1887

9 Transcriptional Regulatory Mechanisms during Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

9 Transcriptional Regulatory Mechanisms during Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap09-2.gif

Abstract:

This chapter focuses primarily on transcriptional regulation of developmental genes. While the identification of developmentally regulated genes continues, now on a comprehensive genome-wide scale with the use of DNA microarray expression profiling, an understanding of the -acting DNA elements and -acting proteins (RNA polymerase [RNAP] with particular sigma factors, activators, and repressors) has emerged for a handful of developmental genes. In prokaryotes, sigma factors of RNAP play a key role in the regulation of gene expression by recognizing specific promoters and initiating transcription. As in other bacteria with a large number of sigma factors, such as , most of the expansion of the σ family in is due to members of the extracytoplasmic function (ECF) subfamily. Transcriptional activation, rather than relief from repression, appears to account for induction of most developmentally regulated genes studied so far, though some genes are subject to both positive and negative control. ActB is encoded by the second gene of an operon that regulates the level of CsgA, the C-signaling protein, during development. Several transcription factors key to the developmental process have been identified. Some of these, like MrpC and FruA, emerged from transposon mutagenesis screens. Others, like σ and σ, were identified by cross-hybridization with other sigma factor genes.

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9

Key Concept Ranking

Gene Expression and Regulation
0.6015282
Two-Component Signal Transduction Systems
0.46229
Type III Secretion System
0.4255668
0.6015282
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Alignment of parts of the amino acid sequences of SigA-G. Amino acids identical in more than 50% of the sequences are indicated by a black background. Conserved subregions of sigma factors and their functions are denoted under the sequences (Helmann and Chamberlin, 1988; ).

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Typical anti-σ/σ regulatory circuit. A signal leads to destruction of the integral membrane anti-σ , freeing the σ to bind RNAP core subunits αββ́, and the resulting holoenzyme transcribes an operon encoding the σ and its anti-σ, as well as target genes of the regulon.

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Three types of transcriptional activators involved in development. The left part depicts an HPK or STPK in the inner membrane, undergoing autophosphorylation in response to an extracellular signal that has traversed the outer membrane (not shown) and is present in the periplasm. Transfer of phosphate from ATP to the FHA domain of an EBP by the STPK, or from the HPK to the receiver domain of a response regulator EBP, is proposed to facilitate DNA binding and/or oligomerization of the EBP. EBPs typically bind to DNA 70 to 150 bp upstream of the transcriptional start site (Buck et al., 2000). From the more distal sites, DNA looping is required for the EBP to interact with σ-RNAP. ATP hydrolysis by the EBP allows it to convert the σ-RNAP closed promoter complex to the open complex, activating transcription. The upper right part depicts a membrane-embedded HPK sensing a signal (e.g., C-signal) and transferring phosphate to FruA, a response regulator that is not an EBP. This is speculative since an HPK that phosphorylates FruA has not yet been identified. Phosphorylated FruA is shown interacting with RNAP containing a σ family member (σ-RNAP) whose identity also has not been established. Based on the sites of binding of the FruA DNA-binding domain mapped so far, DNA looping may not be required for FruA to interact with RNAP, which presumably facilitates recruitment or a subsequent step in transcription initiation. While FruA phosphorylation likely involves at least one membrane-embedded HPK that responds to extracellular C-signal, the pathway might be more complex (e.g., one or more phosphotransfer proteins might function between the HPK and FruA) and FruA might also be phosphorylated by one or more HPKs that are not membrane embedded and respond to intracellular signals. Likewise, EBP phosphorylation pathways can involve more than two components and can respond to intracellular cues via cytoplasmic kinases. The lower right part depicts MrpC responding to an unknown cytoplasmic signal by binding to DNA and activating transcription, an example of a one-component system. For simplicity, MrpC is shown binding to the same promoter region as phosphorylated FruA, and the Ω4400 promoter region is the first example of such a promoter region ( ; Mittal and Kroos, unpublished). σ-RNAP denotes RNAP containing a sigma factor in the σ family. The identity of the sigma factor responsible for Ω4400 promoter recognition is unknown.

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model for a signaling and gene regulatory cascade leading to FruA-dependent gene expression. See the text for explanation.

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Conserved regulatory elements in C-signal-dependent promoter regions and in the promoter region. The promoter —10 and —35 regions are shown, except in the case of Ω4499, which has a C box centered at —33 bp relative to the transcriptional start site (right-angle arrow). The position and sequence of C boxes (boxed; matching the consensus sequence CAYYCCY, in which Y means C or T, except in the cases of the and Ω4406 promoter regions, which contain C-box-like sequences) and 5-bp elements (bold, matching the consensus sequence GAACA) are shown for each promoter region. An essential 10-bp element is shown for the Ω4403 promoter region, and sequences centered at —83.5 and —79 bp that exert a twofold or more positive effect on Ω4400 and Ω4499 expression, respectively, are also shown. See the text for references.

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch09
1. Apelian, D., and, S. Inouye. 1990. Development-specific σ-factor essential for late-stage differentiation of Myxococcus xanthus. Genes Dev. 4:13961403.
2. Apelian, D., and, S. Inouye. 1993. A new putative sigma factor of Myxococcus xanthus. J. Bacteriol. 175:33353342.
3. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Park-hill, and, D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141147.
4. Bibb, M. J., and, M. J. Buttner. 2003. The Streptomyces coeli-color developmental transcription factor σBldN is synthesized as a proprotein. J. Bacteriol. 185:23382345.
5. Biran, D., and, L. Kroos. 1997. In vitro transcription of Myxococcus xanthus genes with RNA polymerase containing σA, the major sigma factor in growing cells. Mol. Microbiol. 25:463472.
6. Bowden, M. G., and, H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30:275284.
7. Brandner, J. P., and, L. Kroos. 1998. Identification of the Ω4400 regulatory region, a developmental promoter of Myxococcus xanthus. J. Bacteriol. 180:19952004.
8. Browning, D. F.,, D. E. Whitworth, and, D. A. Hodgson. 2003. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48:237251.
9. Buck,, M.,, M. T. Gallegos,, D. J. Studholme,, Y. Guo, and, J. D. Gralla. 2000. The bacterial enhancer-dependent σ54N) transcription factor. J. Bacteriol. 182:41294136.
10. Buttner, D., and, U. Bonas. 2002. Port of entry—the type III secretion translocon. Trends Microbiol. 10:186192.
11. Caberoy,, N. B.,, R. D. Welch,, J. S. Jakobsen,, S. C. Slater, and, A. G. Garza. 2003. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J. Bacteriol. 185:60836094.
12. Davis, J., J. Mayor, and, L. Plamann. 1995. A missense mutation in rpoD results in an A-signalling defect in Myxococcus xanthus. Mol. Microbiol. 18:943952.
13. Diodati,, M. E.,, F. Ossa,, N. B. Caberoy,, I. R. Jose,, W. Hiraiwa,, M. M. Igo,, M. Singer, and, A. G. Garza. 2006. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J. Bacteriol. 188:17331743.
14. Downard, J., and, L. Kroos. 1993. Transcriptional regulation of developmental gene expression in Myxococcus xanthus, p. 183199. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, DC.
15. Downard, J. S., D. Kupfer, and, D. R. Zusman. 1984. Gene expression during development of Myxococcus xanthus: analysis of the genes for protein S. J. Mol. Biol. 175:469492.
16. Durocher, D., and, S. P. Jackson. 2002. The FHA domain. FEBS Lett. 513:5866.
17. Dworkin, M. 1993. Cell surfaces and appendages, p. 6383. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, DC.
18. Ellehauge, E., M. Norregaard-Madsen, and, L. Søgaard-Andersen. 1998. The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol. Microbiol. 30:807817.
19. Fisseha, M.,, M. Gloudemans,, R. Gill, and, L. Kroos. 1996. Characterization of the regulatory region of a cell interaction-dependent gene in Myxococcus xanthus. J. Bacteriol. 178:25392550.
20. Fisseha, M., D. Biran, and, L. Kroos. 1999. Identification of the Ω4499 regulatory region controlling developmental expression of a Myxococcus xanthus cytochrome P-450 system. J. Bacteriol. 181:54675475.
21. Foster-Hartnett, D., P. J. Cullen, E. M. Monika, and, R. G. Kranz. 1994. A new type of NtrC transcriptional activator. J. Bacteriol. 176:61756187.
22. Foster-Hartnett, D., and, R. G. Kranz. 1994. The Rhodobacter capsulatus glnB gene is regulated by NtrC at tandem rpoN-independent promoters. J. Bacteriol. 176:51715176.
23. Garza,, A. G.,, J. S. Pollack,, B. Z. Harris,, A. Lee,, I. M. Kaseler,, E. F. Licking, and, M. Singer. 1998. SdeK is required for early fruiting body development in Myxococcus xanthus. J. Bacteriol. 180:46284637.
24. Garza,, A. G.,, B. Z. Harris,, B. M. Greenberg, and, M. Singer. 2000. Control of asgE expression during growth and development of Myxococcus xanthus. J. Bacteriol. 182:66226629.
25. Gill, R. E.,, M. Karlok, and, D. Benton. 1993. Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J. Bacteriol. 175:45384544.
26. Goldman,, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
27. Gorham, H.,, S. McGowan,, P. Robson, and, D. Hodgson. 1996. Light-induced carotenogenesis in Myxococcus xanthus: light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol. Microbiol. 19:171186.
28. Gorski, L., and, D. Kaiser. 1998. Targeted mutagenesis of σ54 activator proteins in Myxococcus xanthus. J. Bacteriol. 180:58965905.
29. Gorski, L., T. Gronewold, and, D. Kaiser. 2000. A σ54 activator protein necessary for spore differentiation within the fruiting body of Myxococcus xanthus. J. Bacteriol. 182:24382444.
30. Gronewold, T. M., and, D. Kaiser. 2001. The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol. Microbiol. 40:744756.
31. Gronewold, T. M., and, D. Kaiser. 2002. act operon control of developmental gene expression in Myxococcus xanthus. J. Bacteriol. 184:11721179.
32. Gronewold, T. M., and, D. Kaiser. 2007. Mutations of the act promoter in Myxococcus xanthus. J. Bacteriol. 189:18361844.
33. Gruber, T. M., and, D. A. Bryant. 1997. Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2. J. Bacteriol. 179:17341747.
34. Gulati, P., D. Xu, and, H. Kaplan. 1995. Identification of the minimum regulatory region of a Myxococcus xanthus A-signal-dependent developmental gene. J. Bacteriol. 177:46454651.
35. Guo, D.,, M. G. Bowden,, R. Pershad, and, H. B. Kaplan. 1996. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J. Bacteriol. 178:16311639.
36. Guo, D., Y. Wu, and, H. B. Kaplan. 2000. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J. Bacteriol. 182:45644571.
37. Hager, E., H. Tse, and, R. E. Gill. 2001. Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus. Mol. Microbiol. 39:765780.
38. Hao, T.,, D. Biran,, G. J. Velicer, and, L. Kroos. 2002. Identification of the Ω4514 regulatory region, a developmental promoter of Myxococcus xanthus that is transcribed in vitro by the major vegetative RNA polymerase. J. Bacteriol. 184:33483359.
39. Helmann, J. D., and, M. J. Chamberlin. 1988. Structure and function of bacterial sigma factors. Annu. Rev. Biochem. 57:839872.
40. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46:47110.
41. Herring,, C. D.,, M. Raffaelle,, T. E. Allen,, E. I. Kanin,, R. Landick,, A. Z. Ansari, and, B. O. Palsson. 2005. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J. Bacteriol. 187:61666174.
42. Horiuchi, T.,, M. Taoka,, T. Isobe, T. Komano, and, S. Inouye. 2002. Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus: analysis by two-dimensional gel electrophoresis. J. Biol. Chem. 277:2675326760.
43. Horiuchi, T.,, T. Akiyama,, S. Inouye, and, T. Komano. 2003. Regulation of FruA expression during vegetative growth and development of Myxococcus xanthus. J. Mol. Microbiol. Biotechnol. 5:8796.
44. Inouye, M., S. Inouye, and, D. R. Zusman. 1979a. Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Dev. Biol. 68:579591.
45. Inouye, M., S. Inouye, and, D. R. Zusman. 1979b. Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:209213.
46. Inouye, S. 1990. Cloning and DNA sequence of the gene coding for the major sigma factor from Myxococcus xanthus. J. Bacteriol. 172:8085.
47. Jakobsen,, J. S.,, L. Jelsbak,, R. D. Welch,, C. Cummings,, B. Goldman,, E. Stark,, S. Slater, and, D. Kaiser. 2004. σ54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J. Bacteriol. 186:43614368.
48. Jelsbak, L., M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with an FHA domain and the σ54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
49. Kaiser, D., and, C. Manoil. 1979. Myxobacteria: cell interactions, genetics and development. Annu. Rev. Microbiol. 33:595639.
50. Kaiser, D., and, R. Welch. 2004. Dynamics of fruiting body morphogenesis. J. Bacteriol. 186:919927.
51. Kaplan, H. B.,, A. Kuspa, and, D. Kaiser. 1991. Suppressors that permit A-signal-independent development gene expression in Myxococcus xanthus. J. Bacteriol. 173:14601470.
52. Keseler, I., and, D. Kaiser. 1995. An early A-signal-dependent gene in Myxococcus xanthus has a σ54-like promoter. J. Bacteriol. 177:46384644.
53. Keseler, I., and, D. Kaiser. 1997. σ54, a vital protein for Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 94:19791984.
54. Kirby, J. R., and, D. R. Zusman. 2003. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:20082013.
55. Komano, T., T. Franceschini, and, S. Inouye. 1987. Identification of a vegetative promoter in Myxococcus xanthus: a protein that has homology to histones. J. Mol. Biol. 196:517524.
56. Kroos, L., A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252266.
57. Kroos, L., and, D. Kaiser. 1987. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1:840854.
58. Kroos, L. 2005. Eukaryotic-like signaling and gene regulation in a prokaryote that undergoes multicellular development. Proc. Natl. Acad. Sci. USA 102:26812682.
59. Kuspa, A., L. Kroos, and, D. Kaiser. 1986. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev. Biol. 117:267276.
60. Lancero,, H.,, N. B. Caberoy,, S. Castaneda,, Y. Li,, A. Lu,, D. Dutton,, X. Y. Duan,, H. B. Kaplan,, W. Shi, and, A. G. Garza. 2004. Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiology 150:40854093.
61. Lancero,, H. L.,, S. Castaneda,, N. B. Caberoy,, X. Ma,, A. G. Garza, and, W. Shi. 2005. Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. Microbiology 151:15351541.
62. Li, S.-F., B. Lee, and, L. J. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6:401410.
63. Li, S.-F., and, L. J. Shimkets. 1993. Effect of dsp mutations on the cell-to-cell transmission of CsgA in Myxococcus xanthus. J. Bacteriol. 175:36483652.
64. Liu, X., and, P. Matsumura. 1995. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164:8184.
65. Loconto,, J.,, P. Viswanathan,, S. J. Nowak,, M. Gloudemans, and, L. Kroos. 2005. Identification of the Ω4406 regulatory region, a developmental promoter of Myxococcus xanthus, and a DNA segment responsible for chromosomal position-dependent inhibition of gene expression. J. Bacteriol. 187:41494162.
66. Lonetto, M., M. Gribskov, and, C. A. Gross. 1992. The σ70 family: sequence conservation and evolutionary relationships. J. Bacteriol. 174:38433849.
67. Lonetto, M.,, K. Brown,, K. Rudd, and, M. Buttner. 1994. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial polymerase σ factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. USA 91:75737577.
68. Nakahigashi, K., H. Yanagi, and, T. Yura. 1995. Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res. 23:43834390.
69. Nariya, H., and, S. Inouye. 2002. Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus. Mol. Microbiol. 46:13531366.
70. Nariya, H., and, S. Inouye. 2003. An effective sporulation of Myxococcus xanthus requires glycogen consumption via Pkn4-activated 6-phosphofructokinase. Mol. Microbiol. 49:517528.
71. Nariya, H., and, S. Inouye. 2005. Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol. Microbiol. 58:367379.
72. Nariya, H., and, S. Inouye. 2006. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol. Microbiol. 60:12051217.
73. Nielsen,, M.,, A. A. Rasmussen,, E. Ellehauge, A. Treuner-Lange,, and L. Søgaard-Andersen. 2004. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus. Microbiology 150:21712183.
74. Ogawa, M.,, S. Fujitani,, X. Mao, S. Inouye, and, T. Komano. 1996. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22:757767.
75. Otani, M.,, J. Tabata,, T. Ueki, K. Sano, and, S. Inouye. 2001. Heat-shock-induced proteins from Myxococcus xanthus. J. Bacteriol. 183:62826287.
76. Otani,, M., T. Ueki.,, S. Kozuka,, M. Segawa,, K. Sano, and, S. Inouye. 2005. Characterization of a small heat shock protein, Mx Hsp16.6, of Myxococcus xanthus. J. Bacteriol. 187:52365241.
77. Paget, M. S., and, M. J. Buttner. 2003. Thiol-based regulatory switches. Annu. Rev. Genet. 37:91121.
78. Paul,, R.,, S. Weiser,, N. C. Amiot,, C. Chan,, T. Schirmer,, B. Giese, and, U. Jenal. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18:715727.
79. Pollack, J. S., and, M. Singer. 2001. SdeK, a histidine kinase required for Myxococcus xanthus development. J. Bacteriol. 183:35893596.
80. Romeo, J. M., and, D. R. Zusman. 1991. Transcription of the myxobacterial hemagglutinin gene is mediated by a σ54-like promoter and a cis-acting upstream regulatory region of DNA. J. Bacteriol. 173:29692976.
81. Rudd, K. E., and, D. R. Zusman. 1982. RNA polymerase of Myxococcus xanthus: purification and selective transcription in vitro with bacteriophage templates. J. Bacteriol. 151:89105.
82. Søgaard-Andersen, L.,, F. Slack,, H. Kimsey, and, D. Kaiser. 1996. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10:740754.
83. Srinivasan,, B. S.,, N. B. Caberoy,, G. Suen,, R. G. Taylor,, R. Shah,, F. Tengra,, B. S. Goldman,, A. G. Garza, and, R. D. Welch. 2005. Functional genome annotation through phylogenomic mapping. Nat. Biotechnol. 23:691698.
84. Srinivasan, D., and, L. Kroos. 2004. Mutational analysis of the fruA promoter region demonstrates that C-box and 5-base-pair elements are important for expression of an essential developmental gene of Myxococcus xanthus. J. Bacteriol. 186:59615967.
85. Stathopoulos, A., and, M. Levine. 2005. Genomic regulatory networks and animal development. Dev. Cell 9:449462.
86. Sun, H., and, W. Shi. 2001a. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J. Bacteriol. 183:47864795.
87. Sun, H., and, W. Shi. 2001b. Analyses of mrp genes during Myxococcus xanthus development. J. Bacteriol. 183:67336739.
88. Teintze, M.,, R. Thomas,, T. Furuichi, M. Inouye, and, S. Inouye. 1985. Two homologous genes coding for spore-specific proteins are expressed at different times during development of Myxococcus xanthus. J. Bacteriol. 163:121125.
89. Thony, B., and, H. Hennecke. 1989. The —24/—12 promoter comes of age. FEMS Microbiol. Rev. 5:341357.
90. Tojo, N., S. Inouye, and, T. Komano. 1993. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J. Bacteriol. 175:45454549.
91. Tse, H., and, R. E. Gill. 2002. Bypass of A- and B-signaling requirements for Myxococcus xanthus development by mutations in spdR. J. Bacteriol. 184:14551457.
92. Ueki, T., S. Inouye, and, M. Inouye. 1996. Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183:153157.
93. Ueki, T., and, S. Inouye. 1998. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus. Genes Cells 3:371385.
94. Ueki, T., and, S. Inouye. 2001. SigB, SigC, and SigE from Myxococcus xanthus homologous to σ32 are not required for heat shock response but for multicellular differentiation. J. Mol. Microbiol. Biotechnol. 3:287293.
95. Ueki, T., and, S. Inouye. 2002. Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J. Biol. Chem. 277:61706177.
96. Ueki, T., and, S. Inouye. 2003. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:87828787.
97. Ueki, T., and, S. Inouye. 2005a. Identification of a gene involved in polysaccharide export as a transcription target of FruA, an essential factor for Myxococcus xanthus development. J. Biol. Chem. 280:3227932284.
98. Ueki, T., and, S. Inouye. 2005b. Activation of a development-specific gene, dofA, by FruA, an essential transcription factor for development of Myxococcus xanthus. J. Bacteriol. 187:85048506.
99. Ueki, T.,, C. Y. Xu, and, S. Inouye. 2005. SigF, a new sigma factor required for a motility system of Myxococcus xanthus. J. Bacteriol. 187:85378541.
100. Viswanathan, K., P. Viswanathan, and, L. Kroos. 2006a. Mutational analysis of the Myxococcus xanthus Ω4406 promoter region reveals an upstream negative regulatory element that mediates C-signal dependence. J. Bacteriol. 188:515524.
101. Viswanathan, P., and, L. Kroos. 2003. cis elements necessary for developmental expression of a Myxococcus xanthus gene that depends on C signaling. J. Bacteriol. 185:14051414.
102. Viswanathan, P., M. Singer, and, L. Kroos. 2006b. Role of σD in regulating genes and signals during Myxococcus xanthus development. J. Bacteriol. 188:32463256.
103. Viswanathan, P.,, K. Murphy, B. Julien, A. G. Garza, and, L. Kroos. 2007a. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J. Bacteriol. 189:37383750.
104. Viswanathan, P.,, T. Ueki, S. Inouye, and, L. Kroos. 2007b. Combinatorial regulation of genes essential for Myxococcus xanthus development involves response regulator and a LysR-type regulator. Proc. Natl. Acad. Sci. USA 104:79697974.
105. Ward, M.,, H. Lew,, A. Treuner-Lange, and, D. Zusman. 1998. Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor. J. Bacteriol. 180:56685675.
106. Wu, S. S., and, D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179:77487758.
107. Xu, D., C. Yang, and, H. B. Kaplan. 1998. Myxococcus xanthus sasN encodes a regulator that prevents developmental gene expression during growth. J. Bacteriol. 180:62156223.
108. Yamazaki, H., Y. Ohnishi, and, S. Horinouchi. 2000. An A-factor-dependent extracytoplasmic function sigma factor (sigma(AdsA)) that is essential for morphological development in Streptomyces griseus. J. Bacteriol. 182:45964605.
109. Yang, C., and, H. B. Kaplan. 1997. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J. Bacteriol. 179:77597767.
110. Yoder, D., and, L. Kroos. 2004a. Mutational analysis of the Myxococcus xanthus Ω4400 promoter region provides insight into developmental gene regulation by C signaling. J. Bacteriol. 186:661671.
111. Yoder, D., and, L. Kroos. 2004b. Mutational analysis of the Myxococcus xanthus Ω4499 promoter region reveals shared and unique properties in comparison with other C-signal-dependent promoters. J. Bacteriol. 186:37663776.
112. Yoder-Himes, D., and, L. Kroos. 2006. Regulation of the Myxococcus xanthus C-signal-dependent Ω4400 promoter by the essential developmental protein FruA. J. Bacteriol. 188:51675176.

Tables

Generic image for table
Table 1

Putative σ-RNAP-transcribed genes

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9
Generic image for table
Table 2

σ-RNAP-transcribed genes

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9
Generic image for table
Table 3

EBPs that affect motility and/or development

Citation: Kroos L, Inouye S. 2008. 9 Transcriptional Regulatory Mechanisms during Development, p 149-168. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error