1887

14 Metabolic Pathways Relevant to Predation, Signaling, and Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

14 Metabolic Pathways Relevant to Predation, Signaling, and Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap14-2.gif

Abstract:

The first portion of this chapter, entitled “Catabolic Pathways,” deals with the catabolism of amino acids and lipids, as they are the principal carbon and energy sources derived from prey bacteria. The second portion of the chapter, entitled “Anabolic Pathways,” highlights the synthesis of lipids because of their unusual chemical structures in myxobacteria, and also the spore-specific components trehalose and ether lipids. Most myxobacteria, including , can catabolize prey microorganisms. utilizes amino acids and lipids as carbon and energy sources, incorporates purines and pyrimidines via salvage pathways, and fails to utilize sugars. In most cases there is excellent agreement between the presence of a particular amino acid catabolic pathway and the ability of that amino acid to stimulate growth in defined and minimal media. Lipid oxidation has been demonstrated by C-labeling experiments in and methyloleate feeding in . Fatty acids are usually degraded by β oxidation, where two carbon acetate units are sequentially removed from the carboxyl end of the fatty acid, also known as the Δ terminus, as opposed to the methyl end or ω terminus. Monosaccharides are used for exopolysaccharide, peptidoglycan, and lipopolysaccharide biosynthesis. In , trehalose is degraded to glucose by a periplasmic trehalase; no homolog exists in .

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14

Key Concept Ranking

Unsaturated Fatty Acids
0.56196284
Fatty Acid Biosynthesis
0.46366325
Fatty Acids
0.4576773
Fatty Acid Degradation
0.4370585
Fatty Acid Desaturase
0.4326879
0.56196284
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Amino acid catabolic reactions 1 through 5 (alanine to cysteine). See the text.

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Amino acid catabolic reactions 6 through 9 (glutamine to glycine). See the text.

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Amino acid catabolic reactions 10 through 12 (histidine to methionine). See the text.

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Amino acid catabolic reactions 13 through 16 (phenylalanine to threonine). See the text.

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Fatty acid biosynthesis is a cyclic process. Condensation of malonyl-ACP with the growing chain by FabB, FabF, or FabH results in chain extension by two carbons. The β-keto group is reduced to a β-hydroxyl group by FabG, which is then dehydrated to a -∆ unsaturated bond by FabZ or FabA. This bond is reduced to full saturation by FabI or isomerized to -∆ and preserved in later chain extension to create unsaturated fatty acids.

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

A putative fatty acid biosynthesis operon in . The operon begins with (MXAN4772), (MXAN4771), (MXAN4770), (MXAN4769), and (MXAN4768). This operon closely resembles the fatty acid operon found in . They differ in that the operon contains after and the gene upstream of the operon is transcribed in the same direction as opposed to the opposite orientation found in .

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

A second putative fatty acid biosynthesis cluster operon in . The operon contains 10 genes (MXAN6392 through 6401): , a β-lactamase gene, , , and .

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Acyl chains can be linked to the glycerol backbone of certain lipids in three ways. First is the ester linkage; this is the most common linkage type. Second is the ether linkage, requiring a fatty alcohol instead of a fatty acid. Third is the alk-1-enyl linkage, where an unsaturation immediately follows the ether bond.

Citation: Curtis P, Shimkets L. 2008. 14 Metabolic Pathways Relevant to Predation, Signaling, and Development, p 241-258. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch14
1. Alonso-Casajus, N.,, D. Dauvillee,, A. M. Viale,, F. J. Munoz,, E. Baroja-Fernandez,, M. T. Moran-Zorzano,, G. Eydallin,, S. Ball, and, J. Pozueta-Romero. 2006. Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J. Bacteriol. 188:52665272.
2. Avadhani, M.,, R. Geyer,, D. C. White, and, L. J. Shimkets. 2006. Lysophosphatidylethanolamine is a substrate for the short-chain alcohol dehydrogenase SocA from Myxococcus xanthus. J. Bacteriol. 188:85438550.
3. Behmlander, R. M., and, M. Dworkin. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173:78107820.
4. Benaissa, M.,, J. Vieyres-Lubochinsky, R. Odeide, and, B. Lubochinsky. 1994. Stimulation of inositide degradation in clumping Stigmatella aurantiaca. J. Bacteriol. 176:13901393.
5. Bode, H. B.,, J. S. Dickschat,, R. M. Kroppenstedt,, S. Schulz, and, R. Müller. 2005. Biosynthesis of iso-fatty acids in myxobacteria: iso-even fatty acids are derived by alpha-oxidation from iso-odd fatty acids. J. Am. Chem. Soc. 127:532533.
6. Bode, H. B.,, M. W. Ring,, D. Kaiser,, A. C. David,, R. M. Kroppenstedt, and, G. Schwar. 2006a. Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation. J. Bacteriol. 188:56325634.
7. Bode, H. B.,, M. W. Ring,, G. Schwar,, R. M. Kroppenstedt,, D. Kaiser, and, R. Muller. 2006b. 3-Hydroxy-3-methylglutarylcoenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J. Bacteriol. 188:65246528.
8. Bretscher, A. P., and, D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133:763768.
9. Caillon, E.,, B. Lubochinsky, and, D. Rigomier. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153:13481351.
10. Campbell, J. W.,, R. M. Morgan-Kiss, and, J. E. Cronan,, Jr. 2003. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol. Microbiol. 47:793805.
11. Caspi, R.,, H. Foerster,, C. A. Fulcher,, R. Hopkinson,, J. Ingraham,, P. Kaipa,, M. Krummenacker,, S. Paley,, J. Pick,, S. Y. Rhee,, C. Tissier,, P. Zhang, and, P. D. Karp. 2006. Meta-Cyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34:D511D516.
12. Clark, D. P., and, J. E. Cronan. 1996. Two-carbon compounds and fatty acids as carbon sources, p. 343357. In F. C. Neidhardt, R. Curtiss, J. L. Ingram, E. C. C. Lin, K. B. Low, and B. Magasanik (ed.), Escherichia coli and Salmonella. ASM Press, Washington, DC.
13. Cronan, J. E., and, C. O. Rock. 1996. Biosynthesis of membrane lipids, p. 612636. In F. C. Neidhardt, R. Curtiss, J. L. Ingram, E. C. C. Lin, K. B. Low, and B. Magasanik (ed.), Escherichia coli and Salmonella. ASM Press, Washington, DC.
14. Cropp, T. A.,, A. A. Smogowicz,, E. W. Hafner,, C. D. Denoya,, H. A. McArthur, and, K. A. Reynolds. 2000. Fatty-acid biosynthesis in a branched-chain alpha-keto acid dehydrogenase mutant of Streptomyces avermitilis. Can. J. Microbiol. 46:506514.
15. Crowe, J. H.,, L. M. Crowe, and, D. Chapman. 1984. Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane. Arch. Biochem. Biophys. 232:400407.
16. Curtis, P. D.,, R. Geyer,, D. C. White, and, L. J. Shimkets. 2006. Novel lipids in Myxococcus xanthus and their role in chemo-taxis. Environ. Microbiol. 8:19351949.
17. Dickschat, J. S.,, H. B. Bode,, R. M. Kroppenstedt,, R. Müller, and, S. Schulz. 2005. Biosynthesis of iso-fatty acids in myxo-bacteria. Org. Biomol. Chem. 3:28242831.
18. Downard, J.,, S. V. Ramaswamy, and, K. S. Kil. 1993. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J. Bacteriol. 175:77627770.
19. Downard, J., and, D. Toal. 1995. Branched-chain fatty acids: the case for a novel form of cell-cell signalling during Myxococcus xanthus development. Mol. Microbiol. 16:171175.
20. Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84:250257.
21. Eckau, H.,, D. Dill, and, H. Budzikiewicz. 1984. Novel ceramides from Cystobacter fuscus (Myxobacterales). Z. Naturforsch. C J. Biosci. 39:19.
22. Erni, B.,, B. Zanolari, and, H. P. Kocher. 1987. The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J. Biol. Chem. 262:52385247.
23. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
24. Hamberg, M.,, I. Ponce de Leon,, A. Sanz, and, C. Castresana. 2002. Fatty acid alpha-dioxygenases. Prostaglandins Other Lipid Mediat. 68–69:363374.
25. Hannun, Y. A. 1994. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269:31253128.
26. Heath, R. J., and, C. O. Rock. 1996. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J. Biol. Chem. 271:2779527801.
27. Hemphill, H. E., and, S. A. Zahler. 1968a. Nutrition of Myxococcus xanthus FBa and some of its auxotrophic mutants. J. Bacteriol. 95:10111017.
28. Hemphill, H. E., and, S. A. Zahler. 1968b. Nutritional induction and suppression of fruiting in Myxococcus xanthus FBa. J. Bacteriol. 95:10181023.
29. Hubbard, P. A.,, X. Liang,, H. Schulz, and, J. J. Kim. 2003. The crystal structure and reaction mechanism of Escherichia coli 2, 4-dienoyl-CoA reductase. J. Biol. Chem. 278:3755337560.
30. Kearns, D. B.,, A. Venot,, P. J. Bonner,, B. Stevens,, G.-J Boons, and, L. J. Shimkets. 2001. Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering. Proc. Natl. Acad. Sci. USA 98:1399013994.
31. Kim, S. H.,, S. Ramaswamy, and, J. Downard. 1999. Regulated exopolysaccharide production in Myxococcus xanthus. J. Bacteriol. 181:14961507.
32. Kleinig, H. 1972. Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides. I. Isolation and composition. Biochim. Biophys. Acta 274:489498.
33. Klingsbichel, E. 1996. Esterase EstA from Pseudomonas marginata: Heterologous Expression, Biological, Biochemical, and Biocatalytical Characterization. Ph.D. thesis. Technical University of Graz, Graz, Austria.
34. Kuspa, A.,, L. Plamann, and, D. Kaiser. 1992. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174:33193326.
35. Lau, J.,, S. Frykman,, R. Regentin,, S. Ou,, H. Tsuruta, and, P. Licari. 2002. Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol. Bioeng. 78:280288.
36. Loebeck, M. E., and, H. P. Klein. 1956. Substrates for Myxococcus virescens with special reference to eubacterial fractions. J. Gen. Microbiol. 14:281289.
37. Lu, A.,, K. Cho,, W. P. Black,, X. Y. Duan,, R. Lux,, Z. Yang,, H. B. Kaplan,, D. R. Zusman, and, W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206220.
38. Mahmud, T.,, H. B. Bode,, B. Silakowski,, R. M. Kroppenstedt,, M. Xu,, S. Nordhoff,, G. Hofle, and, R. Müller. 2002. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria. J. Biol. Chem. 277:3276832774.
39. Mahmud, T.,, S. C. Wenzel,, E. Wan,, K. W. Wen,, H. B. Bode,, N. Gaitatzis, and, R. Müller. 2005. A biosynthetic pathway to isovaleryl-CoA in myxobacteria: the involvement of the mevalonate pathway. Chembiochem 6:322330.
40. McBride, M. J., and, J. C. Ensign. 1987a. Effects of intracellular trehalose content on Streptomyces griseus spores. J. Bacteriol. 169:49955001.
41. McBride, M. J., and, J. C. Ensign. 1987b. Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other actinomycetes. J. Bacteriol. 169:50025007.
42. McBride, M. J., and, D. R. Zusman. 1989. Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus. J. Bacteriol. 171:63836386.
43. Metz, J. G.,, M. R. Pollard,, L. Anderson,, T. R. Hayes, and, M. W. Lassner. 2000. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol. 122:635644.
44. Moraleda-Muñoz, A., and, L. J. Shimkets. 2007. Lipolytic enzymes in Myxococcus xanthus. J. Bacteriol. 189:30723080.
45. Moto, K.,, T. Yoshiga,, M. Yamamoto,, S. Takahashi,, K. Okano,, T. Ando,, T. Nakata, and, S. Matsumoto. 2003. Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc. Natl. Acad. Sci. USA 100:91569161.
46. Nagan, N., and, R. A. Zoeller. 2001. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40:199229.
47. Nariya, H., and, S. Inouye. 2002. Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus. Mol. Microbiol. 46:13531366.
48. Nariya, H., and, S. Inouye. 2003. An effective sporulation of Myxococcus xanthus requires glycogen consumption via Pkn4-activated 6-phosphofructokinase. Mol. Microbiol. 49:517528.
49. Nariya, H., and, S. Inouye. 2005. Modulating factors for the Pkn4 kinase cascade in regulating 6-phosphofructokinase in Myxococcus xanthus. Mol. Microbiol. 56:13141328.
50. Neidhardt, F. C., and, H. E. Umbarger. 1996. Chemical composition of Escherichia coli, p. 1316. In F. C. Neidhardt, R. Curtiss, J. L. Ingram, E. C. C. Lin, K. B. Low, and B. Magasanik (ed.), Escherichia coli and Salmonella. ASM Press, Washington, DC.
51. Ollis, D. L.,, E. Cheah,, M. Cygler,, B. Dijkstra,, F. Frolow,, S. M. Franken,, M. Harel,, S. J. Remington,, I. Silman,, J. Schrag, et al. 1992. The alpha/beta hydrolase fold. Protein Eng. 5:197211.
52. Orndorff, P. E., and, M. Dworkin. 1980. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J. Bacteriol. 141:914927.
53. Postma,, P. W.,, J. W. Lengeler, and, G. R. Jacobson. 1996. Phosphoenolpyruvate: carbohydrate phosphotransferase systems, p. 11491174. In F. C. Neidhardt, R. Curtiss, J. L. Ingram, E. C. C. Lin, K. B. Low, and B. Magasanik (ed.), Escherichia coli and Salmonella. ASM Press, Washington, DC.
54. Postma, P. W.,, J. W. Lengeler, and, G. R. Jacobson. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57:543594.
55. Reiser, S., and, C. Somerville. 1997. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J. Bacteriol. 179:29692975.
56. Ring, M. W.,, G. Schwar,, V. Thiel,, J. S. Dickschat,, R. M. Kroppenstedt,, S. Schulz, and, H. B. Bode. 2006. Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J. Biol. Chem. 281:3669136700.
57. Saffert, A.,, J. Hartmann-Schreier,, A. Schon, and, P. Schreier. 2000. A dual function alpha-dioxygenase-peroxidase and NAD(+) oxidoreductase active enzyme from germinating pea rationalizing alpha-oxidation of fatty acids in plants. Plant Physiol. 123:15451552.
58. Simunovic, V.,, F. C. Gherardini, and, L. J. Shimkets. 2003. Membrane localization of motility, signaling, and polyketide synthetase proteins in Myxococcus xanthus. J. Bacteriol. 185:50665075.
59. Stamm, I.,, F. Lottspeich, and, W. Plaga. 2005. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development. Mol. Microbiol. 56:13861395.
60. Stein, J., and, H. Budzikiewicz. 1988. Bacterial components .36. ceramide-1-phosphoethanolamines from Myxococcus stipitatus. Z. Naturforsch. B J. Chem. Sci. 43:10631067.
61. Styrvold, O. B., and, A. R. Strom. 1991. Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains: influence of amber suppressors and function of the periplasmic trehalase. J. Bacteriol. 173:11871192.
62. Toal, D. R.,, S. W. Clifton,, B. A. Roe, and, J. Downard. 1995. The esg locus of Myxococcus xanthus encodes the E1α and E1β subunits of a branched-chain keto acid dehydrogenase. Mol. Microbiol. 16:177189.
63. Tsai, W. C., and, C. A. Westby. 1978. Synthesis and salvage of purines during cellular morphogenesis of Myxococcus xanthus. J. Bacteriol. 136:582587.
64. Ueki, T., and, S. Inouye. 1998. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus. Genes Cells 3:371385.
65. Ware, J. C., and, M. Dworkin. 1973. Fatty acids of Myxococcus xanthus. J. Bacteriol. 115:253261.
66. Watson, B. F., and, M. Dworkin. 1968. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 96:14651473.
67. Weimar, J. D.,, C. C. DiRusso,, R. Delio, and, P. N. Black. 2002. Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/ AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. J. Biol. Chem. 277:2936929376.
68. Yang, Z.,, X. Ma,, L. Tong,, H. B. Kaplan,, L. J. Shimkets, and, W. Shi. 2000. Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182:57935798.
69. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49:555570.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error