1887

2 Why Cooperate? The Ecology and Evolution of Myxobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

2 Why Cooperate? The Ecology and Evolution of Myxobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap02-2.gif

Abstract:

Molecular biologists have made great strides in understanding the genetics and molecular mechanisms that underlie social behavior in and a few other species. This chapter describes research on general ecological and evolutionary issues with the myxobacteria such as their diversity and distribution, population structure, and issues relating to their predatory behavior. Complete reliance on studies of natural populations to inform the understanding of myxobacterial ecology and evolution would limit the range of questions that can be addressed. These approaches not only are enhancing one's understanding of the myxobacteria per se, but also have the potential to inform the understanding of ecology and evolution more generally. A section briefly summarizes research as well as newer cultivation and molecular studies that have advanced the understanding of the diversity of the myxobacteria, their habitats, and the structure of their natural populations. The chapter describes some laboratory studies addressing the effects of abiotic variables on ecologically relevant phenotypes and the interactions of myxobacteria with prey species and how such interactions affect predator evolution. In recent years, the range of environmental conditions that may support active growth of myxobacteria has been shown to be greater than expected.

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2

Key Concept Ranking

Environmental Microbiology
0.83297426
Microbial Ecology
0.8158099
Type IV Pili
0.51290536
Genetic Variation
0.47985998
Genetic Drift
0.4571639
16s rRNA Sequencing
0.45194146
Genetic Divergence
0.43685627
0.83297426
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

(A) Neighbor-joining tree of 16S rRNAs showing the phylogenetic position of the type strains of different genera of the order and isolates that were assigned to myxobacterial species on the basis of morphological characteristics (e.g., fruiting bodies, myxospores, and color). The sequences of gram-negative, sulfate-reducing bacteria were used to root the dendrogram. Numbers within the dendrogram indicate the percentages of occurrence of the branching order in 100 bootstrapped trees. The bar represents 10 nucleotide substitutions per 100 nucleotides. Reprinted with permission from Spröer et al. (1999). (B) Images of fruiting bodies of various species of . In the , from left to right: (i) spp. isolated during the Microbial Diversity course at Woods Hole (copyright 1995, D. E. Graham); (ii) fruiting bodies (photo courtesy of Hans Reichenbach); (iii) fruiting bodies (used with permission from Shimkets et al., 2005). In the : (i) swarm on agar (not fruiting bodies). Used with permission from Shimkets et al., 2005. In the : (i) fruiting bodies on agar (used with permission from Shimkets et al., 2005); (ii) fruiting bodies in soil and a fruiting body of on agar (photos courtesy of M. Vos and S. Kadam, respectively).

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

F values between 10 different meter scale populations from around the globe plotted against distance between populations ( = 0.38, > 0.05, = 45). F values provide a measure of the degree of genetic diversity between populations relative to within populations, in this case based on the sequences of several highly conserved genes (Vos, 2006). Significantly differentiated population pairs are indicated by triangles, and nonsignificantly differentiated population pairs are indicated by squares.

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Neighbor-joining trees of the (A), (B), and (C) gene fragments. One or more clones were selected as representatives of each major clade in a concatemer phylogeny generated for 78 local isolates from Tübingen, Germany. The laboratory strain DK1622 is included for comparison. Note the highly incongruent positions of strains A12, A17, and A75 across the three gene trees. The bootstrap value (1,000 replicates) is given at each node. Trees are not drawn to the same scale, and values in the upper left corner are genetic distances calculated with the Kimura two-parameter distance model. Reprinted with permission from Vos and Velicer (2006).

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Relative A-motility, S-motility, and dual-motility swarming rates on hard and soft agar across a range of nutrient concentrations. Shown are the natural logs of the ratios of absolute swarming rates for solely A-motile versus solely S-motile genotypes on hard agar (a), solely S-motile versus solely A-motile genotypes on soft agar (b), dually motile versus solely A-motile genotypes on hard agar (c), and dually motile versus solely S-motile genotypes on soft agar (d). Shaded boxes indicate the half of the graph where data points should fall if the indicated genotype swarms comparatively faster than the alternative strain. Closed symbols indicate ratios that were significantly different from zero in a one-sample, one-tailed test after sequential Bonferroni’s correction for multiple comparisons ( < 0.05 for eight comparisons in the same surface type; some comparisons not shown here). Error bars indicate bounds of the 95% confidence interval about the mean. Used with permission from Hillesland and Velicer (2005).

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Log-transformed sporulation efficiencies (spores produced/initial population size) of nine isolates of at five cell densities. Solid lines are used for isolates that sporulate efficiently at ~3 × 10cells/ml, whereas dashed lines indicate isolates that sporulate poorly at this density. Data points show the grand mean of all three replicate estimates, and error bars indicate 95% confidence intervals about the mean. Reprinted with permission from Kadam and Velicer (2006).

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Growth of on plates covered in patches of prey. Each plate consisted of buffered agar which was overlaid with thick patches of . A clone of was added to a central patch of , and photos were taken after 1 day of swarming at high (a) and low (b) patch density and again after 14 days of swarming at high (c) and low (d) patch density.

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Spore production of an evolved cheater genotype when mixed with its wild-type progenitor (DK1622) at nine initial ratios (a) and the corresponding relative sporulation efficiencies (b). The cheater produces no detectable spores during development in pure culture (data not shown). (a) Squares, triangles, and circles indicate total, DK1622, and cheater spore production, respectively. The expected production of the evolved clones under the hypothesis that DK1622 does not improve the defective strain’s sporulation efficiency (H1) is represented by the solid line. The expected production of evolved clones under the hypothesis that the defective strain is rescued to the same efficiency as DK1622 (H2) is represented by the dotted line. The spore production of DK1622 in independent pure cultures is represented by the dashed line. Error bars indicate 95% confidence intervals. (b) Sporulation efficiency of the cheater relative to that of DK1622 for these same initial mixing ratios. The dashed line indicates a relative efficiency of 1. Reprinted with permission from Velicer et al. (2006). Copyright (2006) National Academy of Sciences, United States.

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Mutational history of the PX mutant. The previously sequenced strain DK1622 and its derivative clone GJV1 are separated by five mutations and an unknown number of generations of lab stock cultivation. The lineage from GJV1 to GVB207.3 incurred 14 mutations over 1,000 generations of growth in liquid medium (Velicer et al., 1998), one or more of which eliminated the ability to undergo multicellular development. OC was generated by integration of a Tn transposon (which confers resistance to kanamycin) into the GVB207.3 genome. OC evolved into PX by regaining the ability to sporulate via social development during an extended developmental competition against a marked variant of GJV1. Only one mutation was found to distinguish PX from OC, and this mutation was subsequently shown to cause the restoration of developmental proficiency in PX. Reprinted with permission from Fiegna et al. (2006).

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Swarming phenotypes of ancestral genotypes (third and fifth positions clockwise from top) and their evolved descendants (second and fourth positions clockwise from top, respectively) relative to DK1622 (top position) on soft agar. The DK1622 swarm was 3 days old, and the , and evolved strain swarms were 7 days old. Reprinted with permission from Velicer and Yu (2003).

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Facultative and antagonistic exploitation by two natural isolates of (D against I and I against G) during mixed development. The log-scale effect of mixing strains and on the sporulation efficiency of strain is termed C(). Open bars show the effect of mixing on sporulation efficiency for the dominant, exploitative competitor in each pair (D and I, respectively) in response to its inferior competitor. Shaded bars indicate the effect of mixing on the inferior strain (I and G, respectively). Error bars indicate 95% confidence intervals. Reprinted with permission from Fiegna and Velicer (2005).

Citation: Velicer G, Hillesland K. 2008. 2 Why Cooperate? The Ecology and Evolution of Myxobacteria, p 17-40. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch02
1. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
2. Axelrod, R., and, W. D. Hamilton. 1981. The evolution of cooperation. Science 211:13901396.
3. Baas Becking, L. G. M. 1934. Geobiologie: of inleiding tot de milieukunde. W. P. Van Stockum &, Zoon N. V., The Hague, The Netherlands.
4. Beebe, J. M. 1941. Studies on the Myxobacteria. Iowa St. Coll. J. Sci. 15:307337.
5. Bohannan, B. J. M., and, R. E. Lenski. 2000. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3:362377.
6. Bourke, A. F. G., and, N. R. Franks. 1995. Social Evolution in Ants. Princeton University Press, Princeton, NJ.
7. Branda, S. S.,, J. E. Gonzalez-Pastor,, S. Ben-Yehuda,, R. Losick, and, R. Kolter. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98:1162111626.
8. Bull, C. T.,, K. G. Shetty, and, K. V. Subbarao. 2002. Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis. 86:889896.
9. Cooper, V. S.,, D. Schneider,, M. Blot, and, R. E. Lenski. 2001. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli. B. J. Bacteriol. 183:28342841.
10. Crespi, B. J. 2001. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16:178183.
11. Daft, M. J.,, J. C. Burnham, and, Y. Yamamoto. 1985. Lysis of Phormidium luridum by Myxococcus fulvus in continuous flow cultures. J. Appl. Bacteriol. 59:7380.
12. Dahanukar, N. 2003. Species, morphological and behavioral diversity in myxobacteria. Abasaheb Garware College, Pune, India.
13. Dawid, W. 2000. Biology and global distribution of Myxobacteria in soils. FEMS Microbiol. Rev. 24:403–427.
14. Dawid, W.,, C. A. Gallikowski, and, P. Hirsch. 1988. Psychrophilic myxobacteria from antarctic soils. Polarforschung 58:217278.
15. Elena, S. F. 2002. Restrictions to RNA virus adaptation: an experimental approach. Antonie Leeuwenhoek 81:135142.
16. Elena, S. F., and, R. E. Lenski. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4:457469.
17. Endler, J. A. 1986. Natural Selection in the Wild. Prince ton University Press, Princeton, NJ.
18. Feldgarden, M.,, D. M. Stoebel,, D. Brisson, and, D. E. Dykhuizen. 2003. Size doesn’t matter: microbial selection experiments address ecological phenomena. Ecology 84:16791687.
19. Fenchel, T. 2003. Biogeography for bacteria. Science 301:925926.
20. Fiegna, F., and, G. J. Velicer. 2003. Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc. R. Soc. London B 270:15271534.
21. Fiegna, F., and, G. J. Velicer. 2005. Exploitative and hierarchical antagonism in a cooperative bacterium. PLoS Biol. 3:19801987.
22. Fiegna, F., Y., T. N. Yu,, S. V. Kadam, and, G. J. Velicer. 2006. Evolution of an obligate social cheater to a superior cooperator. Nature 441:310314.
23. Fontes, M., and, D. Kaiser. 1999. Myxococcus cells respond to elastic forces in their substrate. Proc. Nat. Acad. Sci. USA 96:80528057.
24. Gerth, K., and, R. Muller. 2005. Moderately thermophilic Myxobacteria: novel potential for the production of natural products isolation and characterization. Environ. Microbiol. 7:874880.
25. Gevers, D.,, F. M. Cohan,, J. G. Lawrence,, B. G. Spratt,, T. Coenye,, E. J. Feil,, E. Stackebrandt,, Y. Van de Peer,, P. Vandamme,, F. L. Thompson, and, J. Swings. 2005. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3:733739.
26. Goldman, B.,, W. Nierman,, D. Kaiser,, S. Slater,, A. Durkin,, J. Eisen,, C. Ronning,, W. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Lartchuk,, H. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. Sullivan,, M. Vaudin,, R. Wiegand, and, H. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
27. Grant, P. R., and, B. R. Grant. 2002. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707711.
28. Greig, D., and, M. Travisano. 2004. The Prisoner’s Dilemma and polymorphism in yeast SUC genes. Proc. R. Soc. London 271:S25S26.
29. Griffin, A. S.,, S. A. West, and, A. Buckling. 2004. Cooperation and competition in pathogenic bacteria. Nature 430:10241027.
30. Hanski, I., and, I. Saccheri. 25 April 2006. Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol. 4:e129. [Epub ahead of print.]
31. He, Q., and, R. A. Sanford. 2003. Characterization of Fe(III) reduction by chlororespiring Anaeromxyobacter dehalogenans. Appl. Environ. Microbiol. 69:27122718.
32. Hillesland, K. L. 2005. Evolutionary ecology of predation by the soil bacterium, Myxococcus xanthus. Ph.D. thesis. Michigan State University, East Lansing.
33. Hillesland, K. L.,, R. E. Lenski, and, G. J. Velicer. 2007. Ecological variables affecting predatory success in Myxococcus xanthus. Microb. Ecol. 53:571578.
34. Hillesland, K. L., and, G. J. Velicer. 2005. Resource level affects relative performance of the two motility systems of Myxococcus xanthus. Microb. Ecol. 49:558566.
35. Hodgkin, J., and, D. Kaiser. 1979a. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171:177191.
36. Hodgkin, J., and, D. Kaiser. 1979b. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167176.
37. Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91:385398.
38. Iizuka, T.,, Y. Jojima,, R. Fudou,, M. Tokura,, A. Hiraishi, and, S. Yamanaka. 2003. Enhygromyxa salina gen. nov., sp nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst. Appl. Microbiol. 26:189196.
39. Iizuka, T.,, Y. Jojima,, R. Fudou, and, S. Yamanaka. 1998. Isolation of myxobacteria from the marine environment. FEMS Microbiol. Lett. 169:317322.
40. Jessup, C. M.,, R. Kassen,, S. E. Forde,, B. Kerr,, A. Buckling,, P. B. Rainey, and, B. J. M. Bohannan. 2004. Big questions, small worlds: microbial model systems in ecology. Trends Ecol. Evol. 19:189197.
41. Jiang, D.-M.,, Z.-H. Wu,, J.-Y. Zhao, and, Y.-Z. Li. 2007. Fruiting and non-fruiting myxobacteria: a phylogenetic perspective of cultured and uncultured members of this group. Mol. Phylogenet. Evol. 44:545552.
42. Kadam, S. 2006. Ecology and evolution of multicellular development in the social bacterium Myxococcus xanthus. Doctoral thesis, Universität Tübingen, Tübingen, Germany.
43. Kadam, S. V., and, G. J. Velicer. 2006. Variable patterns of density-dependent survival in social bacteria. Behav. Ecol. 17:833838.
44. Kaiser, D. 2001. Building a multicellular organism. Annu. Rev. Genet. 35:103123.
45. Kassen, R., and, P. B. Rainey. 2004. The ecology and genetics of microbial diversity. Annu. Rev. Microbiol. 58:207231.
46. Kearns, D. B., and, L. J. Shimkets. 2001. Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Micro-biol. 9:126129.
47. Keller, L., and, M. G. Surette. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Micro-biol. 4:249258.
48. Lenski, R. E.,, M. R. Rose,, S. C. Simpson, and, S. C. Tadler. 1991. Long-term experimental evolution in Escherichia coli. Adaptation and divergence during 2,000 generations. Am. Nat. 138:13151341.
49. Lenski, R. E.,, C. L. Winkworth, and, M. A. Riley. 2003. Rates of DNA sequence evolution in experimental populations of Escherichia coli during 20,000 generations. J. Mol. Evol. 56:498508.
50. Linz, B.,, F. Balloux,, Y. Moodley,, A. Manica,, H. Liu,, P. Roumagnac,, D. Falush,, C. Stamer,, F. Prugnolle,, S. W. van der Merwe,, Y. Yamaoka,, D. Y. Graham,, E. Perez-Trallero,, T. Wadstrom,, S. Suerbaum, and, M. Achtman. 2007. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445:915918.
51. Lorenzi, M. C.,, R. Cervo,, F. Zacchi,, S. Turillazzi, and, A. G. Bagneres. 2004. Dynamics of chemical mimicry in the social parasite wasp Polistes semenowi (Hymenoptera: Vespidae). Parasitology 129:643651.
52. Lubchenco, J. 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am. Nat. 112:2339.
53. MacLean, R. C., and, I. Gudelj. 2006. Resource competition in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:249258.
54. Margulies, M.,, M. Egholm,, W. E. Altman,, S. Attiya,, J. S. Bader,, L. A. Bemben,, J. Berka,, M. S. Braverman,, Y. J. Chen,, Z. Chen,, S. B. Dewell,, L. Du,, J. M. Fierro,, X. V. Gomes,, B. C. Godwin,, W. He,, S. Helgesen,, C. H. Ho,, G. P. Irzyk,, S. C. Jando,, M. L. Alenquer,, T. P. Jarvie,, K. B. Jirage,, J. B. Kim,, J. R. Knight,, J. R. Lanza,, J. H. Leamon,, S. M. Lefkowitz,, M. Lei,, J. Li,, K. L. Lohman,, H. Lu,, V. B. Makhijani,, K. E. McDade,, M. P. McKenna,, E. W. Myers,, E. Nickerson,, J. R. Nobile,, R. Plant,, B. P. Puc,, M. T. Ronan,, G. T. Roth,, G. J. Sarkis,, J. F. Simons,, J. W. Simpson,, M. Srinivasan,, K. R. Tartaro,, A. Tomasz,, K. A. Vogt,, G. A. Volkmer,, S. H. Wang,, Y. Wang,, M. P. Weiner,, P. Yu,, R. F. Begley, and, J. M. Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376380.
55. Martiny, J. B.,, B. J. Bohannan,, J. H. Brown,, R. K. Colwell,, J. A. Fuhrman,, J. L. Green,, M. C. Horner-Devine,, M. Kane,, J. A. Krumins,, C. R. Kuske,, P. J. Morin,, S. Naeem,, L. Ovreas,, A. L. Reysenbach,, V. H. Smith, and, J. T. Staley. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4:102112.
56. McBride, M. J., and, D. R. Zusman. 1996. Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol. Lett. 137:227231.
57. Neil, R. B.,, D. Hite,, M. I. Kelrick,, M. L. Lockhart, and, K. Lee. 2005. Myxobacterial biodiversity in an established oak-hickory forest and a savanna restoration site. Curr. Microbiol. 50:8895.
58. Olsen, G. J.,, D. J. Lane,, S. J. Giovannoni,, N. R. Pace, and, D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337365.
59. Parsek, M. R., and, E. P. Greenberg. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13:2733.
60. Petrie, L.,, N. N. North,, S. L. Dollhopf,, D. L. Balkwill, and, J. E. Kostka. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl. Environ. Microbiol. 69:74677479.
61. Pham, V. D.,, C. W. Shebelut,, M. E. Diodati,, C. T. Bull, and, M. Singer. 2005. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. Microbiology 151:18651874.
62. Porta, H., and, M. Rocha-Sosa. 2001. Lipoxygenase in bacteria: a horizontal transfer event? Microbiology147:31993200.
63. Quillet, L.,, S. Barray,, B. Labedan,, F. Petit, and, J. Guespin-Michel. 1995. The gene encoding the beta-1,4-endo glucanase (CelA) from Myxococcus xanthus: evidence for independent acquisition by horizontal transfer of binding and catalytic domains from actinomycetes. Gene 158:2329.
64. Rainey, P. B., and, K. Rainey. 2003. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:7274.
65. Rankin, D. J., and, A. Lopez-Sepulcre. 2005. Can adaptation lead to extinction? Oikos 111:616619.
66. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365370.
67. Reichenbach, H. 1993. Biology of the Myxobacteria: ecology and taxonomy, p. 1362. In M. Dworkin and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, DC.
68. Reichenbach, H. 1999. The ecology of the Myxobacteria. Environ. Microbiol. 1:1521.
69. Reichenbach, H., and, G. Höfle. 1993. Biologically active secondary metabolites from Myxobacteria. Biotechnol. Adv. 11:219277.
70. Rose, M. R. 1984. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:10041010.
71. Rosenberg, E.,, K. H. Keller, and, M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129:770777.
72. Rosenberg, E., and, M. Varon. 1984. Antibiotics and lytic enzymes, p. 109125. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, NY.
73. Sachs, J. L.,, U. G. Mueller,, T. P. Wilcox, and, J. J. Bull. 2004. The evolution of cooperation. Q. Rev. Biol. 79:135160.
74. Sanford, R. A.,, J. R. Cole, and, J. M. Tiedje. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68:893900.
75. Shi, W., and, D. R. Zusman. 1993. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90:33783382.
76. Shimkets, L. J. 1999. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53:525549.
77. Shimkets, L. J. 1990. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54:473501.
78. Shimkets, L. J.,, H. Reichenbach, and, M. Dworkin. 2005. The Myxobacteria. In M. Dworkin (ed.), The Prokaryotes, 3rd ed., vol. 7, p. 31115. Springer, New York, NY.
79. Smith, D. R., and, M. Dworkin. 1994. Territorial interactions between two Myxococcus species. J. Bacteriol. 176:12011205.
80. Smith, J. M., and, E. Szathmary. 1995. The Major Transitions in Evolution. W. H. Freeman Spektrum, New York, NY.
81. Spiller, D. A., and, T. W. Schoener. 1998. Lizards reduce spider species richness by excluding rare species. Ecology 79:503516.
82. Sproer, C.,, H. Reichenbach, and, E. Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 49:12551262.
83. Strassmann, J. E.,, Y. Zhu, and, D. C. Queller. 2000. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408:965967.
84. Thaxter, R. 1892. On the Myxobacteriaceae, a new order of Schizomycetes. Bot. Gaz. 17:389406.
85. Travisano, M.,, J. A. Mongold,, A. F. Bennett, and, R. E. Lenski. 1995. Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267:8790.
86. Travisano, M., and, G. J. Velicer. 2004. Strategies of microbial cheater control. Trends Microbiol. 12:7278.
87. Turner, P. E., and, L. Chao. 1999. Prisoner’s dilemma in an RNA virus. Nature 398:441443.
88. Velicer, G. J. 2003. Social strife in the microbial world. Trends Microbiol. 11:330337.
89. Velicer, G. J.,, L. Kroos, and, R. E. Lenski. 2000. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404:598601.
90. Velicer, G. J.,, L. Kroos, and, R. E. Lenski. 1998. Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl. Acad. Sci. USA 95:1237612380.
91. Velicer, G. J.,, R. E. Lenski, and, L. Kroos. 2002. Rescue of social motility lost during evolution of Myxococcus xanthus in an asocial environment. J. Bacteriol. 184:27192727.
92. Velicer, G. J.,, G. Raddatz,, H. Keller,, S. Deiss,, C. Lanz,, I. Dinkelacker, and, S. C. Schuster. 2006. Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc. Natl. Acad. Sci. USA 103:81078112.
93. Velicer, G. J., and, K. L. Stredwick. 2002. Experimental social evolution with Myxococcus xanthus. Antonie Leeuwenhoek 81:155164.
94. Velicer, G. J., and, Y. N. Yu. 2003. Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature 425:7578.
95. Vos, M. 2006. Natural variation in the social bacterium Myxococcus xanthus. Doctoral thesis. Universität Tübingen, Tübingen, Germany.
96. Vos, M., and, G. J. Velicer. 2006. Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl. Environ. Microbiol. 72:36153625.
97. Vulic, M., and, R. Kolter. 2001. Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics158: 519–526.
98. Watve, M. G.,, A. M. Shete,, N. Jadhav,, S. A. Wagh,, S. P. Shelar,, S. S. Chakraborti,, A. P. Botre, and, A. A. Kulkarni. 1999. Myxobacterial diversity in Indian soils: how many species do we have? Curr. Sci. 77:10891095.
99. West, S. A.,, A. S. Griffin,, A. Gardner, and, S. P. Diggle. 2006. Social evolution theory for microbes. Nat. Rev. Microbiol. 4:597607.
100. Whitaker, R. J.,, D. W. Grogan,, J. W. Taylor. 2003. Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301:976978.
101. White, D.,, W. Shropshire, and, K. Stephens. 1980. Photocontrol of development by Stigmatella aurantiaca. J. Bacteriol. 142:10231024.
102. Wireman, J. W., and, M. Dworkin. 1977. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129:796802.
103. Wu, S. S.,, J. Wu,, Y. L. Cheng, and, D. Kaiser. 1998. The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol. Microbiol. 29:12491261.
104. Wu, Z. H.,, D. M. Jiang,, P. Li, and, Y. Z. Li. 2005. Exploring the diversity of myxobacteria in a soil niche by myxobacteriaspecific primers and probes. Environ. Microbiol. 7:16021610.
105. Xu, J. P. 2004. The prevalence and evolution of sex in microorganisms. Genome 47:775780.
106. Zahavi, A., and, D. Ralt. 1984. Social adaptations in myxo-bacteria, p. 215220. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, NY.
107. Zhang, Y. Q.,, Y. Z. Li,, B. Wang,, Z. H. Wu,, C. Y. Zhang,, X. Gong,, Z. J. Qiu, and, Y. Zhang. 2005. Characteristics and living patterns of marine myxobacterial isolates. Appl. Environ. Microbiol. 71:33313336.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error