1887

11 Protein Ser/Thr Kinases and Phosphatases in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

11 Protein Ser/Thr Kinases and Phosphatases in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap11-2.gif

Abstract:

Protein Ser/Thr/Tyr kinases and protein phosphatases function as biological switches that turn on and off signal transduction pathways, where they participate by phosphorylation and dephosphorylation. Based on analyzing the recently complete genome sequence database, 102 genes that encode putative protein Ser/Thr kinase (PSTK) and 34 genes of putative protein phosphatases (PPs) have been identified. This chapter first describes PSTKs and then PPs in . Four pp genes that encode protein phosphatases in the phosphoprotein phosphatase (PPP) superfamily are located close to genes. In fact, four major superfamilies of phosphatases exist: phosphoprotein phosphatases (PPP), Mn-or Mg-dependent protein phosphatases (PPM), conventional phosphotyrosine phosphatases (CPTP), and low-molecular-mass phosphotyrosine phosphatases (LMMPTP). Among the 34 PPs, only four seem to be forming operons with protein kinases: three are PPPs, and the fourth one belongs to the PPM superfamily. There are four genes in the genome containing the Pfam for PP2C protein phosphatases (PF00481), including Pph1. As the signature for this family of proteins is also found in proteins such as nucleotidases, sphingomyelin phosphodiesterases, and 2’-3’ cAMP phosphodiesterases, as well as nucleases, it is difficult to estimate the exact number of PPP-type phosphatases in . The physiological roles of the PSTK signaling systems in are beginning to be understood at the molecular level. Their roles appear to be similar to those of the protein Ser/Thr and Tyr kinases in eukaryotes, known to regulate diverse cellular functions by forming kinase cascades with scaffold and adapter proteins.

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11

Key Concept Ranking

Gene Expression and Regulation
0.46950647
0.46950647
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Classification of 99 eukaryotic-like PSTKs. The amino acid residues used for classification are highlighted by gray boxes. Invariant residues in the catalytic domain (Hanks and Hunter, 1995) are in boldface. Symbols: #, at least one residue is substituted or deleted at the position of each Pab; x, the residue is not well conserved.

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Phylogenetic tree of 99 eukaryotic-like PSTKs. The phylogenetic tree was built by the neighbor-joining method (CLUSTALW [http://align.genome.jp/] and NJplot [http://pbil.univ-lyon.fr/software/njplot.html]) using manually aligned kinase catalytic domains (subdomain from I to XI [Hanks et al., 1988]) and illustrated using Tree View programs (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). The Pkt group is shown by black lines in a medium-gray background except for the PktC subgroup, which is shown with dotted lines. The Psk group is shown by gray lines in a light-gray background, and the Pab group is indicated by dotted lines. Psd and Pdd groups are shown with dotted and large dotted lines in light- and dark-gray backgrounds, respectively. PSTKs grouped by open ovals have homologies not only in the catalytic domain but also in the regulatory domain.

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Multiple gene duplication of and . (a) Highly conserved regions in duplications are shown by bars. A gray bar in indicates a local duplication. Black, dark-gray, and light-gray arrows are , and an -like ORF (having homology with in in panel b), respectively. (b) Thick black, dark-gray, and light-gray arrows represent genes for PktF, Psd, and ORF309 homologues, respectively. Thin black and light-gray arrows indicate the genes for a putative phage-related transcriptional regulator with HTH_3 type DNA binding domain (PF01381) and an ORF with unknown function, respectively. Putative hydrophobic sequences are shown by open ovals.

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

FHA-EBP genes adjacent to or near s. Thick black and dark-gray arrows represent and the gene for FHA-EBP, respectively. Thin light-gray arrows represent the genes for PFK, α-1,4-glucanase, and unknown functions.

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

A signaling network of PSTKs sharing Mkaps in . Bars with arrowheads at both ends indicate interactions identified by the yeast two-hybrid screens. The T-bar is the inhibition of PFK phosphorylation by MkapB. Gray arrows are characterized phosphorylation pathways.

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Regulation of and expression in . PktC2/Pkn8 and PskA5/ Pkn14, forming a kinase cascade, and MrpA, a TCST histidine kinase, are highlighted in dark and light gray, respectively. See the text for details.

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Logo of the three domains of the 25 putative PPP superfamily protein phosphatases from .

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch11
1. Adams, J. A.,, M. L. McGlone, R. Gibson, and, S. S. Taylor. 1995. Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase. Biochemistry 34:24472454.
2. Akiyama, T., and, T. Komano. 2004. Analysis of fruE, a novel developmental gene of Myxococcus xanthus. J. Mol. Micro-biol. Biotechnol. 6:164173.
3. Av-Gay, Y., and, M. Everett. 2000. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol. 8:238244.
4. Barford, D.,, A. K. Das, and, M.-P. Egloff. 1998. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27:133164.
5. Bennett, M. S.,, Z. Guan,, M. Laurber, and, X.-D. Su. 2001. Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 98:1357713582.
6. Beuf, L., S., Bedu, M. C. Durand, and, F. Joset. 1994. A protein involved in co-ordinated regulation of inorganic carbon and glucose metabolism in the facultative photoautotrophic cyanobacterium Synechocystis PCC6803. Plant Mol. Biol. 25:855864.
7. Bretscher, A. P., and, D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133:763768.
8. Bycroft, M.,, A., Bateman, J., Clarke,, S. J., Hamill, R., Sandford, R., L. Thomas, and, C. Chothia. 1999. The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J. 18:297305.
9. Carrero-Lérida, J.,, A. Moraleda-Muñoz,, R. García-Hernández,, J. Pérez, and, J., Muñoz-Dorado. 2005. PhoR1-PhoP1, a third two-component system of the family PhoRP from Myxococcus xanthus: role in development. J. Bacteriol. 187:49764983.
10. Chang, C.,, A. Mooser,, A. Pluckthun, and, A. Wlodawer. 2001. Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. J. Biol. Chem. 276:2753527540.
11. Cho, K., and, D. R. Zusman. 1999. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34:268281.
12. Diodati, M. E.,, F. Ossa,, N. B. Caberoy,, I. R. Jose,, W. Hiraiwa,, M. M. Igo,, M. Singer, and, A. G. Garza. 2006. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J. Bacteriol. 188:17331743.
13. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick, and, P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641644.
14. Egloff, M., P., P., T. W. Cohen,, P. Reinemer, and, D. Barford. 1995. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J. Mol. Biol. 254:942959.
15. Erickson, J. W., and, C. A. Gross. 1989. Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev. 3:14621471.
16. Foe, L. G., and, R. G. Kemp. 1982. Properties of phospho and dephospho forms of muscle phosphofructokinase. J. Biol. Chem. 257:63686372.
17. Frasch, S. C., and, M. Dworkin. 1996. Tyrosine phosphorylation in Myxococcus xanthus, a multicellular prokaryote. J. Bacteriol. 178:40844088.
18. Gill, R., E., M. Karlok, and, D. Benton. 1993. Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J. Bacteriol. 175:45384544.
19. Gilsdorf, J., R., C. F. Marrs, and, B. Foxman. 2004. Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect. Immun. 72:24572461.
20. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
21. Hanks, S., K., A., M. Quinn, and, T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:4252.
22. Hanks, S. K., and, T. Hunter. 1995. The eukaryotic protein kinase superfamily: kinase domain structure and classification. FASEB J. 9:576596.
23. Hanlon, W., A., M. Inouye, and, S. Inouye. 1997. Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol. Microbiol. 23:459471.
24. Inouye, S.,, R. Jain,, T. Ueki,, H. Nariya,, C. Y., Xu, M., Y. Hsu,, B. A. Fernandez-Luque,, J. Muñoz-Dorado, E. Farez-Vidal, and, M. Inouye. 2000. A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb. Comp. Genomics 5:103120.
25. Irish, V. F., and, A. Litt. 2005. Flower development and evolution: gene duplication, diversification and redeployment. Curr. Opin. Genet. Dev. 15:454460.
26. Jain, R., and, S. Inouye. 1998. Inhibition of development of Myxococcus xanthus by eukaryotic protein kinase inhibitors. J. Bacteriol. 180:65446550.
27. Jelsbak, L.,, M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
28. Kaneko, T.,, Y. Nakamura, C., P. Wolk,, T. Kuritz,, S. Sasamoto,, A. Watanabe,, M. Iriguchi,, A. Ishikawa,, K. Kawashima,, T. Kimura,, Y. Kishida,, M. Kohara,, M. Matsumoto,, A. Matsuno,, A. Muraki,, N. Nakazaki,, S. Shimpo,, M. Sugimoto,, M. Takazawa,, M. Yamada,, M. Yasuda, and, S. Tabata. 2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8:205213.
29. Kang, C., M., D., W. Abbott,, S. T. Park,, C. C. Dascher,, L. C. Cantley, and, R. N. Husson. 2005. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19:16921704.
30. Kemp, R., G., L., G. Foe, S., P. Latshaw,, R. A. Poorman, and, R. L. Heinrikson. 1981. Studies on the phosphorylation of muscle phosphofructokinase. J. Biol. Chem. 256:72827286.
31. Kimura, Y.,, Y. Mishima,, H. Nakano, and, K. Takegawa. 2002. An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress. J. Bacteriol. 184:35783585.
32. Laronde-LeBlanc, N., and, A. Wlodawer. 2005. The RIO kinases: an atypical protein kinase family required for ribo-some biogenesis and cell cycle progression. Biochim. Biophys. Acta 1754:1424.
33. Lee, P. C.,, T. Umeyama, and, S. Horinouchi. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43:14131430.
34. Linder, J. U., and, J. E. Schultz. 2003. The class III adenylyl cyclases: multi-purpose signalling modules. Cell. Signal. 15:10811089.
35. Mackay, J. P., and, M. Crossley. 1998. Zinc fingers are sticking together. Trends Biochem. Sci. 23:14.
36. Manning, G.,, D. B. Whyte, R. Martinez,, T. Hunter, and, S. Sudarsanam. 2002. The protein kinase complement of the human genome. Science 298:19121934.
37. Moraleda-Muñoz,, A., J. Carrero-Lérida,, J. Pérez, and, J. Muñoz-Dorado. 2003. Role of two novel two-component regulatory systems in development and phosphatase expression in Myxococcus xanthus. J. Bacteriol. 185:13761383.
38. Muñoz-Dorado, J.,, S. Inouye, and, M. Inouye. 1991. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67:9951006.
39. Nariya, H., and, S. Inouye. 2002. Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus. Mol. Microbiol. 46:13531366.
40. Nariya, H., and, S. Inouye. 2003. An effective sporulation of Myxococcus xanthus requires glycogen consumption via Pkn4-activated 6-phosphofructokinase. Mol. Microbiol. 49:517528.
41. Nariya, H., and, S. Inouye. 2005a. factors for the Pkn4 kinase cascade in regulating 6-phosphofructokinase in Myxococcus xanthus. Mol. Microbiol. 56:13141328.
42. Nariya, H., and, S. Inouye. 2005b. Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol. Microbiol. 58:367379.
43. Nariya, H., and, S. Inouye. 2005c. Factors that modulate the Pkn4 kinase cascade in Myxococcus xanthus. J. Mol. Micro-biol. Biotechnol. 9:147153.
44. Nariya, H., and, S. Inouye. 2006. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol. Microbiol. 60:12051217.
45. Ohno, S. 1999. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin. Cell Dev. Biol. 10:517522.
46. Pao, S., S., I., T. Paulsen, and, M. H. Saier, Jr. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:134.
47. Petrickova, K., and, M. Petricek. 2003. Eukaryotic-type protein kinases in Streptomyces coelicolor: variation on a common theme. Microbiology 149:16091621.
48. Pham, V. D.,, C. W. Shebelut,, I. R.Jose,, D. A. Hodgson,, D. E. Whitworth, and, M. Singer. 2006. The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus. Microbiology 152:16091620.
49. Schuster-Bockler,, B.,, J. Schultz, and, S. Rahmann. 2004. HMM Logos for visualization of protein families. BMC Bioinformatics 5:715.
50. Shi, L.,, M. Potts, and, P. J. Kennelly. 1998. The serine, threo-nine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22:229253.
51. Shi, L. 2004. Manganese-dependent protein O-phosphatases in prokaryotes and their biological functions. Front. Biosci. 9:13821397.
52. Stein, E., A., K., Cho, P., I. Higgs, and, D. R. Zusman. 2006. Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol. Microbiol. 60:14141431.
53. Steinbüchel,, A., E. Hustede,, M. Liebergesell,, U. Pieper,, A. Timm, and, H. Valentin. 1992. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol. Rev. 9:217230.
54. Stock, A., M., V., L. Robinson, and, P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183215.
55. Sun, H., and, W. Shi. 2001. Analyses of mrp genes during Myxococcus xanthus development. J. Bacteriol. 183:67336739.
56. Thomasson, B.,, J. Link,, A. G. Stassinopoulos,, N. Burke,, L. Plamann, and, P. L. Hartzell. 2002. MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol. Microbiol. 46:13991413.
57. Tojo, N.,, S. Inouye, and, T. Komano. 1993. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J. Bacteriol. 175:45454549.
58. Treuner-Lange,, A., M., J. Ward, and, D. R. Zusman. 2001. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development. Mol. Microbiol. 40:126140.
59. Trudeau,, K., G., M., J. Ward, and, D. R. Zusman. 1996. Identification and characterization of FrzZ, a novel response regulator necessary for swarming and fruiting-body formation in Myxococcus xanthus. Mol. Microbiol. 20:645655.
60. Udo, H.,, C. K. Lam,, S. Mori,, M. Inouye, and, S. Inouye. 2000. Identification of a substrate for Pkn2, a protein Ser/Thr kinase from Myxococcus xanthus by a novel method for substrate identification. J. Mol. Microbiol. Biotechnol. 2:557563.
61. Udo, H., J. Muñoz-Dorado,, M. Inouye, and, S. Inouye. 1995. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. Genes Dev. 9:972983.
62. Udo, H., M. Inouye, and, S. Inouye. 1996. Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus. J. Bacteriol. 178:66476649.
63. Udo, H., M. Inouye, and, S. Inouye. 1997. Biochemical characterization of Pkn2, a protein Ser/Thr kinase from Myxococcus xanthus, a Gram-negative developmental bacterium. FEBS Lett. 400:188192.
64. Ueki, T., and, S. Inouye. 2003. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:87828787.
65. Vijay, K.,, M. S. Brody,, E. Fredlund, and, C. W. Price. 2000. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis. Mol. Microbiol. 35:180188.
66. Villarino, A.,, R. Duran,, A. Wehenkel,, P. Fernandez,, P. England,, P. Brodin,, S. T. Cole,, U. Zimny-Arndt,, P. R. Jungblut,, C. Cervenansky, and, P. M. Alzari. 2005. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J. Mol. Biol. 350:953963.
67. Walburger, A., A., Koul, G. Ferrari,, L. Nguyen,, C. Prescianotto-Baschong,, K. Huygen,, B. Klebl,, C. Thompson,, G. Bacher, and, J. Pieters. 2004. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:18001804.
68. Wang, L., Y., P. Sun,, W. L. Chen,, J., H. Li, and, C. C. Zhang. 2002. Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyano-bacterium Anabaena sp. strain PCC 7120. FEMS Microbiol. Lett. 217:155165.
69. Weinberg, R. A., and, D. R. Zusman. 1990. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus. J. Bacteriol. 172:22942302.
70. Yajko, D. M., and, D. R. Zusman. 1978. Changes in cyclic AMP levels during development in Myxococcus xanthus. J. Bacteriol. 133:15401542.
71. Yang, X.,, C. M. Kang,, M. S. Brody, and, C. W. Price. 1996. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev. 10:22652275.
72. Zhang, W., and, L. Shi. 2004a. Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes. Microbiology 150:22472256.
73. Zhang, W., and, L. Shi. 2004b. Evolution of the PPM-family protein phosphatases in Streptomyces: duplication of catalytic domain and lateral recruitment of additional sensory domains. Microbiology 150:41894197.
74. Zhang, W.,, M. Inouye, and, S. Inouye. 1996. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol. Microbiol. 20:435447.

Tables

Generic image for table
Table 1

List of PSTK genes

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Generic image for table
Table 2

Developmental phenotypes and motility of mutants

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11
Generic image for table
Table 3

List of protein phosphatases

Citation: Inouye S, Nariya H, Muñoz-Dorado J. 2008. 11 Protein Ser/Thr Kinases and Phosphatases in , p 191-210. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error