1887

17 A Postgenomic Overview of the Myxobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

17 A Postgenomic Overview of the Myxobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap17-2.gif

Abstract:

Currently, is the only species of myxobacteria to mature into the postgenomic phase, and therefore, this chapter focuses on this organism. The chapter begins with a discussion with genomic screens using transposable elements, continues with the paralogous analysis of gene families, and concludes with whole-genome yeast two-hybrid (Y2H) assays. Availability of the genome sequence makes the paralogous characterization of gene families possible. Both of the findings presented in the chapter are significant because they represent how the application of a genome sequence can aid in the identification of genes involved in specific processes such as development and vegetative growth. All of the postgenomics methods presented in the chapter focus on using the genome sequence to facilitate the characterization of genes using experimental techniques. One of the ultimate goals of myxobacterial genomics is to determine the complete set of genetic networks that contribute to the complex life cycle of the myxobacteria. Making sense of these data will require the concerted effort of the whole community of those involved in myxobacterial research to pool resources and share data. Exploratory work using microarrays is currently under way in an effort to identify the temporal expression of genes under a host of different environmental conditions. This work has thus far yielded insight into the number of genes associated with transcriptional activators (TAs) under vegetative conditions.

Citation: Suen G, Goldman B, Welch R. 2008. 17 A Postgenomic Overview of the Myxobacteria, p 299-311. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch17

Key Concept Ranking

Type IV Pili
0.42118722
Cell Wall Biosynthesis
0.42118722
0.42118722
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic of the EPS () region in . A total of 26 ORFs were identified by Lu and coworkers (2005), of which 12 contained Tn insertions found through a random mutagenesis screen (indicated by black dots). Reprinted and modified with permission from Lu and coworkers (2005).

Citation: Suen G, Goldman B, Welch R. 2008. 17 A Postgenomic Overview of the Myxobacteria, p 299-311. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Location of insertions in specific regions of the genome. Disruption of putative ORFs resulted in deficiencies in S-motility. Four groups were identified including genes involved in TFP biogenesis (A), EPS biosynthesis (B), and LPS biosynthesis and known S-motility genes (C). Inverted triangles represent insertion sites. Reprinted and modified with permission from Youderian and coworkers (2006).

Citation: Suen G, Goldman B, Welch R. 2008. 17 A Postgenomic Overview of the Myxobacteria, p 299-311. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Domain organization of the 12 FHA-associated NtrC-like activators in . The domain organization of a generic NtrC-like activator is shown for reference. Reprinted with permission from Jelsbak et al., 2005.

Citation: Suen G, Goldman B, Welch R. 2008. 17 A Postgenomic Overview of the Myxobacteria, p 299-311. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Schematic representation of the MrpC pathway. MrpC is found to be regulated using both a two-component signal transduction HPK and an STPK cascade system. Details of this pathway are outlined in the text. Reprinted with permission from Nariya and Inouye (2006).

Citation: Suen G, Goldman B, Welch R. 2008. 17 A Postgenomic Overview of the Myxobacteria, p 299-311. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch17
1. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 25:33893402.
2. Arshinoff, B. I.,, G. Suen,, E. M. Just,, S. M. Merchant,, W. A. Kibbe,, R. L. Chisholm, and, R. D. Welch. 2007. Xanthus-base: adapting wikipedia principles to a model organism database. Nucleic Acids Res. 35:D422D426.
3. Bowden, M. G., and, H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30:275284.
4. Browning, D. F.,, D. E. Whitworth, and, D. A. Hodgson. 2003. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48:237251.
5. Buck, M. J., and, J. D. Lieb. 2004. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments.Genomics 83:349360.
6. Caberoy, N. B.,, R. D. Welch,, J. S. Jakobsen,, S. C. Slater, and, A. G. Garza. 2003. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development.J. Bacteriol. 185:60836094.
7. Chisholm, R. L.,, P. Gaudet,, E. M. Just,, K. E. Pilcher,, P. Fey,, S. N. Merchant, and, W. A. Kibbe. 2006. dictyBase, the model organism database for Dictyostelium discoideum.Nucleic Acids Res. 34:D423D427.
8. Davidson, G.,, B. Wylie, and, K. Boyack. 2001. Cluster stability and the use of noise in interpretation of clustering. p. 2330. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS’01), October 22–23, 2001. IEEE Computer Society, Washington, DC.
9. Diodati, M. E.,, F. Ossa,, N. B. Caberoy,, I. R. Jose,, W. Hiraiwa,, M. M. Igo,, M. Singer, and, A. G. Garza. 2006. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J. Bacteriol. 188:17331743.
10. Dwight, S. S.,, R. Balakrishnan,, K. R. Christie,, M. C. Costanzo,, K. Dolinski,, S. R. Engel,, B. Feierbach,, D. G. Fisk,, J. Hirschman,, E. L. Hong,, L. Issel-Tarver,, R. S. Nash,, A. Sethuraman,, B. Starr,, C. L. Theesfeld,, R. Andrada,, G. Binkley,, Q. Dong,, C. Lane,, M. Schroeder,, S. Weng,, D. Botstein, and, J. M. Cherry. 2004. Saccharomyces genome database: underlying principles and organisation. Brief. Bioinform. 5:922.
11. Eppig, J. T.,, C. J. Bult,, J. A. Kadin,, J. E. Richardson,, J. A. Blake,, A. Anagnostopoulos,, R. M. Baldarelli,, M. Baya,, J. S. Beal,, S. M. Bello,, W. J. Boddy,, D. W. Bradt,, D. L. Burkart,, N. E. Butler,, J. Campbell,, M. A. Cassell,, L. E. Corbani,, S. L. Cousins,, D. J. Dahmen,, H. Dene,, A. D. Diehl,, H. J. Drabkin,, K. S. Frazer,, P. Frost,, L. H. Glass,, C. W. Goldsmith,, P. L. Grant,, M. Lennon-Pierce,, J. Lewis,, I. Lu,, L. J. Maltais,, M. McAndrews-Hill,, L. McClellan,, D. B. Miers,, L. A. Miller,, L. Ni,, J. E. Ormsby,, D. Qi,, T. B. Reddy,, D. J. Reed,, B. Richards-Smith,, D. R. Shaw,, R. Sinclair,, C. L. Smith,, P. Szauter,, M. B. Walker,, D. O. Walton,, L. L. Washburn,, I. T. Witham, and, Y. Zhu. 2005. The Mouse Genome Database (MGD): from genes to mice—a community resource for mouse biology. Nucleic Acids Res. 33: D471D475.
12. Fiehn, O. 2002. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48:155171.
13. Fields, S., and, O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245246.
14. Finn, R. D.,, J. Mistry,, B. Schuster-Bockler,, S. Griffiths-Jones,, V. Hollich,, T. Lassmann,, S. Moxon,, M. Marshall,, A. Khanna,, R. Durbin,, S. R. Eddy,, E. L. Sonnhammer, and, A. Bateman. 2006. Pfam: clans, web tools and services. Nucleic Acids Res.34: D247D251.
15. Ge, H.,, A. J. Walhout, and, M. Vidal. 2003. Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet. 19:551560.
16. Gertz, J.,, G. Elfond,, A. Shustrova,, M. Weisinger,, M. Pellegrini,, S. Cokus, and, B. Rothschild. 2003. Inferring protein interactions from phylogenetic distance matrices. Bioinformatics 19:20392045.
17. Giles, J. 2006. Internet encyclopaedias go head to head. Nature 438:900901.
18. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
19. Grumbling, G., and, V. Strelets. 2006. FlyBase: anatomical data, images and queries. Nucleic Acids Res. 34: D484D488.
20. Hanlon, W. A.,, M. Inouye, and, S. Inouye. 1997. Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol. Microbiol. 23:459471.
21. Higgs, P. I.,, K. Cho,, D. E. Whitworth,, L. S. Evans, and, D. R. Zusman. 2005. Four unusual two-component signal trans-duction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J. Bacteriol. 187:81918195.
22. Hwang, D.,, A. G. Rust,, S. Ramsey,, J. J. Smith,, D. M. Leslie,, A. D. Weston,, P. de Atauri,, J. D. Aitchison,, L. Hood,, A. F. Siegel, and, H. Bolouri. 2005a. A data integration methodology for systems biology. Proc. Natl. Acad. Sci. USA 102:1729617301.
23. Hwang, D.,, J. J. Smith,, D. M. Leslie,, A. D. Weston,, A. G. Rust,, S. Ramsey,, P. de Atauri,, A. F. Siegel,, H. Bolouri,, J. D. Aitchison, and, L. Hood. 2005b. A data integration methodology for systems biology: experimental verification. Proc. Natl. Acad. Sci. USA 102:1730217307.
24. Inouye, S.,, R. Jain,, T. Ueki,, H. Nariya,, C. Y. Xu.,, M. Y. Hsu,, B. A. Fernandez-Luque,, J. Munoz-Dorado,, E. Farez-Vidal, and, M. Inouye. 2000. A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb. Comp. Genomics 5:103120.
25. Jakobsen, J. S.,, L. Jelsbak,, L. Jelsbak,, R. D. Welch,, C. Cummings,, B. Goldman,, E. Stark,, S. Slater, and, D. Kaiser. 2004. Sigma54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J. Bacteriol. 186:43614368.
26. Jelsbak, L.,, M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
27. Kaiser, D. 1986. Control of multicellular development: Dictyostelium and Myxococcus. Annu. Rev. Genet. 20:539566.
28. Keseler, I. M.,, J. Collado-Vides,, S. Gama-Castro,, J. Ingraham,, S. Paley,, I. T. Paulsen,, M. Peralta-Gil, and, P. D. Karp. 2005. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33: D334D337.
29. Kim, S. K.,, J. Lund,, M. Kiraly,, K. Duke,, M. Jiang, et al. 2001. A gene expression map for Caenorhabditis elegans. Science 293:20872092.
30. LaBaer, J., and, N. Ramachandran. 2005. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol. 9:1419.
31. Lancero, H. L.,, S. Castaneda,, N. B. Caberoy,, X. Ma,, A. G. Garza, and, W. Shi. 2005. Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. Microbiology 151:15351541.
32. Li, Y.,, H. Sun,, X. Ma,, A. Lu,, R. Lux,, D. Zusman, and, W. Shi. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:54435448.
33. Lockhart, D. J., and, E. A. Winzeler. 2000. Genomics, gene expression and DNA arrays. Nature 405:827836.
34. Lu, A.,, K. Cho,, W. P. Black,, X. Y. Duan,, R. Lux,, Z. Yang,, H. B. Kaplan,, D. R. Zusman, and, W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206220.
35. Lux, R., and, W. Shi. 2005. A novel bacterial signalling system with a combination of a Ser/Thr kinase cascade and a His/ Asp two-component system. Mol. Microbiol. 58:345348.
36. MacNeil, S. D.,, F. Calara, and, P. L. Hartzell. 1994. New clusters of genes required for gliding motility in Myxococcus xanthus. Mol. Microbiol. 14:6171.
37. Mahillon, J., and, M. Chandler. 1998. Insertion sequences.Microbiol. Mol. Biol. Rev. 62:725774.
38. Marcotte, E., and, S. Date. 2001. Exploiting big biology: integrating large-scale biological data for function inference. Brief. Bioinform. 2:363374.
39. Marcotte, E. M.,, M. Pellegrini,, H. L. Ng,, D. W. Rice,, T. O. Yeates, and, D. Eisenberg. 1999. Detecting protein function and protein-protein interactions from genome sequences. Science 285:751753.
40. Mignot, T.,, J. P. Merlie, Jr., and, D. R. Zusman. 2005. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310:855857.
41. Morett, E., and, L. Segovia. 1993. The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J. Bacteriol. 175:60676074.
42. Munoz-Dorado, J.,, S. Inouye, and, M. Inouye. 1991. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67:9951006.
43. Nariya, H., and, S. Inouye. 2005. Modulating factors for the Pkn4 kinase cascade in regulating 6-phosphofructokinase in Myxococcus xanthus. Mol. Microbiol. 56:13141328.
44. Nudleman, E.,, D. Wall, and, D. Kaiser. 2005. Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309:125127.
45. Overbeek, R.,, M. Fonstein,, M. D’Souza,, G. D. Pusch, and, N. Maltsev. 1999. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96:28962901.
46. Pazos, F., and, A. Valencia. 2002. In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47:219227.
47. Pellegrini, M.,, E. M. Marcotte,, M. J. Thompson,, D. Eisenberg, and, T. O. Yeates. 1999. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96:42854288.
48. Pham, V. D.,, C. W. Shebelut,, E. J. Zumstein, and, M. Singer. 2005. BrgE is a regulator of Myxococcus xanthus development. Mol. Microbiol. 57:762773.
49. Schwarz, E. M.,, I. Antoshechkin,, C. Bastiani,, T. Bieri,, D. Blasiar,, P. Canaran,, J. Chan,, N. Chen,, W. J. Chen,, P. Davis,, T. J. Fiedler,, L. Girard,, T. W. Harris,, E. E. Kenny,, R. Kishore,, D. Lawson,, R. Lee,, H. M. Muller,, C. Nakamura,, P. Ozersky,, A. Petcherski,, A. Rogers,, W. Spooner,, M. A. Tuli,, K. Van Auken,, D. Wang,, R. Durbin,, J. Spieth,, L. D. Stein, and, P. W. Sternberg. 2006. WormBase: better software, richer content. Nucleic Acids Res. 34:D475D478.
50. Srinivasan, B. S.,, N. B. Caberoy,, G. Suen,, R. G. Taylor,, R. Shah,, F. Tengra,, B. S. Goldman,, A. G. Garza, and, R. D. Welch. 2005. Functional genome annotation through phylogenomic mapping. Nat. Biotechnol. 23:691698.
51. Stein, L. 2001. Genome annotation: from sequence to biology. Nat. Rev. Genet. 2:493503.
52. Stein, L. D.,, C. Mungall,, S. Shu,, M. Caudy,, M. Mangone,, A. Day,, E. Nickerson,, J. E. Stajich,, T. W. Harris,, A. Arva, and, S. Lewis. 2002. The generic genome browser: a building block for a model organism system database. Genome Res. 12:15991610.
53. Suen, G.,, J. S. Jakobsen,, B. S. Goldman,, M. Singer,, A. G. Garza, and, R. D. Welch. 2006. Bacterial postgenomics: the promise and peril of systems biology. J. Bacteriol. 188:79998004.
54. Suen, G.,, B. I. Arshinoff,, R. G. Taylor, and, R. D. Welch. 2007. Practical applications of bacterial functional genomics. Biotechnol. Genet. Eng. Rev. 24:213242.
55. Sun, H., and, W. Shi. 2001a. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J. Bacteriol. 183:47864795.
56. Sun, H., and, W. Shi. 2001b. Analyses of mrp genes during Myxococcus xanthus development. J. Bacteriol. 183:67336739.
57. Szurmant, H., and, G. W. Ordal. 2004. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68:301319.
58. Thomasson, B.,, J. Link,, A. G. Stassinopoulos,, N. Burke,, L. Plamann, and, P. L. Hartzell. 2002. MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol. Microbiol. 46:13991413.
59. Udo, H.,, M. Inouye, and, S. Inouye. 1996. Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus. J. Bacteriol. 178:66476649.
60. Ueki, T., and, S. Inouye. 2003. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:87828787.
61. Ueki, T., and, S. Inouye. 2006. A novel regulation on developmental gene expression of fruiting body formation in Myxo-bacteria. Appl. Microbiol. Biotechnol. 72:2129.
62. Vidal, M. 2001. A biological atlas of functional maps. Cell 104:333339.
63. Ward, M. J.,, K. C. Mok,, D. P. Astling,, H. Lew, and, D. R. Zusman. 1998. An ABC transporter plays a developmental aggregation role in Myxococcus xanthus. J. Bacteriol. 180:56975703.
64. Whitworth, D. E., and, D. A. Hodgson. 2001. Light-induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti-repressor of CarA. Mol. Microbiol. 42:809819.
65. Wolgemuth, C.,, E. Hoiczyk,, D. Kaiser, and, G. Oster. 2002. How myxobacteria glide. Curr. Biol. 12:369377.
66. Wu, S. S., and, D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547558.
67. Yang, R.,, S. Bartle,, R. Otto,, A. Stassinopoulos,, M. Rogers,, L. Plamann, and, P. Hartzell. 2004. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J. Bacteriol. 186:61686178.
68. Yang, Z., and, Z. Li. 2005. Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system. Arch. Microbiol. 183:243252.
69. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49:555570.
70. Zhang, W.,, M. Inouye, and, S. Inouye. 1996. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol. Microbiol. 20:435447.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error