Chapter 74 : in Macrophage Function and Susceptibility to Infection with

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

in Macrophage Function and Susceptibility to Infection with , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815660/9781555813901_Chap74-1.gif /docserver/preview/fulltext/10.1128/9781555815660/9781555813901_Chap74-2.gif


Genetic analysis in the mouse has been used to identify host genes and proteins that play important roles in natural defences against a broad range of infectious diseases. In mouse, susceptibility to infection with is genetically controlled. Intracellular pathogens have evolved different strategies to inhibit or escape the bacteriostatic or bactericidal defense mechanisms of host macrophages. Electron microscopy studies indicated that -containing phagosome (LCP) morphology diverges from classic phagosomes: within the first 5 min of infection, LCPs become surrounded by host vesicles; 15 min postinfection, the thickness of the phagosomal membrane resembles that of the endoplasmic reticulum (ER), and 6 h after infection, ribosomes are found attached to the cytoplasmic face of LCPs. Nontransgenic permissive A/J peritoneal and bone marrow-derived macrophages allowed massive replication over a 72-h infection period (2.8 ± 0.3 and 1.6 ± 0.4 log CFU respectively) compared to macrophages from -resistant transgenic animals (0.74 ± 0.18 and -0.52 ± 0.26 log CFU respectively). It has been proposed that, like other members of the NLR family, Birc1e/Naip5 may function as an intracellular sensor of products and may trigger immune responses through inflammatory caspases.

Citation: Fortier A, Gros P. 2006. in Macrophage Function and Susceptibility to Infection with , p 307-309. In Cianciotto N, Kwaik Y, Edelstein P, Fields B, Geary D, Harrison T, Joseph C, Ratcliff R, Stout J, Swanson M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815660.ch74

Key Concept Ranking

Legionella pneumophila
Endoplasmic Reticulum
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Beckers, M. C.,, E. Ernst,, E. Diez,, C. Moris-sette,, F. Gervais,, K. Hunter,, D. Housman,, S. Yoshida,, E. Skamene, and, P. Gros. 1997. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1. Genomics 39:245263.
2. Clemens, D. L., and, M. A. Horwitz. 1995. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181:257270.
3. Dietrich, W. F.,, D. M. Damron,, R. R. Isberg,, E. S. Lander, and, M. S. Swanson. 1995. Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26:443450.
4. Diez, E.,, S. H. Lee,, S. Gauthier,, Z. Yaraghi,, M. Tremblay,, S. Vidal, and, P. Gros. 2003. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33:5560.
5. Fortier, A.,, E. Diez, and, P. Gros. 2005. Naip5/Birc1e and Susceptibility to Legionella pneumophila. Trends Microbiol. 13:328335.
6. Growney, J. D., and, W. F. Dietrich. 2000. High-resolution genetic and physical map of the Lgn1 interval in C57BL/6J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res. 10:11581171.
7. Horwitz, M. A. 1983. The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phago-some-lysosome fusion in human monocytes. J. Exp. Med. 158:21082126.
8. Kagan, J. C., and, C. R. Roy. 2002. Legionella phagosomes intercept vesicular traffic from endo-plasmic reticulum exit sites. Nat. Cell. Biol. 4:945954.
9. Martinon, F., and, J. Tschopp. 2005. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26:447454.
10. Robinson, C. G., and, C. R. Roy. 2005. Attach-ment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell. Microbiol. Online Early .
11. Swanson, M. S., and, R. R. Isberg. 1996. Identification of Legionella pneumophila mutants that have aberrant intracellular fates. Infect. Immun. 64:25852594.
12. Tilney, L. G.,, O. S. Harb,, P. S. Connelly,, C. G. Robinson, and, C. R. Roy. 2001. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J. Cell Sci. 114:46374650.
13. Wright, E. K.,, S. A. Goodart,, J. D. Growney,, V. Hadinoto,, M. G. Endrizzi,, E. M. Long,, K. Sadigh,, A. L. Abney,, I. Bernstein-Hanley, and, W. F. Dietrich. 2003. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13:2736.
14. Yoshida, S.,, Y. Goto,, Y. Mizuguchi,, K. Nomoto, and, E. Skamene. 1991. Genetic control of natural resistance in mouse macrophages regulating intracellular Legionella pneumophila multiplication in vitro. Infect. Immun. 59:428432.
15. Zamboni, D.,, K. S. Kobayashi,, T. Kohlsdorf,, Y. Ogura,, E. M. Long,, R. E. Vance,, K. Kuida,, S. Mariathasan,, V. M. Dixit,, R. A. Flavell,, W. F. Dietrich, and, C. R. Roy. 2006. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7:318325.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error