1887

10 Two-Component Signal Transduction Systems of the Myxobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

10 Two-Component Signal Transduction Systems of the Myxobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap10-2.gif

Abstract:

Myxobacteria live in an ever-changing environment and therefore require mechanisms to couple perception of environmental change with appropriate behavioral responses. The evolutionary success of two-component system (TCS) signaling pathways apparently stems from their adaptability to the regulation of diverse physiological processes, and this feature is illustrated well by the known TCSs of myxobacteria. The recent availability of genome sequences of four myxobacteria has enabled a comparative genomic analysis of TCS genes in myxobacterial genomes. TCSs can be consistently grouped into particular subfamilies by applying several different assessment criteria, including gene organization, domain architecture, and phylogenetic relationships. The major families of TCSs are usually named after archetypal family members from . Phosphoaspartate residues in response regulators can also be hydrolyzed by extrinsic phosphatases. Surprisingly, there are no homologues of the Rap, Spo0E, YisI, YnzD, or CheZ phosphatases encoded in the genome, suggesting that modulation of signal flow by regulated phosphoaspartate phosphatase activity is not generally adopted by the myxobacteria. With the sequencing of multiple myxobacterial genomes it has become possible to use comparative genomics to gain novel insights into the TCSs of myxobacteria. Genomes can be assessed for the presence or absence of specific TCS homologues, lineage-specific changes in TCS properties can be identified, and in some cases changes in gene organization can guide searches for partner proteins.

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10

Key Concept Ranking

Two-Component Signal Transduction Systems
0.4413197
0.4413197
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Typical TCSs and phosphorelays. Domain architecture graphics obtained using the SMART tool (http://smart.embl-heidelberg.de). Phosphotransfer reactions are indicted with arrows. (A) The PhoBR and CheAY TCSs of . PhoR contains an orthodox transmitter domain comprising a HisKA phosphotransfer domain and a HATPase domain and is activated in response to low extracellular phosphate concentrations. This leads to phosphorylation of the DNA-binding response regulator PhoB, which activates transcription of phosphate-scavenging genes. CheA possesses an unorthodox transmitter domain, which contains a phospho-accepting Hpt domain and HATPase domain, with a vestigial form of the HisKA domain (lacking a phospho-accepting histidine residue) retained as a dimerization domain. Sensing of attractants/repellants by the Tar MCP activates CheA, which phosphor-ylates CheB and CheY. (B) The phosphorelay regulating initiation of sporulation in . Spo0F is phosphorylated by at least two kinases, including KinA and KinB. Phosphoryl groups are passed from Spo0F to Spo0A via a phosphotransfer protein, Spo0B, which is phosphorylated on a histidine residue and structurally resembles both Hpt domains and dimeric H-box/HisKA domains. Spo0A can also be phosphorylated directly by a third histidine kinase, KinC, and when phosphorylated promotes sporulation through changes in gene expression. For details see and Fabret et al. (1999).

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Numbers of TCS genes found in different genomes as a function of genome size. Trend lines are shown for all bacteria (gray) and for four myxobacteria (black). The myxo-bacteria all possess an exceptionally large complement of TCS genes, given their genome size. (PCC7120) and (PCA) also have relatively large numbers of TCS genes.

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Domain architectures of response regulator families. Graphics of domain organization were obtained using the SMART tool (http://smart.embl-heidelberg.de). Families are named after archetypal members, and examples from are indicated.

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Complex TCS gene clusters of . Genes are represented by arrows pointing in the direction of transcription. Domains encoded within each gene are shown as SMART graphics (http://smart.embl-heidelberg.de), with conserved histidine and aspartate residues predicted to be involved in phosphotransfer indicated below each gene.

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

A map of the genome showing the location of TCS genes. The origin of the genome is defined as the start of the gene (position 1). Inner and outer rings represent genes coded on the + and — strands, respectively. Figure produced using GenomeDiagram ( ).

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Transmembrane histidine kinases (including hybrid kinases) found in different genomes as a function of total numbers of histidine kinases (including hybrids). Trend lines are shown for all bacteria (gray) and for four myxobacteria (black). , . Most myxobacteria (with the exception of ) have exceptionally low proportions of TM histidine kinases, implying an unusual degree of sensing of intracellular conditions. Two genomes of sp. also exhibit evidence of significant intracellular sensing (see Galperin, 2005).

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch10
1. Acuna, G., W. Shi, K. Trudeau, and, D. R. Zusman. 1995. The ‘CheA’ and ‘CheY’ domains of Myxococcus xanthus FrzE function independently in vitro as an autokinase and a phosphate acceptor respectively. FEBS Lett. 16:3133.
2. Alves, R., and, M. A. Savageau. 2003. Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function. Mol. Microbiol. 48:2551.
3. Burbulys, D., K. A. Trach, and, J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545552.
4. Bustamante, V. H.,, I. Martínez-Flores,, H. C. Vlamakis, and, D. R. Zusman. 2004. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol. Microbiol. 53:15011513.
5. Caberoy,, N. B.,, R. D. Welch,, J. S. Jakobsen, S. C. Slater, and, A. G. Garza. 2003. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J. Bacteriol. 185:60836094.
6. Carrero-Lérida, J.,, A. Moraleda-Muñoz,, R. García- Hernández, J. Pérez, and, J. Muñoz-Dorado. 2005. PhoR1-PhoP1, a third two-component system of the family PhoRP from Myxococcus xanthus: role in development. J. Bacteriol. 187:49764983.
7. Chang, C. H., J. Zhu, and, S. C. Winans. 1996. Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA protein. J. Bacteriol. 178:47104716.
8. Cho, K., and, D. R. Zusman. 1999a. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Bacteriol. 34:714725.
9. Cho, K., and, D. R. Zusman. 1999b. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34:268281.
10. Cho, K., A. Treuner-Lange, K. A. O’Connor, and, D. R. Zusman. 2000. Developmental aggregation of Myxococcus xanthus requires frgA, an frz-related gene. J. Bacteriol. 182:66146621.
11. Cock. P. J., and, D. E. Whitworth. 2007. Evolution of gene overlaps: relative reading frame bias in prokaryotic two-component system genes. J. Mol. Evol. 64:457462.
12. Coudart-Cavelli,, M. P.,, O. Sismeiro, and, A. Danchin. 1997. Bifunctional structure of two adenylyl cyclases from the myxo-bacterium Stigmatella aurantiaca. Biochimie 79:757767.
13. Ellehauge, E.,, M. Norregaard-Madsen, and, L. Søgaard-Andersen. 1998. The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol. Microbiol. 30:807817.
14. Fabret, C., V. A. Feher, and, J. A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol. 181:19751983.
15. Feher,, V. A.,, J. W. Zapf,, J. A. Hoch,, J. M. Whiteley,, L. P. McIntosh,, M. Rance,, N. J. Skelton.,, F. W. Dahlquist, and, J. Cavanagh. 1997. High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Biochemistry 36:1001510025.
16. Galperin, M. Y., A. N. Nikolskaya, and, E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203:1121.
17. Galperin, M. Y. 2005. A census of membrane-bound and intra-cellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5:35.
18. Gronewold, T. M. A., and, D. Kaiser. 2001. The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol. Microbiol. 40:744756.
19. Guo, D., Y. Wu, and, H. B. Kaplan. 2000. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J. Bacteriol. 182:45644571.
20. Hager, E., and, R. E. Gill. 2001. Identification and characterization of spdR mutations that bypass protease-dependent regulation of developmental gene expression in Myxococcus xanthus. Mol. Microbiol. 39:765780.
21. Heermann, R.,, A. Fohrmann,, K. Altendorf, and, K. Jung. 2003. The transmembrane domains of the sensor kinase KdpD of Escherichia coli are not essential for sensing K+ limitation. Mol. Microbiol. 47:839848.
22. Higgs,, P. I.,, K. Cho, D. E. Whitworth,, L. S. Evans, and, D. R. Zusman. 2005. Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J. Bacteriol. 187:81918195.
23. Hoch, J. A. 2000. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3:165170.
24. Hoch, J. A., and, T. J. Silhavy. 1995. Two-Component Signal Transduction. American Society for Microbiology, Washington, DC.
25. Horiuchi, T.,, M. Taoka,, T. Isobe, T. Komano, and, S. Inouye. 2002. Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus. Analysis by two-dimensional gene electrophoresis. J. Biol. Chem. 277:2675326760.
26. Hsing, W., and, T. J. Silhavy. 1997. Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. J. Bacteriol. 179:37293735.
27. Hutchings,, M. I.,, P. A. Hoskisson,, G. Chandra, and, M. J. Buttner. 2004. Sensing and responding to diverse extracellular signals? Analysis of sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:27952806.
28. Jakobsen,, J. S.,, L. Jelsbak,, L. Jelsbak,, R. D. Welch,, C. Cummings,, B. Goldman,, E. Stark,, S. Slater, and, D. Kaiser. 2004. Sigma54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J. Bacteriol. 186:43614368.
29. Jelsbak, L., M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with a forkhead-associated domain and the σ54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
30. Jimenez-Pearson., M. A.,, I. Delany,, V. Scarlato, and, D. Beier. 2005. Phosphate flow in the chemotactic response system of Helicobacter pylori. Microbiology 151:32993311.
31. Keseler, I. M., and, D. Kaiser. 1997. Sigma54, a vital protein for Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 94:19791984.
32. Kimura, Y.,, H. Nakano,, H. Terasaka, and, K. Takegawa. 2001. Myxococcus xanthus mokA encodes a histidine kinase-response regulator hybrid sensor required for development and osmotic tolerance. J. Bacteriol. 183:11401146.
33. Kirby, J. R., and, D. R. Zusman. 2003. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci USA 100:20082013.
34. Kofoid, E. C., and, J. S. Parkinson. 1988. Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. USA 85:49814985.
35. Kramer, G., and, V. Weiss. 1999. Functional dissection of the transmitter module of the histidine kinase NtrB in Escherichia coli. Proc. Natl. Acad. Sci. USA 96:604609.
36. Lancero, H.,, N. B. Caberoy,, S. Castaneda, Y. Li,, A. Lu,, D. Dutton,, X.-Y. Duan,, H. B. Kaplan,, W. Shi, and, A. G. Garza. 2004. Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiology 150:40854093.
37. Lancero,, H.,, S. Castaaneda,, N. B. Caberoy,, X. Ma,, A. G. Garza, and, W. Shi. 2005. Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. Microbiology 151:15351541.
38. Lee, B.,, P. I. Higgs,, D. R. Zusman, and, K. Cho. 2005. EspC is involved in controlling the timing of development in Myxococcus xanthus. J. Bacteriol. 187:50295031.
39. Li, Y., and, L. Plamann. 1996. Purification and in vitro phosphorylation of Myxococcus xanthus AsgA protein. J. Bacteriol. 178:289292.
40. Matsubara, M., and, T. Mizuno. 2000. The SixA phosphohistidine phosphatase modulates the ArcBA phosphorelay signal transduction in Escherichia coli. FEBS Lett. 470:118124.
41. McBride, M. J., T. Kohler, and, D. R. Zusman. 1992. Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior. J. Bacteriol. 174:42464257.
42. McBride, M. J., R. A. Weinberg, and, D. R. Zusman. 1989. “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemo-taxis genes of enteric bacteria. Proc. Natl. Acad. Sci. USA 86:424428.
43. McCleary, W. R., and, D. R. Zusman. 1990. FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 87:58985902.
44. Mignot, T., J. P. Merlie, Jr., and, D. R. Zusman. 2005. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310:855857.
45. Mizuno, T., T. Kaneko, and, S. Tabata. 1996. Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res. 3:407414.
46. Mizuno, T. 1997. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 4:161168.
47. Moraleda-Muñoz, A.,, J. Carrero-Lérida,, J. Pérez, and, J. Muñoz-Dorado. 2003. Role of two novel two-component regulatory systems in development and phosphatase expression in Myxococcus xanthus. J. Bacteriol. 185:13761383.
48. Ogawa, M.,, S. Fujitani,, X. Mao, S. Inouye, and, T. Komano. 1996. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22:757767.
49. Parkinson, J. S., and, E. C. Kofoid. 1992. Communication modules in bacterial signalling proteins. Annu. Rev. Genet. 26:71112.
50. Perego, M. 1998. Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol. 6:366370.
51. Pham,, V. D.,, C. W. Shebelut,, I. R. Jose,, D. A. Hodgson,, D. E. Whitworth, and, M. Singer. 2006. The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus. Microbiology 152:16091620.
52. Pollack, J. S., and, M. Singer. 2001. SdeK, a histidine kinase required for Myxococcus xanthus development. J. Bacteriol. 183:35893596.
53. Pritchard, L., J. A. White, P. R. J. Birch, and, I. K. Toth. 2006. GenomeDiagram: a python package for the visualisation of large-scale genomic data. Bioinformatics 22:616617.
54. Puppe, W.,, M. Jung,, M. Lucassen, and, K. Altendorf. 1996. Characterization of truncated forms of the KdpD protein, the sensor kinase of the K+-translocating Kdp system of Escherichia coli. J. Biol. Chem. 271:2502725034.
55. Rasmussen, A. A., and, L. Søgaard-Andersen. 2003. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 185:54525464.
56. Rasmussen,, A. A.,, S. L. Porter,, J. P. Armitage, and, L. Søgaard-Andersen. 2005. Coupling of multicellular morphogenesis and cellular differentiation by an unusual hybrid histidine protein kinase in Myxococcus xanthus. Mol. Microbiol. 56:13581372.
57. Sasse-Dwight, S., and, J. D. Gralla. 1990. Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor sigma 54. Cell 62:945954.
58. Shimkets, L. J. 1999. Intercellular signalling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53:525549.
59. Skerker,, J. M.,, M. S. Prasol,, B. S. Perchuk, E. G. Biondi, and, M. T. Laub. 2005. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol. 3:e334.
60. Sonnhammer, E. L.,, G. von Heijne, and, A. Krogh. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6:175182.
61. Stewart, R. C. 1997. Activating and inhibitory mutations in the regulatory domain of CheB, the methylesterase in bacterial chemotaxis. J. Biol. Chem. 268:19211930.
62. Stock, J. B., A. J. Ninfa, and, A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450490.
63. Sun, H., and, W. Shi. 2001. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J. Bacteriol. 183:47864795.
64. Taylor, B. L., and, I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479506.
65. Trudeau, K. G., M. J. Ward, and, D. R. Zusman. 1996. Identification and characterization of FrzZ, a novel response regulator necessary for swarming and fruiting-body formation in Myxococcus xanthus. Mol. Microbiol. 20:645655.
66. Ueki, T., and, S. Inouye. 2005a. Activation of a development-specific gene, dofA, by FruA, an essential transcription factor for development of Myxococcus xanthus. J. Bacteriol. 187:85048506.
67. Ueki, T., and, S. Inouye. 2005b. Identification of a gene involved in polysaccharide export as a transcription target of FruA, an essential factor for Myxococcus xanthus development. J. Biol. Chem. 280:3227932284.
68. Ueki, T., and, S. Inouye. 2003. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:87828787.
69. Ueki, T., and, S. Inouye. 2002. Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J. Biol. Chem. 277:61706177.
70. Vlamakis, H. C., J. R. Kirby, and, D. R. Zusman. 2004. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol. Microbiol. 52:17991811.
71. Wang, L., R. Grau, M. Perego, and, J. A. Hoch. 1997. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11:25692579.
72. Ward,, M. J.,, K. C. Mok,, D. P. Astling, H. Lew, and, D. R. Zusman. 1998a. An ABC transporter plays a developmental aggregation role in Myxococcus xanthus. J. Bacteriol. 180:56975703.
73. Ward, M. J., H. Lew, A. Treuner-Lange, and, D. R. Zusman. 1998b. Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor. J. Bacteriol. 180:56685675.
74. Ward, M. J., H. Lew, and, D. R. Zusman. 2000. Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol. Microbiol. 37:13571371.
75. Wolanin, P. M., P. A. Thomason, and, J. B. Stock. 2002. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 3:REVIEWS3013.
76. Wu, S. S., and, D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547558.
77. Wu, S. S., and, D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179:77487758.
78. Yajko, D. M., and, D. R. Zusman. 1978. Changes in cyclic AMP levels during development in Myxococcus xanthus. J. Bacteriol. 133:15401542.
79. Yang,, R., S. Bartle,, R. Otto,, A. Stassinopoulos,, M. Rogers,, L. Plamann, and, P. Hartzell. 2004. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J. Bacteriol. 186:61686178.
80. Yang, Z., and, Z. Li. 2005. Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system. Arch. Microbiol. 183:243252.
81. Yang, Z.,, Y. Geng,, D. Xu, H. B. Kaplan, and, W. Shi. 1998. A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol. Microbiol. 30:11231130.

Tables

Generic image for table
Table 1

TCSs of

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10
Generic image for table
Table 2

Organization of TCS genes of and other bacteria

Citation: Whitworth D, Cock P. 2008. 10 Two-Component Signal Transduction Systems of the Myxobacteria, p 169-189. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error