1887

1 From Glycerol to the Genome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

1 From Glycerol to the Genome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap01-2.gif

Abstract:

Seeking a convenient method of collecting myxospores than harvesting fruiting bodies, Dorothy Powelson’s group had explored techniques for converting vegetative cells into myxospores in liquid culture. A more detailed description of the process followed, which demonstrated that glycerol-induced myxospores were able to germinate, were resistant to elevated temperature, UV irradiation, and sonication, and mimicked the sequence of morphological stages during the formation of fruiting body myxospores. While David Zusman pointed out some important differences between glycerol-induced and fruiting body myxospores, glycerol induction quickly became a favorite vehicle for comparing the properties and processes of vegetative cells and myxospores, albeit with careful qualifications. It was suggested that the patchy quality of the peptidoglycan and the changes during glycerol induction were causally related to the shape change during myxospore formation. Despite structural differences between fruiting body and glycerol-induced myxospores, the Tn5lac insertion mutation, Ω7536, simultaneously blocked the development of glycerol-induced spores as well as fruiting body spores as they changed their shape from rod to sphere. By 1976 it had already become clear that a defining feature of myxobacterial behavior was the pervasive tendency of cells to maintain a high cell density. When the animal encounters nutrients and feeds, the package of myxospores may be deposited in the organic matter. The spores would germinate together and instantly create a feeding swarm of myxobacteria. Those experiments would constitute no more than one step in the overall task of understanding the whole organism that is revealed in the genome.

Citation: Kaiser D, Dworkin M. 2008. 1 From Glycerol to the Genome, p 3-15. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch1

Key Concept Ranking

Branched-Chain Amino Acid Biosynthesis
0.4504926
0.4504926
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Hans Reichenbach in 1980, collecting samples of soil in the Loire Valley during the Myxo meeting in Poitiers, France.

Citation: Kaiser D, Dworkin M. 2008. 1 From Glycerol to the Genome, p 3-15. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Martin Dworkin (left) and Hans Kühlwein (right), during the Myxo meeting in Poitiers, France.

Citation: Kaiser D, Dworkin M. 2008. 1 From Glycerol to the Genome, p 3-15. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch01
1. Adye, J. C., and, D. M. Powelson. 1961. Microcyst of Myxococcus xanthus: chemical composition of the wall. J. Bacteriol. 81:780785.
2. Arnold, J. W., and, L. Shimkets. 1988a. Inhibition of cell-cell interactions in Myxococcus xanthus by Congo red. J. Bacteriol. 170:57655770.
3. Arnold, J. W., and, L. J. Shimkets. 1988b. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170:57715777.
4. Avery, L., and, D. Kaiser. 1983. In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol. Gen. Genet. 191:99109.
5. Bacon, K. D.,, R. H. Clutter,, M. Kottel,, M. Orlowski, and, D. White. 1975. Carbohydrate accumulation during myxospore formation in Myxococcus xanthus. J. Bacteriol. 124:16351636.
6. Behmlander, R. M., and, M. Dworkin. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173:78107821.
7. Behmlander, R. M., and, M. Dworkin. 1994a. Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:63046311.
8. Behmlander, R. M., and, M. Dworkin. 1994b. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:62956303.
9. Blackhart, B. D., and, D. Zusman. 1985. Frizzy genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82:87678770.
10. Boysen, A.,, E. Ellehauge,, B. Julien, and, L. Søgaard-Andersen. 2002. The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 184:15401546.
11. Bretscher, A. P., and, D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133:763768.
12. Burchard, R. P. 1970. Gliding motility mutants of Myxococcus xanthus. J. Bacteriol. 104:940947.
13. Burchard, R. P. 1974. Growth of surface colonies of the gliding bacterium Myxococcus xanthus. Arch. Microbiol. 96:247254.
14. Burchard, R. P., and, M. Dworkin. 1996. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 180:535545.
15. Campos, J.,, J. Geisselsoder, and, D. Zusman. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119:167178.
16. Chang, B., Y., and, M. Dworkin. 1994. Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus. J. Bacteriol. 176:71907196.
17. Downard, J. 1993. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J. Bacteriol. 175:77627770.
18. Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84:250257.
19. Dworkin, M.,, and S. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146:243244.
20. Dworkin, M.,, and W. Sadler. 1966. Induction of cellular morphogenesis in Myxococcus xanthus. I. General description. J. Bacteriol. 91:15161519.
21. Dworkin, M. 1972. Myxobacteria: new directions in studies of prokaryotic development. Crit. Rev. Microbiol. 1:435452.
22. Dworkin, M. 1973. Cell-cell interactions in the Myxobacteria. Symp. Soc. Gen. Microbiol. 23:125147.
23. Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154:452459.
24. Ellehauge, E.,, M. Norregaard-Madsen, and, L. Søgaard-Andersen. 1998. The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals in M. xanthus development. Mol. Microbiol. 30:807813.
25. Fontes, M., and, D. Kaiser. 1999. Myxococcus cells respond to elastic forces in their substrate. Proc. Natl. Acad. Sci. USA 96:80528057.
26. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
27. Gronewold, T., M. A., and, D. Kaiser. 2001. The act operon controls the level and time of C-signal production for M. xanthus development. Mol. Microbiol. 40:744756.
28. Gronewold, T., M. A., and, D. Kaiser. 2002. act operon control of developmental gene expression in Myxococcus xanthus. J. Bacteriol. 184:11721179.
29. Hagen, D. C.,, A. P. Bretscher, and, D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64:284296.
30. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46:47110.
31. Henrichsen, J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36:478503.
32. Hodgkin, J., and, D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74:29382942.
33. Hodgkin, J., and, D. Kaiser. 1979a. Genetics of gliding motility in M. xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167176.
34. Hodgkin, J., and, D. Kaiser. 1979b. Genetics of gliding motility in M. xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171:177191.
35. Igoshin, O.,, A. Mogilner,, R. Welch,, D. Kaiser, and, G. Oster. 2001. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl. Acad. Sci. USA 98:1491314918.
36. Igoshin, O.,, A. Goldbetter,, D. Kaiser, and, G. Oster. 2004. A biochemical oscillator explains the developmental progression of myxobacteria. Proc. Natl. Acad. Sci. USA 101:1576015765.
37. Jahn, E. 1924. Beitrage zur botanischen Protistologie. I. Die Polyangiden. Gebruder Borntraeger, Leipzig, Germany.
38. Jelsbak, L., and, L. Søgaard-Andersen. 1999. The cell-surface associated C-signal induces behavioral changes in individual M. xanthus cells during fruiting body morphogenesis. Proc. Natl. Acad. Sci. USA 96:50315036.
39. Jelsbak, L., and, L. Søgaard-Andersen. 2000. Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr. Opin. Microbiol. 3:637642.
40. Jelsbak, L., and, L. Søgaard-Andersen. 2002. Pattern formation by a cell-surface associated morphogen in M. xanthus. Proc. Natl. Acad. Sci. USA 99:20322037.
41. Jelsbak, L.,, M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
42. Julien, B.,, A. D. Kaiser, and, A. Garza. 2000. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 97:90989103.
43. Kaiser, A. D., and, C. Crosby. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3:227245.
44. Kaiser, D., and, M. Dworkin. 1975. Gene transfer to myxobacterium by Escherichia coli phage P1. Science 187:653654.
45. Kaiser, D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1:4554.
46. Kaiser, D. 2004. Signaling in myxobacteria. Annu. Rev. Micro-biol. 58:7598.
47. Kaiser, D., and, R. Yu. 2005. Reversing cell polarity: evidence and hypothesis. Curr. Opin. Microbiol. 8:216221.
48. Kaplan, H. B.,, A. Kuspa, and, D. Kaiser. 1991. Suppressors that permit A signal-independent developmental gene expression in Myxococcus xanthus. J. Bacteriol. 173:14601470.
49. Kaplan, H. B., and, L. Plamann. 1996. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol. Lett. 139:8995.
50. Kearns, D. B.,, A. Venot,, J. T. Bonner,, B. Stevens,, G.-J. Boons, and, L. J. Shimkets. 2001. Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering. Proc. Natl. Acad. Sci. USA 98:1399013994.
51. Keseler, I. M., and, D. Kaiser. 1995. An early A-signal-dependent gene in Myxococcus xanthus has a sigma-54-like promoter. J. Bacteriol. 177:46384644.
52. Kim, S. K., and, D. Kaiser. 1990a. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natl. Acad. Sci. USA 87:36353639.
53. Kim, S. K., and, D. Kaiser. 1990b. C-factor: a cell-cell signalling protein required for fruiting body morphogenesis of M. xanthus. Cell 61:1926.
54. Kim, S. K., and, D. Kaiser. 1990c. Cell alignment required in differentiation of Myxococcus xanthus. Science 249:926928.
55. Kim, S. K., and, D. Kaiser. 1991. C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J. Bacteriol. 173:17221728.
56. Kimsey, H. H., and, D. Kaiser. 1991. Targeted disruption of the Myxococcus xanthus orotidine 5’-monophosphate decarboxylase gene: effects on growth and fruiting-body development. J. Bacteriol. 173:67906797.
57. Kroos, L., and, D. Kaiser. 1984. Construction of Tn5lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81:58165820.
58. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252266.
59. Kroos, L., and, D. Kaiser. 1987. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1:840854.
60. Kroos, L.,, P. Hartzell,, K. Stephens, and, D. Kaiser. 1988. A link between cell movement and gene expression argues that motility is required for cell-cell signalling during fruiting body development. Genes Dev. 2:16771685.
61. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1990. Defects in fruiting body development caused by Tn5lac insertions in M. xanthus. J. Bacteriol. 172:484487.
62. Kruse, T.,, S. Lobendanz,, N. M. S. Bertheleson, and, L. Søgaard-Andersen. 2001. C-signal: a cell surface-associated morphogen that induces and coordinates multicellular fruiting body morphogenesis and sporulation in M. xanthus. Mol. Micro-biol. 40:156168.
63. Kuhlwein, H., and, H. Reichenbach. 1968. Swarming and Morphogenesis in Myxobacteria, Archangium, Myxococcus, Chondrococcus, Chondromyces. Film C893/1965. Institut für den Wissenschaftlichen. Film, Gottingen, Germany.
64. Kuner, J.,, L. Avery,, D. E. Berg, and, D. Kaiser. 1981. Uses of transposon Tn5 in the genetic analysis of Myxococcus xanthus, p. 128132. In D. Schlessinger (ed.), Microbiology—1981. American Society for Microbiology, Washington, DC.
65. Kuspa, A.,, L. Kroos, and, D. Kaiser. 1986. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev. Biol. 117:267276.
66. Kuspa, A.,, L. Plamann, and, D. Kaiser. 1992. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174:33193326.
67. LaRossa, R.,, J. Kuner,, D. Hagen,, C. Manoil, and, D. Kaiser. 1983. Developmental cell interactions in Myxococcus: analysis of mutants. J. Bacteriol. 153:13941404.
68. Lee, B.-U.,, K. Lee,, J. Mendez, and, L. J. Shimkets. 1995. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)+-containing protein. Genes Dev. 9:29642973.
69. Li, S.,, B. U. Lee, and, L. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6:401410.
70. Li, Y.,, H. Sun,, X. Ma,, A. Lu,, R. Lux,, D. Zusman, and, W. Shi. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:54435448.
71. Licking, E.,, L. Gorski, and, D. Kaiser. 2000. A common step for changing the cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J. Bacteriol. 182:35533558.
72. Lobedanz, S., and, L. Søgaard-Andersen. 2003. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev. 17:21512161.
73. MacRae, T. H., and, H. D. McCurdy. 1976. Gliding motility mutants of Myxococcus xanthus. Can. J. Microbiol. 22:12821292.
74. Manoil, C., and, D. Kaiser. 1980. Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation. J. Bacteriol. 141:297304.
75. Martin, S.,, E. Sodergren,, T. Masuda, and, D. Kaiser. 1978. Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88:4453.
76. Nudleman, E., and, D. Kaiser. 2004. Pulling together with type IV pili. J. Mol. Microbiol. Biotechnol. 7:5262.
77. Nudleman, E.,, D. Wall, and, D. Kaiser. 2005. Cell-to-cell transfer of bacterial outer-membrane lipoproteins. Science 309:125127.
78. Nudleman, E.,, D. Wall, and, D. Kaiser. 2006. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60:1629.
79. Plamann, L.,, A. Kuspa, and, D. Kaiser. 1992. Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J. Bacteriol. 174:33113318.
80. Ramaswamy, S.,, M. Dworkin, and, J. Downard. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J. Bacteriol. 179:28632871.
81. Ramsey, W. S., and, M. Dworkin. 1968. Microcyst germination in Myxococcus xanthus. J. Bacteriol. 95:22492257.
82. Reichenbach, H. 1965. Rhythmic motion in swarms of Myxo-bacteria. Ber. Dtsch. Bot. Ges. 78:102105.
83. Reichenbach, H. 1966. Myxococcus spp. (Myxobacterales) Schwarmentwicklung und Bildung von Protocysten. Institut für den Wissenschaftlichen Film, Gottingen, Germany.
84. Reichenbach, H. 1968. Archangium violaceum (Myxobacteriales) Schwarmentwicklung und Bildung von Protocysten. Film E 777/1965. Institut für den Wissenschaftlichen Film, Gottingen, Germany.
85. Reichenbach, H. 1974. Chondromyces apiculatus (Myxobacteriales)Schwarmentwicklung und Morphogenese. Film E 779/1965. Institut für den Wissenschaftlichen Film, Gottingen, Germany.
86. Rodriguez, A. M., and, A. M. Spormann. 1999. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181:43814390.
87. Rodriguez-Soto, J. P., and, D. Kaiser. 1997a. The tgl gene: social motility and stimulation in Myxococcus xanthus. J. Bacteriol. 179:43614371.
88. Rodriguez-Soto, J. P., and, D. Kaiser. 1997b. Identification and localization of the tgl protein, which is required for Myxococcus xanthus social motility. J. Bacteriol. 179:43724381.
89. Rosenberg, E.,, K. H. Keller, and, M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129:770777.
90. Sadler, W., and, M. Dworkin. 1966. Induction of cellular morphogenesis in Myxococcus xanthus. II. Macromolecular synthesis and mechanism of inducer action. J. Bacteriol. 91:15201525.
91. Sager, B., and, D. Kaiser. 1993. Two cell-density domains within the Myxococcus xanthus fruiting body. Proc. Natl. Acad. Sci. USA 90:36903694.
92. Sager, B., and, D. Kaiser. 1994. Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev. 8:27932804.
93. Schmidt-Lorenz, W., and, H. Kuhlwein. 1968. Intracellulare Bewegungsorganellen der Myxobakterien. Arch. Mikrobiol. 60:9598.
94. Shi, W.,, T. Köhler, and, D. R. Zusman. 1993. Chemotaxis plays a role in the social behaviour of Myxococcus xanthus. Mol. Microbiol. 9:601611.
95. Shi, W., and, D. R. Zusman. 1995. The frz signal transduction system controls multicellular behavior in Myxococcus xanthus, p. 419430. In J. A. Hoch and, T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, DC.
96. Simunovic, V.,, F. C. Gherardini, and, L. J. Shimkets. 2003. Membrane localization of motility, signaling, and polyketide synthase proteins in Myxococcus xanthus. J. Bacteriol. 185:50665075.
97. Singer, M., and, D. Kaiser. 1995. Ectopic production of guano-sine penta- and tetra-phosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev. 9:16331644.
98. Sodergren, E., and, D. Kaiser. 1983. Insertions of Tn5 near genes that govern stimulatable cell motility in Myxococcus. J. Mol. Biol. 167:295310.
99. Søgaard-Andersen, L.,, F. Slack,, H. Kimsey, and, D. Kaiser. 1996. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10:740754.
100. Søgaard-Andersen, L.,, M. Overgaard,, S. Lobedanz,, E. Ellehauge,, L. Jelsbak, and, A. A. Rasmussen. 2003. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol. Microbiol. 48:18.
101. Stanier, R. Y. 1940. Studies on the cytophagas. J. Bacteriol. 40:619635.
102. Stanier, R. Y. 1942a. Elasticotaxis in myxobacteria. J. Bacteriol. 44:405412.
103. Stanier, R. Y. 1942b. The cytophaga group: contributions to the biology of the myxobacteria. Bacteriol. Rev. 6:143196.
104. Sudo, S. Z., and, M. Dworkin. 1969. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 98:883887.
105. Thöny-Meyer, L., and, D. Kaiser. 1993. devRS, an auto-regulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol. 175:74507462.
106. Wall, D., and, D. Kaiser. 1999. Type IV pili and cell motility (MicroReview). Mol. Microbiol. 32:110.
107. Wall, D.,, S. S. Wu, and, D. Kaiser. 1998. Contact stimulations of Tgl and type IV pili in Myxococcus xanthus. J. Bacteriol. 180:759761.
108. Ward, M. J., and, D. R. Zusman. 1997. Regulation of directed motility in Myxococcus xanthus. Mol. Microbiol. 24:885893.
109. Weidel, W., and, H. Pelzer. 1964. Bagshaped macromolecules—a new outlook on bacterial cell walls. Adv. Enzymol. 26:193232.
110. Welch, R., and, D. Kaiser. 2001. Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl. Acad. Sci. USA 98:1490714912.
111. White, D.,, M. Dworkin, and, D. J. Tipper. 1968. Peptidoglycan of Myxococcus xanthus : structure and relation to morphogenesis. J. Bacteriol. 95:21862197.
112. White, D. 1984. Structure and function of myxobacteria cells and fruiting bodies, p. 5167. In E. Rosenberg (ed.), Myxo-bacteria, Development and Cell Interactions. Springer-Verlag, New York, NY.
113. Wireman, J., and, M. Dworkin. 1975. Morphogenesis and developmental interactions in the Myxobacteria. Science 189:516523.
114. Witkin, S., and, E. Rosenberg. 1970. Induction of morphogenesis by methionine starvation in Myxococcus xanthus: polyamine control. J. Bacteriol. 103:641649.
115. Wolgemuth, C.,, E. Hoiczyk,, D. Kaiser, and, G. Oster. 2002. How myxobacteria glide. Curr. Biol. 12:369377.
116. Wu, S. S.,, J. Wu, and, D. Kaiser. 1997. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23:109121.
117. Yang, Z.,, X. Ma,, L. Tong,, H. B. Kaplan,, L. J. Shimkets, and, W. Shi. 2000. The Myxococcus xanthus dif genes are required for the biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182:57935798.
118. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49:555570.
119. Yu, R., and, D. Kaiser. 2007. Gliding motility and polarized slime secretion. Mol. Microbiol. 63:454467.
120. Zusman, D. 1984. Developmental program of Myxococcus xanthus, p. 185213. In E. Rosenberg (ed.), Myxobacteria. Springer, New York, NY.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error