1887

3 Initiation and Early Developmental Events

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

3 Initiation and Early Developmental Events, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap03-2.gif

Abstract:

is a rod-shaped, gram-negative soil bacterium that, when subjected to nutrient deprivation, undergoes a developmental process culminating in the formation of a multicellular fruiting body filled with spores. For the purposes of this chapter, early development can be defined as events occurring from initiation to the start of aggregation at approximately the first 6 h poststarvation. In the chapter, the following tenets are addressed: how individual cells recognize starvation; how these cells perceive population starvation; and how individual cells integrate this information to ultimately initiate fruiting body formation and cellular differentiation. In summary, the balance of SocE and CsgA proteins in the cell is critical for sustaining the developmental program past initiation and is just one example of the unique aspects of the stringent response in this organism. Based on the current data, the simplest model for nutrient sensing still focuses on the cell’s ability to utilize its translational capacity as an overall measurement of starvation. It should be noted that other members of the Group B signaling mutants remain unmapped and are yet to be extensively characterized. A section exclusively discusses the properties of the mutants.

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3

Key Concept Ranking

Gene Expression and Regulation
0.60866445
Amino Acid Addition
0.41572264
Integral Membrane Proteins
0.41167238
0.60866445
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Pictorial and photographic representations of the developmental process in DK1622. The diagram shows approximate times for each step in the process: starvation (0 h), aggregation (6 to 8 h), mound formation (12 h), fruiting body formation and sporulation (24 to 48 h). The first row represents development in an MC7 submerged culture system ( ), and the second row represents development on TPM starvation agar plates at a magnification of × 40. This figure is adapted from .

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Diagram of the stringent response. The enzymes involved in the (p)ppGpp metabolism are shown in bold. Ribosome-associated RelA or SpoT catalyzes the synthesis of pppGpp from ATP and GTP upon amino acid or carbon starvation, respectively. Gpp (or Ppx) dephosphorylates pppGpp to make ppGpp. (p)ppGpp accumulates in the cell and interacts with RNAP and DksA [which has been shown to play an important role in (p)ppGpp-dependent transcriptional regulation ( , 2005; )] to positively and negatively control transcription to respond to starvation. (p)ppGpp levels are modulated by SpoT, and when nutrient conditions change, SpoT hydrolyzes ppGpp to GDP (ppG). Ppk is involved in ATP synthesis, and Ndk forms GTP from ATP and GDP (ppG). For reviews, consult Cashel et al., 1996, and Chatterji and Ojha, 2001.

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Diagram of the (p)ppGpp response and genes involved in its activation. The enzymes involved in (p)ppGpp metabolism are shown in bold. The asterisk (*) represents uncharged tRNA in the acceptor site of the ribosome that triggers the associated RelA to catalyze the synthesis of (p)ppGpp from ATP and GTP. See Figure 2 legend for more details. In , (p)ppGpp levels are maintained by balancing the hydrolase activity of RelA with its biosynthetic activity. Diodati and Singer have postulated that Shd, a gene product with homology to the hydrolase domain of SpoT, may play a role in (p)ppGpp degradation. In addition, five proteins (SocE [Crawford and Shimkets, 2000b], Nsd [Brenner et al., 2004], Nla18 [Diodati et al., 2006], Nla4 [Diodati and Singer, personal communication; Ossa et al., unpublished], and CsgA [Crawford and Shimkets, 2000b]) have been shown to either inhibit or stimulate ppGpp accumulation in through as yet unknown mechanisms. For more details, consult text. With elevated (p)ppGpp levels, RNA polymerase (Eσ) is predicted to interact with DksA, to modulate changes in RNA polymerase activity to alter gene expression. To date no secondary (p)ppGpp biosynthetic pathway has been identified.

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Linear phosphorelay model of A-signaling in . Linear model of A-signal production by a phosphorelay (Kaplan and Plamann, 1996). In this model, AsgA recognizes a rise in (p)ppGpp levels, which leads to the phosphorylation of AsgA and initiates a phosphorelay that ultimately activates the production of the A-signal proteases, which in turn produce the A-signal amino acids, collectively known as A-signal. This model predicts the existence of a histidine phosphotransfer protein, designated AsgX as an intermediary between AsgA~P and AsgB. Phosphorylated AsgB in conjunction with SigA (AsgC) activates expression of the A-signal proteases. Dashed lines represent predicted, yet mechanistically unknown interactions.

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The network model of A-signaling in . An alternative model whereby AsgA recognizes a rise in (p)ppGpp levels and sits on top of a hierarchy of genes that are required to activate a variety of signals that collectively make up the quorum-sensing system of . In the simplest model, AsgA is required for all components of the A-signaling system. Alternatively, there may be requirements for other starvation signals [in addition to (p)ppGpp] or additional hierarchical regulators (like AsgD) that either directly or indirectly activate the system. These inputs are represented by dashed lines.

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Model for dual starvation in . Schematic of major players, identified to date, that modulate entrance into the developmental process by monitoring and responding to nutrient levels. Proteins are identified in boldface type, and genes are in italics; direct interactions are represented by solid lines, presumed indirect interactions are shown as dashed lines, and proposed interactions are indicated by a dotted line and a question mark (?). Arrowheads indicate a positive interaction, and a blunt head indicates a negative interaction. : for simplicity, some important components of this process are not included in this model; thus, it is not all-inclusive. For more details, see text.

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch03
1. Alderwick, L. J.,, V. Molle,, L. Kremer,, A. J. Cozzone,, T. R. Daffron,, G. S. Besra, and, K. Futterer. 2006. Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103:25582563.
2. Apelian, D., and, S. Inouye. 1993. A new putative sigma factor of Myxococcus xanthus. J. Bacteriol. 175:33353342.
3. Aravind, L., and, E. V. Koonin. 1998. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23:469472.
4. Aravind, L., and, C. P. Ponting. 1997. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22:458459.
5. Avarbock, D.,, A. Avarbock, and, H. Rubin. 2000. Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex. Biochemistry 39:1164011648.
6. Block, R., and, W. A. Haseltine. 1974. In vitro synthesis of ppGpp and pppGpp, p. 747761. In M. Nomura,, A. Tissieres, and, P. Lengyel (ed.), Ribosomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
7. Branny, P.,, J. P. Pearson,, E. C. Pesci,, T. Kohler,, B. H. Iglewski, and, C. Van Delden. 2001. Inhibition of quorum sensing by a Pseudomonas aeruginosa dksA homologue. J. Bacteriol. 183:15311539.
8. Brenner, M.,, A. G. Garza, and, M. Singer. 2004. nsd, a locus that affects the Myxococcus xanthus cellular response to nutrient concentration. J. Bacteriol. 186:34613471.
9. Bretscher, A. P., and, D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133:763768.
10. Brown, L.,, D. Gentry,, T. Elliott, and, M. Cashel. 2002. DksA affects ppGpp induction of RpoS at a translational level. J. Bacteriol. 184:44554465.
11. Brun, Y. V., and, L. Shapiro. 1992. A temporally controlled sigma factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev. 6:13951408.
12. Burbulys, D.,, K. A. Trach, and, J. A. Hoch. 1991. The initiation of sporulation in Bacillus subtilis is controlled by a multi-component phosphorelay. Cell 64:545552.
13. Caberoy, N. B.,, R. D. Welch,, J. S. Jakobsen,, S. C. Slater, and, A. G. Garza. 2003. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J. Bacteriol. 185:60836094.
14. Campos, J., and, D. Zusman. 1975. Regulation of development in Myxococcus xanthus: effect of cAMP, AMP, ADP, and nutrition. Proc. Natl. Acad. Sci. USA 72:518522.
15. Cashel, M., and, J. Gallant. 1969. Two compounds implicated in the function of the RC gene in Escherichia coli. Nature 221:838841.
16. Cashel, M.,, D. Gentry,, J. Hernandez, and, D. Vinella. 1996. The stringent response, p. 14581496. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, DC.
17. Cashel, M., and, K. E. Rudd. 1989. The stringent response, p. 14101438. In F. C. Neidhardt,, K. B. Low,, B. Magasanik,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. ASM Press, Washington, DC.
18. Chakraburtty, R.,, J. White,, E. Takano, and, M. Bibb. 1996. Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol. Microbiol. 19:357368.
19. Chatterji, D., and, A. K. Ojha. 2001. Revisiting the stringent response, ppGpp and starvation signaling. Curr. Opin. Microbiol. 4:160165.
20. Cho, K.,, A. Treuner-Lange,, K. A. O’Connor, and, D. R. Zusman. 2000. Developmental aggregation of Myxococcus xanthus requires frgA, an frz-related gene. J. Bacteriol. 182:66146621.
21. Cho, K., and, D. R. Zusman. 1999a. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34:268281.
22. Cho, K., and, D. R. Zusman. 1999b. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34:714725.
23. Clifton, S. W.,, D. McCarthy, and, B. A. Roe. 1994. Sequence of the rec-2 locus of Haemophilus influenzae: homologies to comE-ORF3 of Bacillus subtilis and msbA of Escherichia coli. Gene 146:95100.
24. Cochran, J. W., and, R. W. Byrne. 1974. Isolation and properties of a ribosome-bound factor required for ppGpp and pppGpp synthesis in Escherichia coli. J. Biol. Chem. 249:353360.
25. Crawford, E. W., Jr., and, L. J. Shimkets. 2000a. The Myxococcus xanthus socE and csgA genes are regulated by the stringent response. Mol. Microbiol. 37:788799.
26. Crawford, E. W., Jr., and, L. J. Shimkets. 2000b. The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein. Genes Dev. 14:483492.
27. Cusick, J. K., and, R. E. Gill. 2005. The bcsA gene influences multiple aspects of development in Myxococcus xanthus. Curr. Microbiol. 51:336343.
28. Cusick, J. K.,, E. Hager, and, R. E. Gill. 2002. Characterization of bcsA mutations that bypass two distinct signaling requirements for Myxococcus xanthus development. J. Bacteriol. 184:51415150.
29. Diodati, M. E.,, F. Ossa,, N. B. Caberoy,, I. R. Jose,, W. Hiraiwa,, M. M. Igo,, M. Singer, and, A. G. Garza. 2006. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J. Bacteriol. 188:17331743.
30. Doetsch, R. N., and, G. J. Hageage. 1968. Motility in prokaryotic organisms: problems, points of view and perspectives. Biol. Rev. Camb. Philos. Soc. 43:317362.
31. Downard, J.,, S. V. Ramaswamy, and, K. S. Kil. 1993. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J. Bacteriol. 175:77627770.
32. Dworkin, M. 1973. Myxobacterales, p. 191202. In A. I. Laskin and, H. A. Chevalier (ed.), Handbook of Microbiology. CRC Press, Boca Raton, FL.
33. Dworkin, M. 1963. Nutritional regulation of morphogenesis in Myxococcus xanthus. J. Bacteriol. 86:6772.
34. Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84:250257.
35. Dworkin, M. 1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev. 60:70102.
36. Dworkin, M., and, D. Kaiser. 1993. Myxobacteria II. American Society for Microbiology, Washington, DC.
37. Engebrecht, J.,, K. Nealson, and, M. Silverman. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773781.
38. Fiil, N. P.,, B. M. Willumsen,, J. D. Friesen, and, K. von Meyenbur. 1977. Interaction of alleles of the relA, relC, and spoT genes in Escherichia coli: analysis of the interconversion of GTP, ppGpp and pppGpp. Mol. Gen. Genet. 150:87101.
39. Fuqua, C.,, S. C. Winans, and, E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727751.
40. Garza, A. G.,, B. Z. Harris,, B. M. Greenberg, and, M. Singer. 2000a. Control of asgE expression during growth and development of Myxococcus xanthus. J. Bacteriol. 182:66226629.
41. Garza, A. G.,, B. Z. Harris,, J. S. Pollack, and, M. Singer. 2000b. The asgE locus is required for cell-cell signalling during Myxococcus xanthus development. Mol. Microbiol. 35:812824.
42. Garza, A. G.,, J. S. Pollack,, B. Z. Harris,, A. Lee,, I. M. Keseler,, E. F. Licking, and, M. Singer. 1998. SdeK is required for early fruiting body development in Myxococcus xanthus. J. Bacteriol. 180:46284637.
43. Gill, R. E., and, M. G. Cull. 1986. Control of developmental gene expression by cell-to-cell interactions in Myxococcus xanthus. J. Bacteriol. 168:341347.
44. Gill, R. E., and, C. Bournemann. 1988. Identification and characterization of the Myxococcus xanthus bsgA gene product. J. Bacteriol. 170:52895297.
45. Gill, R. E.,, M. G. Cull, and, S. Fly. 1988. Genetic identification and cloning of a gene required for developmental cell interactions in Myxococcus xanthus. J. Bacteriol. 170:52795288.
46. Gill, R. E.,, M. Karlok, and, D. Benton. 1993. Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J. Bacteriol. 175:45384544.
47. Givens, R. M.,, M. H. Lin,, D. J. Taylor,, U. Mechold,, J. O. Berry, and, V. J. Hernandez. 2004. Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum. J. Biol. Chem. 279:74957504.
48. Goldberg, A. L. 1992. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203:923.
49. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
50. Gorski, L.,, T. Gronewold, and, D. Kaiser. 2000. A σ54 activator protein necessary for spore differentiation within the fruiting body of Myxococcus xanthus. J. Bacteriol. 182:24382444.
51. Gorski, L., and, D. Kaiser. 1998. Targeted mutagenesis of σ54 activator proteins in Myxococcus xanthus. J. Bacteriol. 180:58965905.
52. Gronewold, T. M., and, D. Kaiser. 2001. The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol. Microbiol. 40:744756.
53. Gronewold, T. M., and, D. Kaiser. 2002. act operon control of developmental gene expression in Myxococcus xanthus. J. Bacteriol. 184:11721179.
54. Guo, D.,, M. G. Bowden,, R. Pershad, and, H. B. Kaplan. 1996. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J. Bacteriol. 178:16311639.
55. Guo, D.,, Y. Wu, and, H. B. Kaplan. 2000. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J. Bacteriol. 182:45644571.
56. Hagen, D. C.,, A. P. Bretscher, and, D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64:284296.
57. Hager, E.,, H. Tse, and, R. E. Gill. 2001. Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus. Mol. Microbiol. 39:765780.
58. Harris, B. Z.,, D. Kaiser, and, M. Singer. 1998. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes. Dev. 12:10221035.
59. Haseltine, W. A., and, R. Block. 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codonspecific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci. USA 70:15641568.
60. Hemphill, H. E., and, S. A. Zahler. 1968. Nutritional induction and suppression of fruiting in Myxococcus xanthus FB. J. Bacteriol. 95:10181023.
61. Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the σs (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373395.
62. Hernandez, J., and, M. Cashel. 1995. Changes in conserved region 3 of Escherichia coli σ70 mediate ppGpp-dependent function in vivo. J. Mol. Biol. 252:536549.
63. Higgs, P. I.,, K. Cho,, D. E. Whitworth,, L. S. Evans, and, D. R. Zusman. 2005. Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J. Bacteriol. 187:81918195.
64. Hobbs, M.,, E. S. Collie,, P. D. Free,, S. P. Livingston, and, J. S. Mattick. 1993. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 7:669682.
65. Hoch, J. A. 1993. Regulation of phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Micro-biol. 47:441465.
66. Hodgkin, J., and, D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74:29382942.
67. Hodgkin, J., and, D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171:177191.
68. Hogg, T.,, U. Mechold,, H. Malke,, M. Cashel, and, R. Hilgenfeld. 2004. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117:5768.
69. Ishii, Y.,, H. Yamada,, T. Yamashino,, K. Ohashi,, E. Katoh,, H. Shindo,, T. Yamazaki, and, T. Mizuno. 2000. Deletion of the yhhP gene results in filamentous cell morphology in Escherichia coli. Biosci. Biotechnol. Biochem. 64:799807.
70. Jain, V.,, M. Kumar, and, D. Chatterji. 2006. ppGpp: stringent response and survival. J. Microbiol. 44:110.
71. Jakobsen, J. S.,, L. Jelsbak,, L. Jelsbak,, R. D. Welch,, C. Cummings,, B. Goldman,, E. Stark,, S. Slater, and, D. Kaiser. 2004. σ54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J. Bacteriol. 186:43614368.
72. Jelsbak, L.,, M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with a forkhead-associated domain and the σ54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
73. Jelsbak, L., and, D. Kaiser. 2005. Regulating pilin expression reveals a threshold for S-motility in Myxococcus xanthus. J. Bacteriol. 187:21052112.
74. Johansson, J.,, C. Balsalobre,, S. Wang,, J. Urbonaviciene,, D. J. Jin,, B. Sonden, and, B. E. Uhlin. 2000. Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli. Cell 102:475485.
75. Kaiser, D. 2004. Signaling in myxobacteria. Annu. Rev. Micro-biol. 58:7598.
76. Kaiser, D., and, C. Crosby. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3:227245.
77. Kaiser, D., and, L. Kroos. 1993. Intercellular signaling, p. 257284. In M. Dworkin and, D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, DC.
78. Kang, P. J., and, E. A. Craig. 1990. Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J. Bacteriol. 172:20552064.
79. Kaplan, H. B. 2003. Multicellular development and gliding motility in Myxococcus xanthus. Curr. Opin. Microbiol. 6:572577.
80. Kaplan, H. B.,, A. Kuspa, and, D. Kaiser. 1991. Suppressors that permit A-signal independent developmental gene expression in Myxococcus xanthus. J. Bacteriol. 173:14601470.
81. Kaplan, H. B., and, L. Plamann. 1996. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol. Lett. 139:8995.
82. Kaufman, R. I., and, B. T. Nixon. 1996. Use of PCR to isolate genes encoding σ54-dependent activators from diverse bacteria. J. Bacteriol. 178:39673970.
83. Keseler, I. M., and, D. Kaiser. 1995. An early A-signal-dependent gene in Myxococcus xanthus has a σ54-like promoter. J. Bacteriol. 177:46384644.
84. Keseler, I. M., and, D. Kaiser. 1997. σ54, a vital protein for Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 94:19791984.
85. Kimsey, H. H., and, D. Kaiser. 1991. Targeted disruption of the Myxococcus xanthus orotidine 5’-monophosphate decarboxylase gene: effects on growth and fruiting-body development. J. Bacteriol. 173:67906797.
86. Kirby, J. R., and, D. R. Zusman. 2003. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:20082013.
87. Kroos, L. 2005. Eukaryotic-like signaling and gene regulation in a prokaryote that undergoes multicellular development. Proc. Natl. Acad. Sci. USA 102:26812682.
88. Kroos, L.,, P. Hartzell,, K. Stephens, and, D. Kaiser. 1988. A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev. 2:16771685.
89. Kroos, L., and, D. Kaiser. 1984. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81:58165820.
90. Kroos, L., and, D. Kaiser. 1987. Expression of many developmentally regulated genes in Myxococcus xanthus depends on a sequence of cell interactions. Genes Dev. 1:840854.
91. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252266.
92. Kroos, L.,, B. Zhang,, H. Ichikawa, and, Y. T. Yu. 1999. Control of sigma factor activity during Bacillus subtilis sporulation. Mol. Microbiol. 31:12851294.
93. Kruse, T.,, S. Lobedanz,, N. M. Berthelsen, and, L. Søgaard-Andersen. 2001. C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol. Microbiol. 40:156168.
94. Kuhwein, H., and, H. Reichenbach. 1968. Swarming and Morphogenesis in Myxobacteria (C893/1965). Institut für den Wissenschaftlichen Film, Gottingen, Germany.
95. Kuner, J. M., and, D. Kaiser. 1982. Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151:458461.
96. Kuner, J. M., and, D. Kaiser. 1981. Introduction of transposon Tn5 into Myxococcus xanthus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. USA 78:425429.
97. Kuspa, A. 1989. Intercellular Signalling in the Regulation of Early Development in Myxococcus xanthus. Ph.D. dissertation. Stanford University, Stanford, CA.
98. Kuspa, A., and, D. Kaiser. 1989. Genes required for developmental signalling in Myxococcus xanthus: three asg loci. J. Bacteriol. 171:27622772.
99. Kuspa, A.,, L. Kroos, and, D. Kaiser. 1986. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev. Biol. 117:267276.
100. Kuspa, A.,, L. Plamann, and, D. Kaiser. 1992a. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174:33193326.
101. Kuspa, A.,, L. Plamann, and, D. Kaiser. 1992b. A-signalling and the cell density requirement for Myxococcus xanthus development. J. Bacteriol. 174:73607369.
102. Kustu, S.,, E. Santero,, J. Keener,, D. Popham, and, D. Weiss. 1989. Expression of σ54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol. Rev. 53:367376.
103. Laffler, T., and, J. A. Gallant. 1974. Stringent control of protein synthesis in E. coli. Cell 3:4749.
104. Lancero, H.,, N. B. Caberoy,, S. Castaneda,, Y. Li,, A. Lu,, D. Dutton,, X. Y. Duan,, H. B. Kaplan,, W. Shi, and, A. G. Garza. 2004. Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiology 150:40854093.
105. Lancero, H. L.,, S. Castaneda,, N. B. Caberoy,, X. Ma,, A. G. Garza, and, W. Shi. 2005. Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. Microbiology 151:15351541.
106. LaRossa, R.,, J. Kuner,, D. Hager,, C. Manoil, and, D. Kaiser. 1983. Developmental cell interactions of Myxococcus xanthus: analysis of mutants. J. Bacteriol. 153:13941404.
107. Lee, B.,, P. I. Higgs,, D. R. Zusman, and, K. Cho. 2005. EspC is involved in controlling the timing of development in Myxococcus xanthus. J. Bacteriol. 187:50295031.
108. Liu, S.,, D. O. Bayles,, T. M. Mason, and, B. J. Wilkinson. 2006. A cold-sensitive Listeria monocytogenes mutant has a transposon insertion in a gene encoding a putative membrane protein and shows altered (p)ppGpp levels. Appl. Environ. Microbiol. 72:39553959.
109. Manoil, C., and, D. Kaiser. 1980a. Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation. J. Bacteriol. 141:297304.
110. Manoil, C., and, D. Kaiser. 1980b. Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J. Bacteriol. 141:305315.
111. Manoil, C., and, D. Kaiser. 1980c. Purine-containing compounds, including cyclic adenosine 3’,5’-monophosphate, induce fruiting of Myxococcus xanthus by nutritional imbalance. J. Bacteriol. 141:374377.
112. Masuda, S., and, C. E. Bauer. 2004. Null mutation of HvrA compensates for loss of an essential relA/spoT-like gene in Rhodobacter capsulatus. J. Bacteriol. 186:235239.
113. McVittie, A.,, F. Messik, and, S. A. Zahler. 1962. Developmental biology of Myxococcus. J. Bacteriol. 84:546551.
114. Mechold, U., and, H. Malke. 1997. Characterization of the stringent and relaxed responses of Streptococcus equisimilis. J. Bacteriol. 179:26582667.
115. Mechold, U.,, H. Murphy,, L. Brown, and, M. Cashel. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J. Bacteriol. 184:28782888.
116. Mittenhuber, G. 2001. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydro-lases (The Rel, RelA and SpoT proteins). J. Mol. Microbiol. Biotechnol. 3:585600.
117. Molle, V.,, L. Kremer,, C. Girard-Blanc,, G. S. Besra,, A. J. Coz-zone, and, J. F. Prost. 2003. An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry 42:1530015309.
118. Morett, E., and, M. Buck. 1988. NifA-dependent in vivo protection demonstrates that the upstream activator sequence of nif promoters is a protein binding site. Proc. Natl. Acad. Sci. USA 85:94019405.
119. Morett, E., and, L. Segovia. 1993. The σ54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J. Bacteriol. 175:60676074.
120. Murray, M. D., and, H. Bremer. 1996. Control of the SpoT-dependent ppGpp synthesis and degradation in Escherichia coli. J. Mol. Biol. 259:4157.
121. Nariya, H., and, S. Inouye. 2006. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol. Microbiol. 60:12051217.
122. Ninfa, A. J.,, M. R. Atkinson,, E. S. Kamberov,, J. Feng, and, E. G. Ninfa. 1995. Control of bacterial nitrogen assimilation by the NRI-NRII two component system of enteric bacteria, p. 6488. In T. J. Silhavy and, J. A. Hoch (ed.), Two-Component Systems of Bacteria. ASM Press, Washington, DC.
123. Ochi, K.,, J. Kandala, and, E. Freese. 1982. Evidence that Bacillus subtilis sporulation induced by the stringent response is caused by the decrease in GTP or GDP. J. Bacteriol. 151:10621065.
124. O’Connor, K. A., and, D. R. Zusman. 1983. Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus: use for complementation and recombinational analyses. J. Bacteriol. 155:317329.
125. O’Connor, K. A., and, D. R. Zusman. 1990. Genetic analysis of tag mutants of Myxococcus xanthus provides evidence for two developmental aggregation systems. J. Bacteriol. 172:38683878.
126. Ogata, H.,, S. Audic,, P. Renesto-Audiffren,, P. E. Fournier,, V. Barbe,, D. Samson,, V. Roux,, P. Cossart,, J. Weissenbach,, J. M. Claverie, and, D. Raoult. 2001. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:20932098.
127. Pardee, A. B., and, L. S. Prestidge. 1956. The dependence of nucleic acid syntheses on the presence of amino acids in Escherichia coli. J. Bacteriol. 71:677683.
128. Paul, B. J.,, M. M. Barker,, W. Ross,, D. A. Schneider,, C. Webb,, J. W. Foster, and, R. L. Gourse. 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118:311322.
129. Paul, B. J.,, M. B. Berkman, and, R. L. Gourse. 2005. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA 102:7822378228.
130. Pedersen, F. S.,, E. Lund, and, N. O. Kjeldgaard. 1973. Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nat. New. Biol. 243:1315.
131. Perederina, A.,, V. Svetlov,, M. N. Vassylyeva,, T. H. Tahirov,, S. Yokoyama,, I. Artsimovitch, and, D. G. Vassylyev. 2004. Regulation through the secondary channel—structural framework for ppGpp-DksA synergism during transcription. Cell 188:297309.
132. Pham, V. D.,, C. W. Shebelut,, M. E. Diodati,, C. T. Bull, and, M. Singer. 2005a. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. Microbiology 151:18651874.
133. Pham, V. D.,, C. W. Shebelut,, E. J. Zumstein, and, M. Singer. 2005b. BrgE is a regulator of Myxococcus xanthus development. Mol. Microbiol. 57:762773.
134. Plamann, L.,, J. M. Davis,, B. Cantwell, and, J. Mayor. 1994. Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J. Bacteriol. 176:20132020.
135. Plamann, L.,, A. Kuspa, and, D. Kaiser. 1992. Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J. Bacteriol. 174:33113318.
136. Plamann, L.,, Y. Li,, B. Cantwell, and, J. Mayor. 1995. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J. Bacteriol. 177:20142020.
137. Pollack, J. S., and, M. Singer. 2001. SdeK, a histidine kinase required for Myxococcus xanthus development. J. Bacteriol. 183:35893596.
138. Rasmussen, A. A.,, S. L. Porter,, J. P. Armitage, and, L. Søgaard-Andersen. 2005. Coupling of multicellular morphogenesis and cellular differentiation by an unusual hybrid histidine protein kinase in Myxococcus xanthus. Mol. Microbiol. 56:13581372.
139. Rasmussen, A. A., and, L. Søgaard-Andersen. 2003. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 185:54525464.
140. Rasmussen, A. A.,, S. Wegener-Feldbrugge,, S. L. Porter,, J. P. Armitage, and, L. Søgaard-Andersen. 2006. Four signalling domains in the hybrid histidine protein kinase RodK of Myxococcus xanthus are required for activity. Mol. Micro-biol. 60:525534.
141. Romeo, J. M., and, D. R. Zusman. 1991. Transcription of the myxobacterial hemagglutinin gene is mediated by a σ54-like promoter and a cis-acting upstream regulatory region of DNA. J. Bacteriol. 173:29692976.
142. Rosenberg, E.,, K. H. Keller, and, M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129:770777.
143. Saito, N.,, J. Xu,, T. Hosaka,, S. Okamoto,, H. Aoki,, M. J. Bibb, and, K. Ochi. 2006. EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). J. Bacteriol. 188:49524961.
144. Sands, M. K., and, R. B. Roberts. 1952. The effects of a tryp-tophan-histidine deficiency in a mutant of Escherichia coli. J. Bacteriol. 63:505511.
145. Shimkets, L. 1984. Nutrition, metabolism, and the initiation of development, p. 92. In E. Rosenberg (ed.), Myxobacteria Development and Cell Interactions. Springer-Verlag, New York, NY.
146. Shimkets, L. J. 1987. Control of morphogenesis in myxobacteria. Crit. Rev. Microbiol. 14:195227.
147. Shimkets, L. J., and, M. Dworkin. 1981. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev. Biol. 84:5160.
148. Shimkets, L. J.,, R. E. Gill, and, D. Kaiser. 1983. Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc. Natl. Acad. Sci. USA 80:14061410.
149. Singer, M., and, D. Kaiser. 1995. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes. Dev. 9:16331644.
150. Stent, G. S., and, S. Brenner. 1961. A genetic locus for the regulation of ribonucleic acid synthesis. Proc. Natl. Acad. Sci. USA 47:20052014.
151. Studholme, D. J., and, R. Dixon. 2003. Domain architectures of σ54-dependent transcriptional activators. J. Bacteriol. 185:17571767.
152. Sun, H., and, W. Shi. 2001a. Analysis of mrp genes during Myxococcus xanthus development. J. Bacteriol. 183:67336739.
153. Sun, H., and, W. Shi. 2001b. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J. Bacteriol. 183:47864795.
154. Sun, J.,, A. Hesketh, and, M. Bibb. 2001. Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J. Bacteriol. 183:34883498.
155. Thony-Meyer, L., and, D. Kaiser. 1993. devRS, an auto-regulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol. 175:74507462.
156. Tojo, N.,, S. Inouye, and, T. Komano. 1993a. Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth. J. Bacteriol. 175:22712277.
157. Tojo, N.,, S. Inouye, and, T. Komano. 1993b. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J. Bacteriol. 175:45454549.
158. Tse, H., and, R. E. Gill. 2002. Bypass of A- and B-signaling requirements for Myxococcus xanthus development by mutations in spdR. J. Bacteriol. 184:14551457.
159. Turner, A. K.,, M. A. Lovell,, S. D. Hulme,, L. Zhang-Barber, and, P. A. Barlow. 1998. Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect. Immun. 66:20992106.
160. Tzeng, L.,, T. N. Ellis, and, M. Singer. 2006. DNA replication during aggregation phase is essential for Myxococcus xanthus development. J. Bacteriol. 188:27742779.
161. Ueki, T., and, S. Inouye. 1998. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus. Genes Cells 3:371385.
162. Ueki, T., and, S. Inouye. 2001. SigB, SigC, and SigE from Myxococcus xanthus homologous to σ32 are not required for heat shock response but for multicellular differentiation. J. Mol. Microbiol. Biotechnol. 3:287293.
163. Ueki, T., and, S. Inouye. 2002. Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J. Biol. Chem. 277:61706177.
164. van der Biezen,, E. A.,, J. Sun,, M. J. Coleman,, M. Bibb, and, J. D. G. Jones. 2000. Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc. Natl. Acad. Sci. USA 97:37473752.
165. Viswanathan, P.,, M. Singer, and, L. Kroos. 2006. Role of sigmaD in regulating genes and signals during Myxococcus xanthus development. J. Bacteriol. 188:32463256.
166. Wells, D. H., and, S. R. Long. 2002. The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Mol. Microbiol. 43:11151127.
167. Wendrich, T. M., and, M. A. Marahiel. 1997. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol. Microbiol. 26:6579.
168. Wireman, J. W., and, M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189:516523.
169. Wu, S. S., and, D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547558.
170. Wu, S. S., and, D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179:77487758.
171. Xu, D.,, C. Yang, and, H. B. Kaplan. 1998. Myxococcus xanthus sasN encodes a regulator that prevents developmental gene expression during growth. J. Bacteriol. 180:62156223.
172. Xu, H., and, T. R. Hoover. 2001. Transcriptional regulation at a distance in bacteria. Curr. Opin. Microbiol. 4:138144.
173. Yang, C., and, H. B. Kaplan. 1997. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J. Bacteriol. 179:77597767.
174. Yoder, D. R., and, L. Kroos. 2004a. Mutational analysis of the Myxococcus xanthus Ω4400 promoter region provides insight into developmental gene regulation by C-signaling. J. Bacteriol. 186:661671.
175. Yoder, D. R., and, L. Kroos. 2004b. Mutational analysis of the Myxococcus xanthus Ω4499 promoter region reveals shared and unique properties in comparison with other C-signal-dependent promoters. J. Bacteriol. 186:37663776.

Tables

Generic image for table
Table 1

Conditions known to initiate development and induce a stringent response

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Generic image for table
Table 2

List of stringent-response-related homologues in

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Generic image for table
Table 3

List of genes affecting (p)ppGpp accumulation in

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Generic image for table
Table 4

Partial list of genes implicated in nutrient sensing and developmental timing

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3
Generic image for table
Table 5

Names, MXAN and Mx numbers, N-terminal regulatory domains, gene knockout constructions, mutant phenotypes, and related references for all EBPs in

Citation: Diodati M, Gill R, Plamann L, Singer M. 2008. 3 Initiation and Early Developmental Events, p 43-76. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error