1887

16 The Genomes of and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

16 The Genomes of and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap16-2.gif

Abstract:

This chapter discusses and compares the genomic sequences of DK1622 (hereafter referred to as DK1622 or strain DK1622) and DW4/3-1 (hereafter referred to as DW4/3-1 or strain DW4/3-1), two related aerobic, fruiting-body-forming myxobacteria. The structure and complexity of the fruiting body are the primary characteristics distinguishing it from DK1622, as well as the production of the signaling pheromone stigmolone, which may be analogous to the DK1622 quorum-sensing A-signal. Having the genome sequence of both organisms will greatly facilitate research into these and other myxobacteria-specific phenotypic traits. The DK1622 genome, initially sequenced to 4.5 coverage by Monsanto, was completed at The Institute for Genomic Research by additional random Sequencing. Both auto- and manual annotation were performed on the closed genome. Unlike most other prokaryotes, the myxobacteria exhibit social behavior and multicellular development. Such complex behavior is correlated with their large genomes. Gliding motility has also been extensively studied in DK1622, which, rather than swimming, hunts by gliding over the soil surface as a coordinated aggregation of thousands of cells, an essential element of its complex lifestyle. Myxobacteria feed by lysing cells of other bacteria and yeasts. Bioactive compounds synthesized and secreted through secondary metabolite biosynthetic gene clusters may aid predation and inhibit competition. The control of development in and is likely to be very similar based on the presence of DW4/3-1 orthologs to the genes controlling development in strain DK1622.

Citation: Ronning C, Nierman W. 2008. 16 The Genomes of and , p 285-298. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch16

Key Concept Ranking

Type IV Pili
0.43833646
0.43833646
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815677.ch16
1. Akiyama, T., and, T. Komano. 2003. Analysis of fruE, a novel developmental gene of Myxococcus xanthus. J. Mol. Microbiol. Biotechnol. 6:164173.
2. Bateman, A.,, L. Coin,, R. Durbin,, R. D. Finn,, V. Hollich,, S. Griffiths-Jones,, A. Khanna,, M. Marshall,, S. Moxon,, E. L. Sonnhammer,, D. J. Studholme,, C. Yeats, and, S. R. Eddy. 2004. The Pfam protein families database. Nucleic Acids Res. 32 (Database issue):D138D141.
3. Black, W. P., and, Z. Yang. 2004. Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J. Bacteriol. 186:10011008.
4. Bode, H. B.,, B. Zeggel,, B. Silakowski,, S. C. Wenzel,, H. Reichenbach, and, R. Muller. 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 47:471481.
5. Bonner, P. J.,, Q. Xu,, W. P. Black,, Z. Li,, Z. Yang, and, L. J. Shimkets. 2005. The Dif chemosensory pathway is directly involved in phosphatidylethanolamine sensory transduction in Myxococcus xanthus. Mol. Microbiol. 57:14991508.
6. Botella, J. A.,, F. J. Murillo, and, R. Ruiz-Vazquez. 1995. A cluster of structural and regulatory genes for light-induced carotenogenesis in Myxococcus xanthus. Eur. J. Biochem. 233:238248.
7. Bowden, M. G., and, H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30:275284.
8. Burchard, R. P., and, S. B. Hendricks. 1969. Action spectrum for carotenogenesis in Myxococcus xanthus. J. Bacterial. 97:11651168.
9. Cayuela, M. L.,, M. Elias-Arnanz,, M. Penalver-Mellado,, S. Padmanabhan, and, F. J. Murillo. 2003. The Stigmatella aurantiaca homolog of Myxococcus xanthus high-mobility-group A-type transcription factor CarD: insights into the functional modules of CarD and their distribution in bacteria. J. Bacteriol. 185:35273537.
10. Cervantes, M., and, F. J. Murillo. 2002. Role for vitamin B(12) in light induction of gene expression in the bacterium Myxococcus xanthus. J. Bacteriol. 184:22152224.
11. Chater, K. F. 1989. Multilevel regulation of Streptomyces differentiation. Trends Genet. 5:372377.
12. Cheng, Y. L.,, L. V. Kalman, and, D. Kaiser. 1994. The dsg gene of Myxococcus xanthus encodes a protein similar to translation initiation factor IF3.J. Bacteriol. 176:14271433.
13. Coudart, M. P. 1998. Independent patterns of expression of two alternative sigma factors, sigB and sigC, of the myxo-bacterium Stigmatella aurantiaca during development.Mol. Biol. Rep. 25:183188.
14. Downard, J.,, S. V. Ramaswamy, and, K. S. Kil. 1993. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development.J. Bacteriol. 175:77627770.
15. Fontes, M.,, L. Galbis-Martinez, and, F. J. Murillo. 2003. A novel regulatory gene for light-induced carotenoid synthesis in the bacterium Myxococcus xanthus. Mol. Microbiol. 47:561571.
16. Fontes, M.,, R. Ruiz-Vazquez, and, F. J. Murillo. 1993. Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light.EMBO J. 12:12651275.
17. Fraser, C. M.,, J. D. Gocayne,, O. White,, M. D. Adams,, R. A. Clayton,, R. D. Fleischmann,, C. J. Bult,, A. R. Kerlavage,, G. Sutton,, J. M. Kelley,, R. D. Fritchman,, J. F. Weidman,, K. V. Small,, M. Sandusky,, J. Fuhrmann,, D. Nguyen,, T. R. Utterback,, D. M. Saudek,, C. A. Phillips,, J. M. Merrick,, J. F. Tomb,, B. A. Dougherty,, K. F. Bott,, P. C. Hu,, T. S. Lucier,, S. N. Peterson,, H. O. Smith,, C. A. Hutchison III, and, J. C. Venter. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397403.
18. Gaitatzis, N.,, B. Silakowski,, B. Kunze,, G. Nordsiek,, H. Blocker,, G. Hofle, and, R. Muller. 2002. The biosynthesis of the aromatic myxobacterial electron transport inhibitor stigmatellin is directed by a novel type of modular polyketide synthase.J. Biol. Chem. 277:1308213090.
19. Galbis-Martinez, M.,, M. Fontes, and, F. J. Murillo. 2004. The high-mobility group A-type protein CarD of the bacterium Myxococcus xanthus as a transcription factor for several distinct vegetative genes.Genetics 167:15851595.
20. Gill, R. E.,, M. Karlok, and, D. Benton. 1993. Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling.J. Bacteriol. 175:45384544.
21. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome.Proc. Natl. Acad. Sci. USA 103:1520015205.
22. Gollop, R.,, M. Inouye, and, S. Inouye. 1991. Protein U, a late-developmental spore coat protein of Myxococcus xanthus, is a secretory protein.J. Bacteriol. 173:35973600.
23. Gronewold, T. M., and, D. Kaiser. 2001. The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol. Microbiol. 40:744756.
24. Guo, D.,, M. G. Bowden,, R. Pershad, and, H. B. Kaplan. 1996. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development.J. Bacteriol. 178:16311639.
25. Guo, D.,, Y. Wu, and, H. B. Kaplan. 2000. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression.J. Bacteriol. 182:45644571.
26. Haft, D. H.,, J. D. Selengut, and, O. White. 2003. The TIGRFAMs database of protein families. Nucleic Acids Res. 31:371373.
27. Heidelbach, M.,, H. Skladny, and, H. U. Schairer. 1993. Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 175:74797482.
28. Hodgkin, J., and, D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167176.
29. Hull, W. E.,, A. Berkessel, and, W. Plaga. 1998. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone. Proc. Natl. Acad. Sci. USA 95:1126811273.
30. Inouye, S.,, D. White, and, M. Inouye. 1980. Development of Stigmatella aurantiaca: effects of light and gene expression.J. Bacteriol. 141:13601365.
31. Kaiser, D. 2004. Signaling in myxobacteria. Annu. Rev. Microbiol. 58:7598.
32. Kaplan, H. B.,, A. Kuspa, and, D. Kaiser. 1991. Suppressors that permit A-signal-independent developmental gene expression in Myxococcus xanthus. J. Bacteriol. 173:14601470.
33. Kim, S. K., and, D. Kaiser. 1990. C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61:1926.
34. Kirby, J. R., and, D. R. Zusman. 2003. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:20082013.
35. Kleinig, H., and, H. Reichenbach. 1969. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). I. The minor carotenoids. Arch. Mikrobiol. 68:210217.
36. Kleinig, H.,, H. Reichenbach, and, H. Achenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). II. Acylated carotenoid glucosides.Arch. Mikrobiol. 74:223234.
37. Lancero, H.,, J. E. Brofft,, J. Downard,, B. W. Birren,, C. Nusbaum,, J. Naylor,, W. Shi, and, L. J. Shimkets. 2002. Mapping of Myxococcus xanthus social motility dsp mutations to the dif genes.J. Bacteriol. 184:14621465.
38. Lee, K., and, L. J. Shimkets. 1994. Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants.J. Bacteriol. 176:22002209.
39. Li, N., and, M. C. Cannon. 1998. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180:24502458.
40. Lu, A.,, K. Cho,, W. P. Black,, X. Y. Duan,, R. Lux,, Z. Yang,, H. B. Kaplan,, D. R. Zusman, and, W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206220.
41. McBride, M. J.,, R. A. Weinberg, and, D. R. Zusman. 1989. “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemo-taxis genes of enteric bacteria. Proc. Natl. Acad. Sci. USA 86:424428.
42. McCleary, W. R.,, M. J. McBride, and, D. R. Zusman. 1990. Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of FrzCD.J. Bacteriol. 172:48774887.
43. McCleary, W. R., and, D. R. Zusman. 1990. FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 87:58985902.
44. McGowan, S. J.,, H. C. Gorham, and, D. A. Hodgson. 1993. Light-induced carotenogenesis in Myxococcus xanthus: DNA sequence analysis of the carR region. Mol. Microbiol. 10:713735.
45. Moraleda-Munoz, A.,, J. Perez,, M. Fontes,, F. J. Murillo, and, J. Munoz-Dorado. 2005. Copper induction of carotenoid synthesis in the bacterium Myxococcus xanthus. Mol. Microbiol. 56:11591168.
46. Moreno, A. J.,, M. Fontes, and, F. J. Murillo. 2001. ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. J. Bacterial. 183:557569.
47. Myers, E. W.,, G. G. Sutton,, A. L. Delcher,, I. M. Dew,, D. P. Fasulo,, M. J. Flanigan,, S. A. Kravitz,, C. M. Mobarry,, K. H. Reinert,, K. A. Remington,, E. L. Anson,, R. A. Bolanos,, H. H. Chou,, C. M. Jordan,, A. L. Halpern,, S. Lonardi,, E. M. Beasley,, R. C. Brandon,, L. Chen,, P. J. Dunn,, Z. Lai,, Y. Liang,, D. R. Nusskern,, M. Zhan,, Q. Zhang,, X. Zheng,, G. M. Rubin,, M. D. Adams, and, J. C. Venter. 2000. A whole-genome assembly of Drosophila. Science 287:21962204.
48. Nicolas, F. J.,, R. M. Ruiz-Vazquez, and, F. J. Murillo. 1994. A genetic link between light response and multicellular development in the bacterium Myxococcus xanthus. Genes Dev. 8:23752387.
49. Nierman, W. C.,, A. Pain,, M. J. Anderson,, J. R. Wortman,, H. S. Kim,, J. Arroyo,, M. Berriman,, K. Abe,, D. B. Archer,, C. Bermejo,, J. Bennett,, P. Bowyer,, D. Chen,, M. Collins,, R. Coulsen,, R. Davies,, P. S. Dyer,, M. Farman,, N. Fedorova,, N. Fedorova,, T. V. Feldblyum,, R. Fischer,, N. Fosker,, A. Fraser,, J. L. Garcia,, M. J. Garcia,, A. Goble,, G. H. Goldman,, K. Gomi,, S. Griffith-Jones,, R. Gwilliam,, B. Haas,, H. Haas,, D. Harris,, H. Horiuchi,, J. Huang,, S. Humphray,, J. Jimenez,, N. Keller,, H. Khouri,, K. Kitamoto,, T. Kobayashi,, S. Konzack,, R. Kulkarni,, T. Kumagai,, A. Lafton,, J. P. Latge,, W. Li,, A. Lord,, C. Lu,, W. H. Majoros,, G. S. May,, B. L. Miller,, Y. Mohamoud,, M. Molina,, M. Monod,, I. Mouyna,, S. Mulligan,, L. Murphy,, S. O’Neil,, I. Paulsen,, M. A. Penalva,, M. Pertea,, C. Price,, B. L. Pritchard,, M. A. Quail,, E. Rabbinowitsch,, N. Rawlins,, M. A. Rajandream,, U. Reichard,, H. Renauld,, G. D. Robson,, S. Rodriguez de Cordoba,, J. M. Rodriguez-Pena,, C. M. Ronning,, S. Rutter,, S. L. Salzberg,, M. Sanchez,, J. C. Sanchez-Ferrero,, D. Saunders,, K. Seeger,, R. Squares,, S. Squares,, M. Takeuchi,, F. Tekaia,, G. Turner,, C. R. Vazquez de Aldana,, J. Weidman,, O. White,, J. Woodward,, J. H. Yu,, C. Fraser,, J. E. Galagan,, K. Asai,, M. Machida,, N. Hall,, B. Barrell, and, D. W. Denning. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:11511156.
50. O’Connor, K. A.,, M. J. McBride,, M. West,, H. Yu,, L. Trinh,, K. Yuan,, T. Lee, and, D. R. Zusman. 1996. Photolyase of Myxococcus xanthus, a Gram-negative eubacterium, is more similar to photolyases found in Archaea and “higher” eukaryotes than to photolyases of other eubacteria. J. Biol. Chem. 271:62526259.
51. Offner, S.,, A. Hofacker,, G. Wanner, and, F. Pfeifer. 2000. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea.J. Bacteriol. 182:43284336.
52. Paitan, Y.,, E. Orr,, E. Z. Ron, and, E. Rosenberg. 1999. Genetic and functional analysis of genes required for the post-modification of the polyketide antibiotic TA of Myxococcus xanthus. Microbiology 145 (Pt. 11):30593067.
53. Plaga, W.,, I. Stamm, and, H. U. Schairer. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 95:1126311267.
54. Plaga, W., and, S. H. Ulrich. 1999. Intercellular signalling in Stigmatella aurantiaca. Curr. Opin. Microbiol. 2:593597.
55. Pospiech, A.,, B. Cluzel,, J. Bietenhader, and, T. Schupp. 1995. A new Myxococcus xanthus gene cluster for the biosynthesis of the antibiotic saframycin Mx1 encoding a peptide synthetase. Microbiology 141 (Pt. 8):17931803.
56. Qualls, G. T.,, K. Stephens, and, D. White. 1978. Light-stimulated morphogenesis in the fruiting myxobacterium Stigma-tella aurantiaca. Science 201:444445.
57. Rau, W. 1988. Functions of carotenoids other than in photosynthesis, p. 231255. In T. Goodwin (ed.), Plant Pigments. Academic Press, London, United Kingdom.
58. Riley, M. 1993. Functions of the gene products of Escherichia coli. Microbiol Rev. 57:862952.
59. Salzberg, S. L.,, A. L. Delcher,, S. Kasif, and, O. White. 1998. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26:544548.
60. Sancar, G. B. 1990. DNA photolyases: physical properties, action mechanism, and roles in dark repair. Mutat. Res. 236:147160.
61. Shimkets, L., and, C. R. Woese. 1992. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc. Natl. Acad. Sci. USA 89:94599463.
62. Shimkets, L.J. 1990. Social and developmental biology of the Myxobacteria. Microbiol. Rev. 54:473501.
63. Silakowski, B.,, H. Ehret, and, H. U. Schairer. 1998. fbfB, a gene encoding a putative galactose oxidase, is involved in Stigmatella aurantiaca fruiting body formation.J. Bacteriol. 180:12411247.
64. Silakowski, B.,, B. Kunze, and, R. Muller. 2000a. Stigmatella aurantiaca Sg a15 carries genes encoding type I and type II 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases: involvement of a type II synthase in aurachin biosynthesis. Arch. Microbiol. 173:403411.
65. Silakowski, B.,, B. Kunze, and, R. Muller. 2001a. Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 275:233240.
66. Silakowski, B.,, B. Kunze,, G. Nordsiek,, H. Blocker,, G. Hofle, and, R. Muller. 2000b. The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur. J. Biochem. 267:64766485.
67. Silakowski, B.,, G. Nordsiek,, B. Kunze,, H. Blocker, and, R. Muller. 2001b. Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem. Biol. 8:5969.
68. Silakowski, B.,, A. Pospiech,, B. Neumann, and, H. U. Schairer. 1996. Stigmatella aurantiaca fruiting body formation is dependent on the fbfA gene encoding a polypeptide homologous to chitin synthases.J. Bacteriol. 178:67066713.
69. Silakowski, B.,, H. U. Schairer,, H. Ehret,, B. Kunze,, S. Weinig,, G. Nordsiek,, P. Brandt,, H. Blocker,, G. Hofle,, S. Beyer, and, R. Muller. 1999. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J. Biol. Chem. 274:3739137399.
70. Skladny, H.,, M. Heidelbach, and, H. U. Schairer. 1992. Cloning and DNA sequence of sigB gene of Stigmatella aurantiaca. Nucleic Acids Res. 20:6416.
71. Skladny, H.,, M. Heidelbach, and, H. U. Schairer. 1994. Cloning and characterization of the gene encoding the major sigma factor of Stigmatella aurantiaca. Gene143:123127.
72. Spormann, A. M. 1999. Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63:621641.
73. Sproer, C.,, H. Reichenbach, and, E. Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 49 (Pt. 3) :12551262.
74. Stamm, I.,, F. Lottspeich, and, W. Plaga. 2005. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development. Mol. Microbiol. 56:13861395.
75. Thony-Meyer, L., and, D. Kaiser. 1993. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol. 175:74507462.
76. Toal, D. R.,, S. W. Clifton,, B. A. Roe, and, J. Downard. 1995. The esg locus of Myxococcus xanthus encodes the E1 alpha and E1 beta subunits of a branched-chain keto acid dehydrogenase. Mol. Microbiol. 16:177189.
77. Tojo, N.,, S. Inouye, and, T. Komano. 1993. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J. Bacteriol. 175:45454549.
78. Trudeau, K. G.,, M. J. Ward, and, D. R. Zusman. 1996. Identification and characterization of FrzZ, a novel response regulator necessary for swarming and fruiting-body formation in Myxococcus xanthus. Mol. Microbiol. 20:645655.
79. Ueki, T., and, S. Inouye. 2003. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA100:87828787.
80. van Keulen, G.,, D. A. Hopwood,, L. Dijkhuizen, and, R. G. Sawers. 2005. Gas vesicles in actinomycetes: old buoys in novel habitats? Trends Microbiol. 13:350354.
81. Vlamakis, H. C.,, J. R. Kirby, and, D. R. Zusman. 2004. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol. Microbiol. 52:17991811.
82. Wall, D.,, P. E. Kolenbrander, and, D. Kaiser. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development.J. Bacteriol. 181:2433.
83. Ward, M. J.,, H. Lew, and, D. R. Zusman. 2000. Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol. Microbiol. 37:13571371.
84. Waterman, M. S. 1988. Computer analysis of nucleic acid sequences. Methods Enzymol. 164:765793.
85. Wenzel, S. C.,, B. Kunze,, G. Hofle,, B. Silakowski,, M. Scharfe,, H. Blocker, and, R. Muller. 2005. Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Chembiochem 6:375385.
86. White, D.,, W. Shropshire, Jr., and, K. Stephens. 1980. Photo-control of development by Stigmatella aurantiaca. J. Bacteriol. 142:10231024.
87. Wu, S. S., and, D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547558.
88. Wu, S. S.,, J. Wu,, Y. L. Cheng, and, D. Kaiser. 1998. The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol. Microbiol. 29:12491261.
89. Wu, S. S.,, J. Wu, and, D. Kaiser. 1997. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23:109121.
90. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49:555570.

Tables

Generic image for table
Table 1

Selected features of the genomes of DK1622 and DW4/3-1

Citation: Ronning C, Nierman W. 2008. 16 The Genomes of and , p 285-298. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch16
Generic image for table
Table 2

Putative chemotaxis gene clusters identified in DK1622 and their DW4/3-1 orthologs, identified by the presence of genesa

Citation: Ronning C, Nierman W. 2008. 16 The Genomes of and , p 285-298. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch16
Generic image for table
Table 3

Secondary metabolite biosynthetic gene clusters in and putative orthology (if present) in DW4/3-1

Citation: Ronning C, Nierman W. 2008. 16 The Genomes of and , p 285-298. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch16
Generic image for table
Table 4

Secondary metabolite biosynthetic gene clusters in DW4/3-1 and putative orthology (if present) in

Citation: Ronning C, Nierman W. 2008. 16 The Genomes of and , p 285-298. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch16
Generic image for table
Table 5

Gas vesicle genes identified in DK1622 and putative orthologs in DW4/3-1a

Citation: Ronning C, Nierman W. 2008. 16 The Genomes of and , p 285-298. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error