1887

5 Reversing Polarity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

5 Reversing Polarity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap05-2.gif

Abstract:

Colonies of on the surface of agar spread outward, and genetic studies of motility began with the isolation of mutants having abnormal spreading patterns. Motile strains can produce slime from either end and simply switch the producing end when they reverse. Bipolar slime secretion suggested that by trying to move in both directions simultaneously, cells were unable to make progress in either. A movie of single cells reversing, made by Lars Jelsbak, shows that cells simply stop momentarily before moving off in the opposite direction. How C-signaling gives rise to two different reversal patterns is explained by the signal transduction circuit. Rosa Yu isolated and characterized many new null-motility mutants and from the mutant phenotypes was able to draw two general conclusions about A-motility. First, all of her mutant strains that retained some A-motility, including mglB mutants, produced slime only at one end of each cell. The second conclusion was that mglA and all other “nonmotile” mutants that she had detected were secreting slime from both ends. The author suggests that the rapid reversals of mglA mutants are not due to signals from the reversal generator but are a statistical consequence of active slime secretion from both ends. For example, pilA, which encodes the pilin monomer, is one of the most highly transcribed genes in . The mechanism of gliding reversal that is proposed in this chapter explains how Mgl is shared by two engines that have no protein molecules in common.

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5

Key Concept Ranking

Type IV Pili
0.49312726
Sodium Dodecyl Sulfate
0.45911852
0.49312726
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Polarized slime secretion. (A) Wild type; (B) mutant; (C) mutant. Photographs from Yu and Kaiser, 2007.

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) Rate of swarm expansion versus initial cell density for the AS strain DK1622. Points are shown for six independent experiments. The best-fitting smooth curve has the following form: rate = 0.1 + 1.48 (1- ). Reproduced from Kaiser and Crosby, 1983. (B) Rate of swarm expansion versus initial cell density for three AS strains (closed symbols) and two AS strains (open symbols). Points are shown for six independent experiments. The smooth curve for the AS has the following form: rate = 0.47 (1 - ). The smooth curve for the AS has the following form: rate = 0.1 + 0.52 (1 - ).

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The frizzy signaling pathway for vegetative cells. When FrzCD is methylated, it triggers the phosphorylation of FrzE. FrzE~P signals a reversal of polarity.

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

C-signal transduction circuit. Early in development, reception of A-signal triggers FruA expression. When a cell receives C-signal by contact with another cell, FruA is phosphorylated. Double-headed open arrows are shorthand for a pair of reversed arrows as in Fig. 3 . Negative feedback, indicated by a minus sign (—) in the arrow from FrzE~P to the arrows between FrzCD and Me-FrzCD, causes the frizzy signaling circuit to oscillate. Phosphorylated FruA drives the oscillator, giving it a precise period. Also, when a cell receives C-signal, ActB is phosphorylated and the expression of is increased. This raises the number of C-signal molecules on the cell surface. The arrow from FrzE~P to inactivation of old engines could have more than one step.

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Oscillation frequency of the Frizilator as a function of the level of FruA~P, the signaling strength, measured as the level of FrzCD methylation. Oscillation ceases above a critical level of signaling as described in the text. Modified from Igoshin et al., 2004.

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Observed and predicted distribution of speeds of individual Δ cells. Black bars, observed data from Spormann and Kaiser, 1999. Gray bars, predicted as the difference in speed of two independent ends, each end distributed as observed for Δ in Spormann and Kaiser, 1999.

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Growth produces two new polar engines that are always compatible with the polarity of the old ends.

Citation: Kaiser D. 2008. 5 Reversing Polarity, p 93-102. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch05
1. Acuna, G.,, W. Shi,, K. Trudeau, and, D. Zusman. 1995. The cheA and cheY domains of Myxococcus xanthus FrzE function independently in vitro as an autokinase and a phosphate acceptor, respectively. FEBS Lett. 358:3133.
2. Astling, D. P.,, J. Y. Lee, and, D. R. Zusman. 2006. Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol. Microbiol. 59:4555.
3. Behmlander, R. M., and, M. Dworkin. 1994. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:62956303.
4. Blackhart, B. D., and, D. R. Zusman. 1985a. Cloning and complementation analysis of the frizzy genes of Myxococcus xanthus. Mol. Gen. Genet. 198:243254.
5. Blackhart, B. D., and, D. Zusman. 1985b. Frizzy genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82:87678770.
6. Börner, U.,, A. Deutsch,, H. Reichenbach, and, M. Bär. 2002. Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Phys. Rev. Lett. 89:078101.
7. Burchard, R. P. 1970. Gliding motility mutants of Myxococcus xanthus. J. Bacteriol. 104:940947.
8. Burchard, R. P. 1974. Growth of surface colonies of the gliding bacterium Myxococcus xanthus. Arch. Microbiol. 96:247254.
9. Burchard, R. P. 1982. Trail following by gliding bacteria. J. Bacteriol. 152:495501.
10. Bustamante, V. H.,, I. Martínez-Flores,, H. C. Vlamakis, and, D. Zusman. 2004. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol. Microbiol. 53:15011513.
11. Chiang, P.,, M. Habash, and, L. L. Burrows. 2005. Disparate subcellular localization patterns of Pseudomonas aeruginosa type IV pilus ATPases involved in twitching motility. J. Bacteriol. 187:829839.
12. Crawford, E. W., Jr., and, L. J. Shimkets. 2000. The Myxococcus xanthus socE and csgA genes are regulated by the stringent response. Mol. Microbiol. 37:788799.
13. Dworkin, M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. BioEssays 21:590595.
14. Ellehauge, E.,, M. Norregaard-Madsen, and, L. Søgaard-Andersen. 1998. The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals in M. xanthus development. Mol. Microbiol. 30:807813.
15. Gronewold, T. M. A., and, D. Kaiser. 2001. The act operon controls the level and time of C-signal production for M. xanthus development. Mol. Microbiol. 40:744756.
16. Gronewold, T. M. A., and, D. Kaiser. 2002. act operon control of developmental gene expression in Myxococcus xanthus. J. Bacteriol. 184:11721179.
17. Hartzell, P., and, D. Kaiser. 1991a. Upstream gene of the mgl operon controls the level of mglA protein in Myxococcus xanthus. J. Bacteriol. 173:76257635.
18. Hartzell, P., and, D. Kaiser. 1991b. Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus. J. Bacteriol. 173:76157624.
19. Hodgkin, J., and, D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74:29382942.
20. Hodgkin, J., and, D. Kaiser. 1979a. Genetics of gliding motility in M. xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171:177191.
21. Hodgkin, J., and, D. Kaiser. 1979b. Genetics of gliding motility in M. xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167176.
22. Hoiczyk, E., and, W. Baumeister. 1998. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr. Biol. 8:11611168.
23. Igoshin, O.,, A. Mogilner,, R. Welch,, D. Kaiser, and, G. Oster. 2001. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl. Acad. Sci. USA 98:1491314918.
24. Igoshin, O.,, A. Goldbetter,, D. Kaiser, and, G. Oster. 2004. A biochemical oscillator explains the developmental progression of myxobacteria. Proc. Natl. Acad. Sci. USA 101:1576015765.
25. Jelsbak, L., and, L. Søgaard-Andersen. 1999. The cell-surface associated C-signal induces behavioral changes in individual M. xanthus cells during fruiting body morphogenesis. Proc. Natl. Acad. Sci. USA 96:50315036.
26. Jelsbak, L., and, L. Søgaard-Andersen. 2000. Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr. Opin. Microbiol. 3:637642.
27. Jelsbak, L., and, L. Søgaard-Andersen. 2002. Pattern formation by a cell-surface associated morphogen in M. xanthus. Proc. Natl. Acad. Sci. USA 99:20322037.
28. Jelsbak, L., and, D. Kaiser. 2005. Regulating pilin expression reveals a threshold for type IV pilus assembly in Myxococcus xanthus. J. Bacteriol. 187:21052112.
29. Kaiser, A. D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:59525956.
30. Kaiser, A. D., and, C. Crosby. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3:227245.
31. Kaiser, D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1:4554.
32. Kaiser, D., and, R. Welch. 2004. Dynamics of fruiting body morphogenesis. J. Bacteriol. 186:919927.
33. Kaiser, D., and, R. Yu. 2005. Reversing cell polarity: evidence and hypothesis. Curr. Opin. Microbiol. 8:216221.
34. Kim, S. K., and, D. Kaiser. 1990. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natl. Acad. Sci. USA 87:36353639.
35. Kim, S. K., and, D. Kaiser. 1991. C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J. Bacteriol. 173:17221728.
36. Kruse, T.,, S. Lobendanz,, N. M. S. Bertheleson, and, L. Søgaard-Andersen. 2001. C-signal: a cell surface-associated morphogen that induces and coordinates multicellular fruiting body morphogenesis and sporulation in M. xanthus. Mol. Microbiol. 40:156168.
37. Kuhlwein, H., and, H. Reichenbach. 1968. Swarming and Morphogenesis in Myxobacteria. Film C893/1965. Institut für den Wissenschaftliche Film, Gottingen, Germany.
38. Li, S.,, B. U. Lee, and, L. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6:401410.
39. Lobedanz, S., and, L. Søgaard-Andersen. 2003. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev. 17:21512161.
40. MacRae, T. H., and, H. D. McCurdy. 1976a. Motility related fimbriae in the gliding organism Myxococcus xanthus. Can. J. Microbiol. 22:15891593.
41. MacRae, T. H., and, H. D. McCurdy. 1976b. Gliding motility mutants of Myxococcus xanthus. Can. J. Microbiol. 22:12821292.
42. McBride, M. J. 2001. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55:4975.
43. McCarter, L. L. 1995. Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus. J. Bacteriol. 177:15951609.
44. McCleary, W. R.,, M. J. McBride, and, D. R. Zusman. 1990. Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of frzCD. J. Bacteriol. 172:48774887.
45. McCleary, W. R., and, D. R. Zusman. 1990a. Purification and characterization of the Myxococcus xanthus FrzE protein shows that it has autophosphorylation activity. J. Bacteriol. 172:66616668.
46. McCleary, W. R., and, D. R. Zusman. 1990b. FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 87:58985902.
47. Merz, A. J., and, K. T. Forest. 2002. Bacterial surface motility: slime trails, grappling hooks and nozzles. Curr. Biol. 12:R297R303.
48. Mignot, T.,, J. P. Merlie, and, D. Zusman. 2005. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310:855857.
49. Nudleman, E., and, D. Kaiser. 2004. Pulling together with type IV pili. J. Mol. Microbiol. Biotechnol. 7:5262.
50. Nudleman, E.,, D. Wall, and, D. Kaiser. 2005. Cell-to-cell transfer of bacterial outer-membrane lipoproteins. Science 309:125127.
51. Nudleman, E.,, D. Wall, and, D. Kaiser. 2006. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60:1629.
52. Ogawa, M.,, S. Fujitani,, X. Mao,, S. Inouye, and, T. Komano. 1996. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22:757767.
53. Reichenbach, H. 1984. Myxobacteria: a most peculiar group of social prokaryotes, p. 150. In E. Rosenberg (ed.), Myxo-bacteria, Springer-Verlag, New York, NY.
54. Rodriguez, A. M., and, A. M. Spormann. 1999. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181:43814390.
55. Sager, B., and, D. Kaiser. 1993. Two cell-density domains within the Myxococcus xanthus fruiting body. Proc. Natl. Acad. Sci. USA 90:36903694.
56. Sager, B., and, D. Kaiser. 1994. Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev. 8:27932804.
57. Shi, W., and, D. R. Zusman. 1995. The frz signal transduction system controls multicellular behavior in Myxococcus xanthus, p. 419430. In J. A. Hoch and, T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, DC.
58. Simon, M. A.,, D. L. Bowtell,, G. S. Dodson,, T. R. Laverty, and, G. M. Rubin. 1991. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67:701716.
59. Simunovic, V.,, F. C. Gherardini, and, L. J. Shimkets. 2003. Membrane localization of motility, signaling, and polyketide synthase proteins in Myxococcus xanthus. J. Bacteriol. 185:50665075.
60. Skerker, J., and, H. Berg. 2001. Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA 98:69016904.
61. Sliusarenko, O.,, J. Neu,, D. Zusman, and, G. Oster. 2006. Accordion waves in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 103:15341539.
62. Søgaard-Andersen, L., and, D. Kaiser. 1996. C-factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 93:26752679.
63. Søgaard-Andersen, L.,, F. Slack,, H. Kimsey, and, D. Kaiser. 1996. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10:740754.
64. Søgaard-Andersen, L.,, M. Overgaard,, S. Lobedanz,, E. Ellehauge,, L. Jelsbak, and, A. A. Rasmussen. 2003. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol. Microbiol. 48:18.
65. Sozinova, O.,, Y. Jang,, D. Kaiser, and, M. Alber. 2005. Three-dimensional model of myxobacterial aggregation by contact-mediated interaction. Proc. Natl. Acad. Sci. USA 102:1130811312.
66. Sozinova, O.,, Y. Jang,, D. Kaiser, and, M. Alber. 2006. A three-dimensional model of myxobacterial fruiting body formation. Proc. Natl. Acad. Sci. USA 103:1725517259.
67. Spormann, A. M., and, D. Kaiser. 1999. Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements. J. Bacteriol. 181:25932601.
68. Stephens, K.,, P. Hartzell, and, D. Kaiser. 1989. Gliding motility in Myxococcus xanthus: the mgl locus, its RNA and predicted protein products. J. Bacteriol. 171:819830.
69. Stevens, A., and, L. Søgaard-Andersen. 2005. Making waves: pattern formation by a cell-surface-associated signal. Trends Microbiol. 13:249252.
70. Stock, J. B.,, M. G. Surette,, M. Levit, and, P. Park. 1995. Two-component signal transduction systems: structure-function relationships and mechanism of catalysis, p. 2551. In J. A. Hoch and, T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, DC.
71. Sun, H.,, D. R. Zusman, and, W. Shi. 2000. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10:11431146.
72. Tieman, S.,, A. Koch, and, D. White. 1996. Gliding motility in slide cultures of Myxococcus xanthus in stable and steep chemical gradients. J. Bacteriol. 178:34803485.
73. Tzeng, L.-F., and, M. Singer. 2005. DNA replication during sporulation in Myxococcus xanthus fruiting bodies. Proc. Natl. Acad. Sci. USA 102:1442814433.
74. Welch, R., and, D. Kaiser. 2001. Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl. Acad. Sci. USA 98:1490714912.
75. Wolgemuth, C.,, E. Hoiczyk,, D. Kaiser, and, G. Oster. 2002. How myxobacteria glide. Curr. Biol. 12:369377.
76. Wu, S. S., and, D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179:77487758.
77. Wu, S. S.,, J. Wu, and, D. Kaiser. 1997. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23:109121.
78. Yu, R., and, D. Kaiser. 2007. Gliding motility and polarized slime secretion. Mol. Microbiol. 63:454467.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error