1887

Chapter 47 : The Dot/Icm Type IV Secretion System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Dot/Icm Type IV Secretion System, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815660/9781555813901_Chap47-1.gif /docserver/preview/fulltext/10.1128/9781555815660/9781555813901_Chap47-2.gif

Abstract:

This chapter focuses on one major class of virulence factors, the / genes. The initial set of / genes was independently identified via a plate selection and an enrichment strategy in the Shuman and Isberg laboratories, respectively. Type IV secretion systems consist of both plasmid transfer systems and adapted conjugation systems used by pathogens to export substrates. , the causative agent of Q fever, also contains a type IVB secretion system that strongly resembles the Dot/Icm T4SS. It was initially believed, based on the homology to a plasmid transfer system, that the T4SS might transfer a DNA substrate into the host cell similar to the plant pathogen . The Dot/Icm T4SS has the ability to transfer plasmids between bacterial cells and can export a variety of protein substrates into eukaryotic host cells.

Citation: D. Vincent C, Cheol Jeong K, Sexton J, Buford E, P. Vogel J. 2006. The Dot/Icm Type IV Secretion System, p 184-191. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch47

Key Concept Ranking

Type IVB Secretion System
0.516895
Type IV Secretion Systems
0.49445775
Bacterial Proteins
0.40618238
0.516895
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The genes (shown with black arrows) are located in two regions on the chromosome. The white arrows indicate genes that are not required for intracellular growth. The appropriate or name is shown above the arrow except in the case where the gene has two names and then only the name is indicated.

Citation: D. Vincent C, Cheol Jeong K, Sexton J, Buford E, P. Vogel J. 2006. The Dot/Icm Type IV Secretion System, p 184-191. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch47
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representing predicted locations and possible interactions between the Dot/Icm proteins. The proteins are predicted to localize to the cytoplasm, the inner membrane, the periplasm, or the outer membrane. Known interactions include the following pairs: IcmQ–IcmR, IcmS–IcmW, and DotU–IcmF.

Citation: D. Vincent C, Cheol Jeong K, Sexton J, Buford E, P. Vogel J. 2006. The Dot/Icm Type IV Secretion System, p 184-191. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch47
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815660.ch47
1. Andrews, H. L.,, J. P. Vogel, and, R. R. Isberg. 1998. Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect. Immun. 66:950958.
2. Bardill, J. P.,, J. L. Miller, and, J. P. Vogel. 2005. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol. Microbiol. 56:90103.
3. Berger, K. H.,, J. J. Merriam, and, R. R. Is-berg. 1994. Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol. Microbiol. 14:809822.
4. Bitar, D. M.,, M. Molmeret, and, Y. A. Kwaik. 2005. Structure-function analysis of the C-termi-nus of IcmT of Legionella pneumophila in pore formation-mediated egress from macrophages. FEMS Microbiol. Lett. 242:177184.
5. Brand, B. C.,, A. B. Sadosky, and, H. A. Shuman. 1994. The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol. Microbiol. 14:797808.
6. Buscher, B. A.,, G. M. Conover,, J. L. Miller,, S. A. Vogel,, S. N. Meyers,, R. R. Isberg, and, J. P. Vogel. 2005. The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J. Bacteriol. 187:29272938.
7. Catrenich, C. E., and, W. Johnson. 1989. Characterization of the selective inhibition of growth of virulent Legionella pneumophila by supplemented Mueller-Hinton medium. Infect. Immun. 57:18621864.
8. Chien, M.,, I. Morozova,, S. Shi,, H. Sheng,, J. Chen,, S. M. Gomez,, G. Asamani,, K. Hill,, J. Nuara,, M. Feder,, J. Rineer,, J. J. Greenberg,, V. Steshenko,, S. H. Park,, B. Zhao,, E. Teplits-kaya,, J. R. Edwards,, S. Pampou,, A. Georg-hiou,, I. C. Chou,, W. Iannuccilli,, M. E. Ulz,, D. H. Kim,, A. Geringer-Sameth,, C. Golds-berry,, P. Morozov,, S. G. Fischer,, G. Segal,, X. Qu,, A. Rzhetsky,, P. Zhang,, E. Cayanis,, P. J. De Jong,, J. Ju,, S. Kalachikov,, H. A. Shuman, and, J. J. Russo. 2004. The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:19661968.
9. Christie, P. J.,, K. Atmakuri,, V. Krishnamoor-thy,, S. Jakubowski, and, E. Cascales. 2005. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59:451485.
10. Dumenil, G.,, T. P. Montminy,, M. Tang, and, R. R. Isberg. 2004. IcmR-regulated membrane insertion and efflux by the Legionella pneumophila IcmQ protein. J. Biol. Chem. 279:46864695.
11. Edelstein, P. H.,, M. A. Edelstein,, F. Higa, and, S. Falkow. 1999. Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc. Natl. Acad. Sci. USA 96:81908195.
12. Fields, B. S. 1996. The molecular ecology of Legionellae. Trends Microbiol. 4:286290.
13. Gao, L. Y.,, O. S. Harb, and, Y. Abu Kwaik. 1997. Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolution-arily distant host cells, mammalian macrophages and protozoa. Infect. Immun. 65:47384746.
14. Horwitz, M. A. 1987. Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocytes. J. Exp. Med. 166:13101328.
15. Horwitz, M. A. 1983. Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J. Exp. Med. 158:13191331.
16. Horwitz, M. A. 1983. The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phago-some-lysosome fusion in human monocytes. J. Exp. Med. 158:21082126.
17. Horwitz, M. A., and, S. C. Silverstein. 1980. Legionnaires’ disease bacterium (Legionella pneumophila) multiples intracellularly in human mono-cytes. J. Clin. Invest. 66:441450.
18. Komano, T.,, T. Yoshida,, K. Narahara, and, N. Furuya. 2000. The transfer region of IncI1 plas-mid R64: similarities between R64 tra and Legionella icm/dot genes. Mol. Microbiol. 35:13481359.
19. Luo, Z. Q., and, R. R. Isberg. 2004. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl. Acad. Sci. USA 101:841846.
20. Nagai, H., and, C. R. Roy. 2001. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20:59625970.
21. Roy, C. R.,, K. H. Berger, and, R. R. Isberg. 1998. Legionella pneumophila DotA protein is re quired for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol. Microbiol. 28:663674.
22. Segal, G.,, M. Feldman, and, T. Zusman. 2005. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol. Rev. 29:6581.
23. Segal, G.,, M. Purcell, and, H. A. Shuman. 1998. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl. Acad. Sci. USA 95:16691674.
24. Sexton, J. A.,, J. L. Miller,, A. Yoneda,, T. E. Kehl-Fie, and, J. P. Vogel. 2004. Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect. Immun. 72:59835992.
25. Sexton, J. A.,, H. J. Yeo, and, J. P. Vogel. 2005. Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol. Microbiol. 57:7084.
26. Swanson, M. S., and, R. R. Isberg. 1996. Identification of Legionella pneumophila mutants that have aberrant intracellular fates. Infect. Immun. 64:25852594.
27. Vogel, J. P.,, H. L. Andrews,, S. K. Wong, and, R. R. Isberg. 1998. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873876.
28. Vogel, J. P.,, C. Roy, and, R. R. Isberg. 1996. Use of salt to isolate Legionella pneumophila mutants unable to replicate in macrophages. Ann. NY Acad. Sci. 797:271272.

Tables

Generic image for table
TABLE 1

Characteristics of the Dot/Icm proteins

Citation: D. Vincent C, Cheol Jeong K, Sexton J, Buford E, P. Vogel J. 2006. The Dot/Icm Type IV Secretion System, p 184-191. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch47

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error