1887

13 Composition, Structure, and Function of the Cell Envelope

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

13 Composition, Structure, and Function of the Cell Envelope, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap13-2.gif

Abstract:

This chapter covers in detail the polysaccharide-containing components of the cell envelope including the peptidoglycan (PG), lipopolysaccharide (LPS), extracellular matrix (ECM), and capsular exopolysaccharide (EPS). First, the PG was associated with substantial amounts of glycine, serine, and glucose. Second, the vegetative cell wall PG was suggested to be discontinuous in that whole sacculi were not isolated and trypsin and sodium dodecyl sulfate were able to completely disassociate the PG. At least two factors regulate MBHA accumulation. First, transcription, which is σ-54 dependent, increases during development. Second, the stability of the mRNA is increased during development. Interestingly, all of the LPS mutants identified by the authors' two laboratories mapped to three loci: two LPS O-antigen loci and one LPS core locus. The carbohydrate composition of wild-type LPS consists of glucose, mannose, rhamnose, arabinose, xylose, galactosamine, glucosamine, KDO (2-keto-3-deoxyoctulosonic acid), and 3-O-methylpentose and 6-O-methylgalactosamine. Signal perception by the Dif pathway involves Tfp. First, Tfp was found to be required for EPS production in . Second, Dif proteins function downstream of Tfp as demonstrated by genetic epistasis tests. Finally, Tfp do not appear to function as either exogenous or endogenous signals for the Dif pathway. Preliminary biochemical studies indicated that EPS contains at least five monosaccharides: galactose, glucosamine, glucose, rhamnose, and xylose. Studies of pili focus on their involvement in S-motility.

Citation: Yang Z, Duan X, Esmaeiliyan M, Kaplan H. 2008. 13 Composition, Structure, and Function of the Cell Envelope, p 229-240. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch13

Key Concept Ranking

Outer Membrane Proteins
0.47099432
Sodium Dodecyl Sulfate
0.42294702
Type IV Pili
0.41431543
0.47099432
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Chain-like strand in the periplasm and the structural model. (a) Single strand fragment associated with a membrane fragment (MF). The ring elements (arrowheads) stand oblique to the plane of the carbon support. Inset: ring elements (circle) and central elongated elements (dots) are shown at higher magnification; arrow indicates the spoke-like central mass. Bar, 50 nm (inset, 30 nm). (b). Three-dimensional model of the location of strands within the cell wall of . These strands are proposed to be inserted between the flexible peptidoglycan sacculus and the outer membrane. RE, ring element, framed; EE, elongated element; CM, cytoplasmic membrane; OM, outer membrane; cema, central mass; pm, peripheral mass. Adapted from Freese et al., 1997.

Citation: Yang Z, Duan X, Esmaeiliyan M, Kaplan H. 2008. 13 Composition, Structure, and Function of the Cell Envelope, p 229-240. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

ECM visualized by different EM techniques. (A and B) Transmission EM micrographs prepared either by spray-freezing freeze substitution (A) or by staining with lanthanum and fixation with glutaraldehyde (B). (C and D) SEM images at different magnifications. Samples in panels C and D were fixed with glutaraldehyde and coated with platinum. Fig. 2A from Kim et al., 1999; Fig. 2B from Merroun et al., 2003; Fig. 2C and D from Behmlander and Dworkin, 1991.

Citation: Yang Z, Duan X, Esmaeiliyan M, Kaplan H. 2008. 13 Composition, Structure, and Function of the Cell Envelope, p 229-240. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model depicting the regulation of EPS production in by Tfp and the Dif pathway. Demonstrated interactions are indicated by solid lines, and proposed interactions are indicated by dashed lines. Arrows and bars indicate positive and negative regulation, respectively. See the text for details of the model. Adapted from Black et al., 2006.

Citation: Yang Z, Duan X, Esmaeiliyan M, Kaplan H. 2008. 13 Composition, Structure, and Function of the Cell Envelope, p 229-240. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch13
1. Arnold, J. W., and, L. J. Shimkets. 1988a. Inhibition of cell-cell interactions in Myxococcus xanthus by Congo red. J. Bacteriol. 170:57655770.
2. Arnold, J. W., and, L. J. Shimkets. 1988b. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170:57715777.
3. Ashton, A. 1993. Structural Studies of the Lipopolysaccha-ride from Myxococcus xanthus and Lipopolysaccharide Mutants. Ph.D. thesis. University of Minnesota, Minneapolis.
4. Atrich, A.,, G. Bacher,, G. Allmaier,, M. P. Williamson, and, S. J. Foster. 1999. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J. Bacteriol. 181:39563966.
5. Bayan, N.,, I., Guilvout, and, A. P. Pugsley. 2006. Secretins take shape. Mol. Microbiol. 60:14.
6. Behmlander, R. M., and, M. Dworkin. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173:78107820.
7. Behmlander, R. M., and, M. Dworkin. 1994a. Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:63046311.
8. Behmlander, R. M., and, M. Dworkin. 1994b. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:62956303.
9. Behrens, S. 2003. Periplasmic chaperones—preservers of subunit folding energy for organelle assembly. Cell 113:556557.
10. Bellenger, K.,, X. Ma,, W. Shi, and, Z. Yang. 2002. A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis. J. Bacteriol. 184:56545660.
11. Black, W. P., and, Z. Yang. 2004. Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J. Bacteriol. 186:10011008.
12. Black, W. P.,, Q. Xu, and, Z. Yang. 2006. Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol. Microbiol. 61:447456.
13. Bos, M. P., and, J. Tommassen. 2004. Biogenesis of the Gram-negative bacterial outer membrane. Curr. Opin. Microbiol. 7:610616.
14. Bowden, M. G., and, H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30:275284.
15. Caberoy, N. B.,, R. D. Welch,, J. S., Jakobsen,, S. C., Slater, and, A. G. Garza. 2003. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J. Bacteriol. 185:60836094.
16. Craig, L.,, M. E. Pique, and, J. A. Tainer. 2004. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2:363378.
17. Cumsky, M., and, D. R. Zusman. 1979. Myxobacterial hemagglutinin: a development-specific lectin of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:55055509.
18. Dana, J. R., and, L. J. Shimkets. 1993. Regulation of cohesion-dependent cell interactions in Myxococcus xanthus. J. Bacteriol. 175:36363647.
19. Dobson, W. J., and, H. D. McCurdy. 1979. The function of fimbriae in Myxococcus xanthus. I. Purification and properties of M. xanthus fimbriae. Can. J. Microbiol. 25:11521160.
20. Dobson, W. J.,, H. D. McCurdy, and, T. H. MacRae. 1979. The function of fimbriae in Myxococcus xanthus. II. The role of fimbriae in cell-cell interactions. Can. J. Microbiol. 25:13591372.
21. Downard, J. S., and, D. R. Zusman. 1985. Differential expression of protein S genes during Myxococcus xanthus development. J. Bacteriol. 161:11461155.
22. Dworkin, M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. Bioessays 21:590595.
23. Dworkin, M., and, S. M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146:243244.
24. Dwyer, M. A., and, G. J. Hellinga. 2004. Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr. Opin. Struct. Biol. 14:495504.
25. Fink, J. M., and, J. F. Zissler. 1989. Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171:20282032.
26. Fink, J. M.,, M. Kalos, and, J. F. Zissler. 1989. Isolation of cell surface antigen mutants of Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171:20332041.
27. Freese, A.,, H. Reichenbach, and, H. Lunsdorf. 1997. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus. J. Bacteriol. 179:12461252.
28. Gill, J.,, E. Stellwag, and, M. Dworkin. 1985. Monoclonal antibodies against cell-surface antigens of developing cells of Myxococcus xanthus. Ann. Inst. Pasteur. Microbiol. 136A:1118.
29. Gill, J. S., and, M. Dworkin. 1986. Cell surface antigens during submerged development of Myxococcus xanthus examined with monoclonal antibodies. J. Bacteriol. 168:505511.
30. Guo, D.,, Y. Wu, and, H. B. Kaplan. 2000. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J. Bacteriol. 182:45644571.
31. Guo, D.,, M. G. Bowden,, R. Pershad, and, H. B. Kaplan. 1996. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J. Bacteriol. 178:16311639.
32. Hillesland, K. L., and, G. J. Velicer. 2005. Resource level affects relative performance of the two motility systems of Myxococcus xanthus. Microb. Ecol. 49:558566.
33. Hodgkin, J., and, D. Kaiser. 1979a. Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol. Gen. Genet. 171:177191.
34. Hodgkin, J., and, D. Kaiser. 1979b. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167176.
35. Jacobs, C.,, L. J. Huang,, E. Bartowsky,, S. Normark, and, J. T. Park. 1994. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J. 13:46844694.
36. Janssen, G. R., and, M. Dworkin. 1985. Cell-cell interactions in developmental lysis of Myxococcus xanthus. Dev. Biol. 112:194202.
37. Johnson, Y. R., and, D. White. 1972. Myxospore formation in Myxococcus xanthus: chemical changes in the cell wall during cellular morphogenesis. J. Bacteriol. 112:849855.
38. Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:59525956.
39. Kaplan, H. B.,, A. Kuspa, and, D. Kaiser. 1991. Suppressors that permit A-signal-independent developmental gene expression in Myxococcus xanthus. J. Bacteriol. 173:14601470.
40. Kearns, D. B.,, P. J. Bonner,, D. R. Smith, and, L. J. Shimkets. 2002. An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J. Bacteriol. 184:16781684.
41. Killeen, K. P., and, D. R. Nelson. 1988. Acceleration of starvation- and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus. J. Bacteriol. 170:52005207.
42. Kim, S. H.,, S. Ramaswamy, and, J. Downard. 1999. Regulated exopolysaccharide production in Myxococcus xanthus. J. Bacteriol. 181:14961507.
43. Kimura, Y.,, S. Ishida,, H. Matoba, and, N. Okahisa. 2004. RppA, a transducer homologue, and MmrA, a multidrug transporter homologue, are involved in the biogenesis and/or assembly of polysaccharide in Myxococcus xanthus. Microbiology 150:631639.
44. Kinscherf, T. G., and, D. K. Willis. 2002. Global regulation by gidA in Pseudomonas syringae. J. Bacteriol. 184:22812286.
45. Kirby, J. R., and, D. R. Zusman. 2003. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:20082013.
46. Lancero, H.,, N. B. Caberoy,, S. Castaneda,, Y. Li,, A. Lu,, D. Dutton,, X. Y. Duan,, H. B. Kaplan,, W. Shi, and, A. G. Garza. 2004. Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiology 150:40854093.
47. Li, Y.,, H. Sun,, X. Ma,, A. Lu,, R. Lux,, D. Zusman, and, W. Shi. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:54435448.
48. Lomovskaya, O., and, M. Totrov. 2005. Vacuuming the periplasm. J. Bacteriol. 187:18791883.
49. Lu, A.,, K. Cho,, W. P. Black,, X. Y. Duan,, R. Lux,, Z. Yang,, H. B. Kaplan,, D. R. Zusman, and, W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206220.
50. Lunsdorf, H., and, H. Reichenbach. 1989. Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). Microbiology 135:16331641.
51. Lunsdorf, H., and, H. U. Schairer. 2001. Frozen motion of gliding bacteria outlines inherent features of the motility apparatus. Microbiology 147:939947.
52. MacNeil, S. D.,, A. Mouzeyan, and, P. L. Hartzell. 1994. Genes required for both gliding motility and development in Myxococcus xanthus. Mol. Microbiol. 14:785795.
53. Maier, B.,, L. Potter,, M. So,, C. D. Long,, H. S. Seifert, and, M. P. Sheetz. 2002. Single pilus motor forces exceed 100 pN. Proc. Natl. Acad. Sci. USA 99:1601216017.
54. Maier, B.,, M. Koomey, and, M. P. Sheetz. 2004. A force-dependent switch reverses type IV pilus retraction. Proc. Natl. Acad. Sci. USA 101:1096110966.
55. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56:289314.
56. Meibom, K. L.,, M. Blokesch,, N. A. Dolganov,, C. Y. Wu, and, G. K. Schoolnik. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:18241827.
57. Merroun, M. L.,, K. Ben Chekroun,, J. M. Arias, and, M. T. Gonzalez-Munoz. 2003. Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccha-ride observation. Chemosphere 52:113120.
58. Merz, A. J.,, M. So, and, M. P. Sheetz. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98102.
59. Mogensen, J. E., and, D. E. Otzen. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57:326346.
60. Nelson, D. R.,, M. G. Cumsky, and, D. R. Zusman. 1981. Localization of myxobacterial hemagglutinin in the periplasmic space and on the cell surface of Myxococcus xanthus during developmental aggregation. J. Biol. Chem. 256:1258912595.
61. Nelson, D. R., and, K. P. Killeen. 1986. Heat shock proteins of vegetative and fruiting Myxococcus xanthus cells. J. Bacteriol. 168:11001106.
62. Nudleman, E., and, D. Kaiser. 2004. Pulling together with type IV pili. J. Mol. Microbiol. Biotechnol. 7:5262.
63. Nudleman, E.,, D. Wall, and, D. Kaiser. 2005. Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309:125127.
64. Nudleman, E.,, D. Wall, and, D. Kaiser. 2006. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60:1629.
65. O’Connor, K. A., and, D. R. Zusman. 1997. Starvation-independent sporulation in Myxococcus xanthus involves the pathway for β-lactamase induction and provides a mechanism for competitive cell survival. Mol. Microbiol. 24:839850.
66. O’Connor, K. A., and, D. R. Zusman. 1999. Induction of β-lactamase influences the course of development in Myxococcus xanthus. J. Bacteriol. 181:63196331.
67. Park, J. T. 1995. Why does Escherichia coli recycle its cell wall peptides? Mol. Microbiol. 17:421426.
68. Pelling, A. E.,, Y. Li,, W. Shi, and, J. K. Gimzewski. 2005. Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc. Natl. Acad. Sci. USA 102:64846489.
69. Pham, V. D.,, C. W. Shebelut,, B. Mukherjee, and, M. Singe. 2005. RasA is required for Myxococcus xanthus development and social motility. J. Bacteriol. 187:68456848.
70. Pizarro-Cerda, J., and, P. Cossart. 2006. Bacterial adhesion and entry into host cells. Cell 124:715727.
71. Raetz, C. R., and, C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635700.
72. Ramaswamy, S.,, M. Dworkin, and, J. Downard. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J. Bacteriol. 179:28632871.
73. Ramboarina, S.,, P. J. Fernandes,, S. Daniell,, S. Islam,, P. Simpson,, G. Frankel,, F. Booy,, M. S. Donnenberg, and, S. Matthews. 2005. Structure of the bundle-forming pilus from enteropathogenic Escherichia coli. J. Biol. Chem. 280:4025240260.
74. Rivera, J. J. 2002. An Extracytoplasmic Function Sigma Factor Operon Regulates Myxococcus xanthus Developmental Gene Expression. Ph.D. thesis. University of Texas, Houston.
75. Rodriguez, A. M., and, A. M. Spormann. 1999. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181:43814390.
76. Romeo, J. M.,, B. Esmon, and, D. R. Zusman. 1986. Nucleotide sequence of the myxobacterial hemagglutinin gene contains four homologous domains. Proc. Natl. Acad. Sci. USA 83:63326336.
77. Romeo, J. M., and, D. R. Zusman. 1987. Cloning of the gene for myxobacterial hemagglutinin and isolation and analysis of structural gene mutations. J. Bacteriol. 169:38013808.
78. Romeo, J. M., and, D. R. Zusman. 1991. Transcription of the myxobacterial hemagglutinin gene is mediated by a sigma 54-like promoter and a cis-acting upstream regulatory region of DNA. J. Bacteriol. 173:29692976.
79. Romeo, J. M., and, D. R. Zusman. 1992. Determinants of an unusually stable mRNA in the bacterium Myxococcus xanthus. Mol. Microbiol. 6:29752988.
80. Rosenbluh, A., and, M. Eisenbach. 1992. Effect of mechanical removal of pili on gliding motility of Myxococcus xanthus. J. Bacteriol. 174:54065413.
81. Schlieker, C.,, A. Mogk, and, B. Bukau. 2004. A PDZ switch for a cellular stress response. Cell 117:417419.
82. Sha, J.,, E. V. Kozlova,, A. A. Fadl,, J. P. Olano,, C. W. Houston,, J. W. Peterson, and, A. K. Chopra. 2004. Molecular characterization of a glucose-inhibited division gene, gidA, that regulates cytotoxic enterotoxin of Aeromonas hydrophila. Infect. Immun. 72:10841095.
83. Shimkets, L., and, T. W. Seale. 1975. Fruiting-body formation and myxospore differentiation and germination in Mxyococcus xanthus viewed by scanning electron microscopy. J. Bacteriol. 121:711720.
84. Shimkets, L. J., and, D. Kaiser. 1982a. Induction of coordinated cell movement in Myxococcus xanthus. J. Bacteriol. 152:451461.
85. Shimkets,, L. J., and, D. Kaiser. 1982b. Murein components rescue developmental sporulation of Myxococcus xanthus. J. Bacteriol. 152:462470.
86. Shimkets, L. J. 1986a. Role of cell cohesion in Myxococcus xanthus fruiting body formation. J. Bacteriol. 166:842848.
87. Shimkets, L. J. 1986b. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166:837841.
88. Skerker, J. M., and, H. C. Berg. 2001. Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA 98:69016904.
89. Sourjik, V., and, R. Schmitt. 1996. Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol. 22:427436.
90. Sourjik, V., and, R. Schmitt. 1998. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:23272335.
91. Sun, H.,, D. R. Zusman, and, W. Shi. 2000. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10:11431146.
92. Thomasson, B.,, J. Link,, A. G. Stassinopoulos,, N. Burke, L. Plamann, and, P. L. Hartzell. 2002. MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol. Microbiol. 46:13991413.
93. Vollmer, W., and, J. V. Holtje. 2004. The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s). J. Bacteriol. 186:59785987.
94. Wall, D.,, S. S. Wu, and, D. Kaiser. 1998. Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J. Bacteriol. 180:759761.
95. Wall, D., and, D. Kaiser. 1999. Type IV pili and cell motility. Mol. Microbiol. 32:110.
96. Wall, D.,, P. E. Kolenbrander, and, D. Kaiser. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181: 2433.
97. Webre, D. J.,, P. M. Wolanin, and, J. B. Stock. 2003. Bacterial chemotaxis. Curr. Biol. 13:R47R49.
98. Weimer, R. M.,, C. Creighton,, A. Stassinopoulos,, P. Youderian, and, P. L. Hartzell. 1998. A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus. J. Bacteriol. 180:53575368.
99. White, D.,, M. Dworkin, and, D. J. Tipper. 1968. Peptidoglycan of Myxococcus xanthus: structure and relation to morphogenesis. J. Bacteriol. 95:21862197.
100. White, D. J., and, P. L. Hartzell. 2000. AglU, a protein required for gliding motility and spore maturation of Myxococcus xanthus, is related to WD-repeat proteins. Mol. Microbiol. 36:662678.
101. White, D. J.,, R. Merod,, B. Thomasson, and, P. L Hartzell. 2001. GidA is an FAD-binding protein involved in development of Myxococcus xanthus. Mol. Microbiol. 42:503517.
102. Wu, S. S., and, D. Kaiser. 1995 Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547558.
103. Wu, S. S., and, D. Kaiser. 1996. Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J. Bacteriol. 178:58175821.
104. Wu, S. S.,, J. Wu, and, D. Kaiser. 1997. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23:109121.
105. Wu, S. S.,, J. Wu,, Y. L. Cheng, and, D. Kaiser. 1998. The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol. Microbiol. 29:12491261.
106. Xu, D.,, C. Yang, and, H. B. Kaplan. 1998. Myxococcus xanthus sasN encodes a regulator that prevents developmental gene expression during growth. J. Bacteriol. 180:62156223.
107. Xu, Q.,, W. P. Black,, S. M. Ward, and, Z. Yang. 2005. Nitratedependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera. J. Bacteriol. 187:64106418.
108. Yang, C., and, H. B. Kaplan. 1997. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J. Bacteriol. 179:77597767.
109. Yang, Z.,, Y. Geng, and, W. Shi. 1998a. A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation. J. Bacteriol. 180:218224.
110. Yang, Z.,, Y. Geng,, D. Xu,, H. B. Kaplan, and, W. Shi. 1998b. A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol. Microbiol. 30:11231130.
111. Yang, Z.,, X. Ma, L. Tong,, H. B. Kaplan,, L. J. Shimkets, and, W. Shi. 2000. Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182:57935798.
112. Yang, Z., and, Z. Li. 2005. Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system. Arch. Microbiol. 183:243252.
113. Youderian, P. A., and, P. Hartzell. 2006. Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics 172:13971410.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error