half-lives and activity of enzymes from

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16
Generic image for table
Table 2.

Distribution of core polar lipids in for different growth pressures at 86°C

Citation: Boonyaratanakornkit B, Clark D. 2008. Physiology and Biochemistry of at Elevated Pressures, p 293-304. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error