1887

Chapter 73 : Genetics of Mouse Macrophage Resistance to

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Genetics of Mouse Macrophage Resistance to , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815660/9781555813901_Chap73-1.gif /docserver/preview/fulltext/10.1128/9781555815660/9781555813901_Chap73-2.gif

Abstract:

Genetics can be a powerful approach with which to dissect the biological relationships between pathogens and their hosts. Genetic studies have established that polymorphisms in neuronal apoptosis inhibitory protein 5 (Naip5) appear to explain the entire difference in permissiveness of B6 and A/J macrophages to replication. The authors examined whether permissiveness of mouse macrophages to growth was affected by inhibitors of the mitogen activated protein (MAP) kinases, another important class of signaling molecules in the immune system. Importantly, therefore, it was found that macrophages from B6-backcrossed caspase-1 knockout mice were also more permissive for growth than were wild-type B6 macrophages. Currently, flagellin is detected by B6 macrophages in a manner dependent on Naip (and possibly Ipaf ), leading to caspase-1 activation, rapid cell death, and nonpermissiveness for growth. Whether Naip or Ipaf is a direct intracellular receptor for flagellin will likely be difficult to establish convincingly, as even the much more thoroughly characterized Toll and Nod proteins have not been unequivocally demonstrated to bind directly to their putative ligands. It has nevertheless been extremely satisfying to see how the concerted application of mouse and bacterial genetics has led to several insights into the nature of innate macrophage resistance to .

Citation: E. Vance R, Ren T, S. Zamboni D, R. Roy C, F. Dietrich W. 2006. Genetics of Mouse Macrophage Resistance to , p 301-306. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch73

Key Concept Ranking

Anthrax Lethal Toxin
0.5090909
Legionella pneumophila
0.40755048
0.5090909
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

NBD-LRR proteins. The domain structure of several NBD-LRR proteins is shown (not to scale). NBD, nucleotide binding domain (thought to mediate protein-protein oligomerization); LRR, leucine rich repeats (thought to mediate sensing of microbial products); BIR, baculovirus inhibitor of apoptosis repeat; CARD, caspase recruitment domain; PYD, pyrin domain; TIR, Toll/IL-1 receptor signaling domain; CC, coiled coil domain; Naip, neuronal apoptosis inhibitory protein; Ipaf, ICE-protease activating factor (ICE is another name for caspase-1); Nalp, NACHT-, LRR-, and PYD-containing protein (NACHT is another name for the NBD).

Citation: E. Vance R, Ren T, S. Zamboni D, R. Roy C, F. Dietrich W. 2006. Genetics of Mouse Macrophage Resistance to , p 301-306. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch73
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

activates caspase-3/7 in permissive mouse macrophages. Caspase-3/7 activity was measured with the CaspaseGlo assay from Promega. Bone marrow-derived macrophages were obtained from either A/J or B6 macrophages and were infected at multiplicity of infection of 2 for 15 h before assaying caspase activity. As a positive control, macrophages were treated with staurosporine (50 nM) or with DMSO, as a vehicle control. Z-DEVD-FMK is a caspase-3/7 inhibitor and was used at 50 μM. (B) Bone marrow macrophages were treated with 50 μM caspase-3/7 inhibitor (Z-DEVD-FMK), a concentration confirmed to be functional (see panel A), or with dimethyl sulfoxide as a vehicle control. The macrophages were then infected with (LP02) and harvested at daily intervals to determine colony-forming units (cfu). The figure shows that although A/J macrophages activate caspase-3 in response to infection, activation of caspase-3 is not required for permissiveness to growth. Similar growth of in Z-DEVD-FMK-treated macrophages was observed previously ( ).

Citation: E. Vance R, Ren T, S. Zamboni D, R. Roy C, F. Dietrich W. 2006. Genetics of Mouse Macrophage Resistance to , p 301-306. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch73
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815660.ch73
1. Boyden, E., and, W. F. Dietrich. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38:2404.
2. Chamaillard, M.,, M. Hashimoto,, Y. Horie,, J. Masumoto,, S. Qiu,, L. Saab,, Y. Ogura,, A. Kawasaki,, K. Fukase,, S. Kusumoto,, M. A. Val-vano,, S. J. Foster,, T. W. Mak,, G. Nunez, and, N. Inohara. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:702707.
3. Davoodi, J.,, L. Lin,, J. Kelly,, P. Liston, and, A. E. MacKenzie. 2004. Neuronal apoptosis-inhibitory protein does not interact with Smac and requires ATP to bind caspase-9. J. Biol. Chem. 279:4062240628.
4. Derre, I., and, R. R. Isberg. 2004. Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infect. Immun. 72:62216229.
5. Diez, E.,, S. H. Lee,, S. Gauthier,, Z. Yaraghi,, M. Tremblay,, S. Vidal, and, P. Gros. 2003. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33:5560.
6. Girardin, S. E.,, I. G. Boneca,, L. A. Carneiro,, A. Antignac,, M. Jehanno,, J. Viala,, K. Tedin,, M. K. Taha,, A. Labigne,, U. Zahringer,, A. J. Coyle,, P. S. DiStefano,, J. Bertin,, P. J. San-sonetti, and, D. J. Philpott. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:15841587.
7. Girardin, S. E.,, I. G. Boneca,, J. Viala,, M. Chamaillard,, A. Labigne,, G. Thomas,, D. J. Philpott, and, P. J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:88698872.
8. Growney, J. D.,, J. M. Scharf,, L. M. Kunkel, and, W. F. Dietrich. 2000. Evolutionary divergence of the mouse and human Lgn1/SMA repeat structures. Genomics 64:6281.
9. Inohara, N.,, M. Chamaillard,, C. McDonald, and, G. Nunez. 2005. NOD-LRR Proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74:355383.
10. Inohara, N.,, Y. Ogura,, A. Fontalba,, O. Gutierrez,, F. Pons,, J. Crespo,, K. Fukase,, S. Inamura,, S. Kusumoto,, M. Hashimoto,, S. J. Foster,, A. P. Moran,, J. L. Fernandez-Luna, and, G. Nunez. 2003. Host recognition of bacterial mu-ramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem. 278:55095512.
11. Kobayashi, K. S.,, M. Chamaillard,, Y. Ogura,, O. Henegariu,, N. Inohara,, G. Nunez, and, R. A. Flavell. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731734.
12. Maier, J. K.,, Z. Lahoua,, N. H. Gendron,, R. Fetni,, A. Johnston,, J. Davoodi,, D. Rasper,, S. Roy,, R. S. Slack,, D. W. Nicholson, and, A. E. MacKenzie. 2002. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J. Neurosci. 22:20352043.
13. Mariathasan, S.,, K. Newton,, D. M. Monack,, D. Vucic,, D. M. French,, W. P. Lee,, M. Roose-Girma,, S. Erickson, and, V. M. Dixit. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213218.
14. Martin, G. B.,, A. J. Bogdanove, and, G. Sessa. 2003. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant. Biol. 54:2361.
15. Molmeret, M.,, S. D. Zink,, L. Han,, A. Abu-Zant,, R. Asari,, D. M. Bitar, and, Y. Abu Kwaik. 2004. Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella-containing phago-some. Cell. Microbiol. 6:3348.
16. Molofsky, A. B., and, M. S. Swanson. 2004. Differentiate to thrive: lessons from the Le-gionella pneumophila life cycle. Mol. Microbiol. 53:2940.
17. Ren T.,, D. S. Zamboni,, C. R. Roy,, W. F. Dietrich,, R. E. Vance. 2006. Flagellin-deficient Le-gionella mutants evade caspase-1-and Naip5-mediated macrophange immunity. Plos Pathogens. 2: 175—183
18. Roy, N.,, M. S. Mahadevan,, M. McLean,, G. Shutler,, Z. Yaraghi,, R. Farahani,, S. Baird,, A. Besner-Johnston,, C. Lefebvre,, X. Kang, et al. 1995. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80:167178.
19. Ting, J. P., and, B. K. Davis. 2005. CATER-PILLER:a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol. 23:387414.
20. Wright, E. K.,, S. A. Goodart,, J. D. Growney,, V. Hadinoto,, M. G. Endrizzi,, E. M. Long,, K. Sadigh,, A. L. Abney,, I. Bernstein-Hanley, and, W. F. Dietrich. 2003. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13:2736.
21. Zamboni, D. S.,, K. S. Kobayashi,, T. Kohls-dorf,, Y. Ogura,, E. M. Long,, R. E. Vance,, K. Kuida,, S. Mariathasan,, V. M. Dixit,, R. A. Flavell,, W. F. Dietrich, and, C. R. Roy. Birc1e control over caspase-1 function restricts intracel-lular replication of microbial pathogens. Nat. Immunol. 7:318325.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error