1887

18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap18-2.gif

Abstract:

The DNA-dependent RNA polymerase with the main σ factor bound has been purified from vegetative cells to homogeneity as analyzed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis with the aim to characterize σ factors and development-specific promoters in vitro. and expression was analyzed by Western blotting and reverse transcription-PCR. Both σ factors were found to be expressed during fruiting body formation and indole-induced sporulation but not after heat shock. The antiserum raised against SigB in this study cross-reacted with at least one further alternative σ factor whose expression pattern is similar to that of SigB. The stress protein HspA (formerly SP21) is synthesized during fruiting body formation, artificially induced sporulation, heat shock, and anoxia. An hspA deletion mutant behaved like the wild type during vegetative growth, fruiting body formation, sporulation, and spore germination; the thermotolerance was also not affected in the mutant. Importantly, the secreted activity was higher during development, especially during spore development, which may reflect an implication in the maturation of the spore coat. Secondary metabolites which exert some biological effect affect mainly electron transport. Examples of such compounds are aurafuron, aurachin, myxalamid, myxochromide, myxothiazol, and stigmatellin. Structurally most of these compounds are polyketides, peptides, or terpenoids. The most prominent feature of is the formation of a complex and highly structured fruiting body. This complexity represents the specific challenge of the system and distinguishes from and .

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18

Key Concept Ranking

Pyruvate Dehydrogenase Kinase
0.44268486
Sigma Factor SigB
0.42219853
Genetic Elements
0.41599175
0.44268486
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Prevention of fruiting body formation by dialysis. cells on a dialysis membrane were unable to form aggregates during dialysis (A) but aggregated normally after dialysis had been stopped (B). Bar, 5 mm. Reprinted from Plaga et al., 1998.

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Dose-response curve of to stigmolone. The inset shows the structural formula of stigmolone. Reprinted from Plaga et al., 1998.

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Physical map of the gene cluster of .

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Developmental phenotype of mutant (A) in comparison to the wild type (B). The fruiting bodies of the wild-type strain are visible in the left part of panel B. Bars, 1 mm. Reprinted, with permission, from Stamm et al., 2005.

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Examples of secondary metabolites of .

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Physical map of the locus of . The site (gray square) is located in the gene. Reprinted, with permission, from Müller et al., 2006.

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch18
1. Ashizawa, K., and, S.-Y. Cheng. 1992. Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proc. Natl. Acad. Sci. USA 89:92779281.
2. Barreaud, J.-P.,, S. Bourgerie,, R. Julien,, J. F. Guespin-Michel, and, Y. Karamanos. 1995. An endo-N-acetyl-β-d-glucosaminidase, acting on the di-N-acetylchitobiosyl part of N-linked glycans, is secreted during sporulation of Myxococcus xanthus. J. Bacteriol. 177:916920.
3. Benaïssa, M.,, J. Vieyres-Lubochinsky,, R. Odéide, and, B. Lubochinsky. 1994. Stimulation of inositide degradation in clumping Stigmatella aurantiaca. J. Bacteriol. 176:13901393.
4. Beyer, S.,, B. Kunze,, B. Silakowski, and, R. Müller. 1999. Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90. Biochim. Biophys. Acta 1445:185195.
5. Böhlendorf, B.,, E. Forche,, N. Bedorf,, K. Gerth,, H. Irschik,, R. Jansen,, B. Kunze,, W. Trowitzsch-Kienast,, H. Reichen-bach, and, G. Höfle. 1996. Indole and quinoline derivatives as metabolites of tryptophan in myxobacteria. Liebigs Ann. 1996:4953.
6. Bonner, P. J., and, L. J. Shimkets. 2001. Piecing together a puzzling pathway: new insights into C-signaling. Trends Microbiol. 9:462464.
7. Bourgerie, S.,, Y. Karamanos,, T. Grard, and, R. Julien. 1994. Purification and characterization of an endo-N-acetyl-β-d-glucosaminidase from the culture medium of Stigmatella aurantiaca DW4. J. Bacteriol. 176:61706174.
8. Bremaud, L.,, C. Fremaux,, S. Laalami, and, Y. Cenatiempo. 1995. Genetic and molecular analysis of the t-RNA-tufB operon of the myxobacterium Stigmatella aurantiaca. Nucleic Acids Res. 23:17371743.
9. Bremaud, L.,, S. Laalami,, B. Derijard, and, Y. Cenatiempo. 1997. Translation initiation factor IF2 of the myxobacterium Stigmatella aurantiaca: presence of a single species with an unusual N-terminal sequence. J. Bacteriol. 179:23482355.
10. Bukau, B. (ed.). 1999. Molecular Chaperones and Folding Catalysts: Regulation, Cellular Function and Mechanisms. Har-wood Academic Publishers, Amsterdam, The Netherlands.
11. Butterfaß, H.-J. 1992. Isolierung und Charakterisierung des csgA-Genes aus Stigmatella aurantiaca. Diploma thesis. Ruprecht-Karls-Universität, Heidelberg, Germany.
12. Caillon, E.,, B. Lubochinsky, and, D. Rigomier. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153:13481351.
13. Cayuela, M. L.,, M. Elías-Arnanz,, M. Peñalver-Mellado,, S. Padmanabhan, and, F. J. Murillo. 2003. The Stigmatella aurantiaca homolog of Myxococcus xanthus high-mobility-group A-type transcription factor CarD: insights into the functional modules of CarD and their distribution in bacteria. J. Bacteriol. 185:35273537.
14. Coudart, M.-P. 1998. Independent patterns of expression of two alternative sigma factors, SigB and SigC, of the myxo-bacterium Stigmatella aurantiaca during development. Mol. Biol. Rep. 25:183188.
15. Coudart-Cavalli, M.-P.,, O. Sismeiro, and, A. Danchin. 1997. Bifunctional structure of two adenylyl cyclases from the myxobacterium Stigmatella aurantiaca. Biochimie 79:757767.
16. Danchin, A. 1993. Phylogeny of adenylyl cyclases. Adv. Second Messenger Phosphoprotein Res. 27:109162.
17. Dawid, W. 1979. Vorkommen und Verbreitung Fruchtkörperbildender Myxobakterien im Siebengebirge. Z. Allg. Mikrobiol. 19:705719.
18. Dawid, W. 2000. Biology and global distribution of myxobacteria in soil. FEMS Microbiol. Rev. 24:403427.
19. Dérijard, B.,, M. Ben Aïssa,, B. Lubochinsky, and, Y. Cenatiempo. 1989. Evidence for a membrane-associated GTP-binding protein in Stigmatella aurantiaca, a prokaryotic cell. Biochem. Biophys. Res. Commun. 158:562568.
20. Dhundale, A. R.,, T. Furuichi,, S. Inouye, and, M. Inouye. 1985. Distribution of multicopy single-stranded DNA among myxobacteria and related species. J. Bacteriol. 164:914917.
21. Dickschat, J. S.,, H. B. Bode,, T. Mahmud,, R. Müller, and, S. Schulz. 2005a. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 70:51745182.
22. Dickschat, J. S.,, H. B. Bode,, R. M. Kroppenstedt,, R. Müller, and, S. Schulz. 2005b. Biosynthesis of iso-fatty acids in myxobacteria. Org. Biomol. Chem. 3:28242831.
23. Dickschat, J. S.,, H. B. Bode,, S. C. Wenzel,, R. Müller, and, S. Schulz. 2005c. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. ChemBioChem 6:20232033.
24. Dworkin, M., and, S. M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146:243244.
25. Enders, D., and, A. Ridder. 2000. First asymmetric synthesis of stigmolone: the fruiting body inducing pheromone of the myxobacterium Stigmatella aurantiaca. Synthesis 2000:18481851.
26. Fautz, E.,, G. Rosenfelder, and, L. Grotjahn. 1979. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140:852858.
27. Fisseha, M.,, M. Gloudemans,, R. Gill, and, L. Kroos. 1996. Characterization of the regulatory region of a cell interaction-dependent gene in Myxococcus xanthus. J. Bacteriol. 178:25392550.
28. Freese, A.,, H. Reichenbach, and, H. Lünsdorf. 1997. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus. J. Bacteriol. 179:12461252.
29. Furuichi, T.,, A. Dhundale,, M. Inouye, and, S. Inouye. 1987a. Branched RNA covalently linked to the 5´ end of a single-stranded DNA in Stigmatella aurantiaca: structure of msDNA. Cell 48:4753.
30. Furuichi, T.,, S. Inouye, and, M. Inouye. 1987b. Biosynthesis and structure of stable branched RNA covalently linked to the 5´ end of multicopy single-stranded DNA of Stigmatella aurantiaca. Cell 48:5562.
31. Gerth, K., and, H. Reichenbach. 1978. Induction of myxo-spore formation in Stigmatella aurantiaca (myxobacterales). I. General characterization of the system. Arch. Microbiol. 117:173182.
32. Gerth, K.,, R. Metzger, and, H. Reichenbach. 1993. Induction of myxospores in Stigmatella aurantiaca (myxobacteria): inducers and inhibitors of myxospore formation, and mutants with a changed sporulation behaviour. J. Gen. Microbiol. 139:865871.
33. Gerth, K., and, H. Reichenbach. 1994. Induction of myxo-spores in Stigmatella aurantiaca (myxobacteria): analysis of inducer-inducer and inducer-inhibitor interactions by dose-response curves. Microbiology 140:32413247.
34. Glomp, I.,, P. Saulnier,, J. Guespin-Michel, and, H. U. Schairer. 1988. Transfer of IncP plasmids into Stigmatella aurantiaca leading to insertional mutants affected in spore development. Mol. Gen. Genet. 214:213217.
35. Grilione, P. L., and, J. Pangborn. 1975. Scanning electron microscopy of fruiting body formation by myxobacteria. J. Bacteriol. 124:15581565.
36. Harris, B. Z., and, M. Singer. 1998. Identification and characterization of the Myxococcus xanthus argE gene. J. Bacteriol. 180:64126414.
37. Hauer, B., and, H. Eipel. 1997. Flow cytometry: useful tool for analyzing bacterial populations cell by cell, p. 273291. In J. A. Shapiro and M. Dworkin (ed.), Bacteria as Multicellular Organisms. Oxford University Press, Oxford, United Kingdom.
38. Heidelbach, M.,, H. Skladny, and, H. U. Schairer. 1992. Purification of the DNA-dependent RNA polymerase from the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 174:27332735.
39. Heidelbach, M.,, H. Skladny, and, H. U. Schairer. 1993a. Purification and characterization of SP21, a development-specific protein of the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 175:905908.
40. Heidelbach, M.,, H. Skladny, and, H. U. Schairer. 1993b. Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 175:74797482.
41. Hofmann, D. 2004. Proteinanalyse zur Charakterisierung der Lebensformen von Stigmatella aurantiaca. Ph.D. thesis. Ruprecht-Karls-Universität, Heidelberg, Germany.
42. Hsu, M.-Y.,, C. Xu,, M. Inouye, and, S. Inouye. 1992. Similarity between the Myxococcus xanthus and Stigmatella aurantiaca reverse transcriptase genes associated with multicopy, single-stranded DNA. J. Bacteriol. 174:23842387.
43. Hull, W. E.,, A. Berkessel, and, W. Plaga. 1998. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone. Proc. Natl. Acad. Sci. USA 95:1126811273.
44. Inouye, S.,, D. White, and, M. Inouye. 1989. Development of Stigmatella aurantiaca: effects of light and gene expression. J. Bacteriol. 141:13601365.
45. Inouye, S.,, P. J. Herzer, and, M. Inouye. 1990. Two independent retrons with highly diverse transcriptases in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 87:942945.
46. Jeong, M.-A., and, D. Lim. 2004. A proteomic approach to study msDNA function in Escherichia coli. J. Microbiol. 42:200204.
47. Kaiser, D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1:4554.
48. Kleinig, H., and, H. Reichenbach. 1969. Carotenoid pigments of Stigmatella aurantiaca (myxobacterales). I. The minor carotenoids. Arch. Mikrobiol. 68:210217.
49. Kleinig, H., and, H. Reichenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (myxobacterales). II. Acylated carotenoid glucosides. Arch. Mikrobiol. 74:223234.
50. Kunze, B.,, T. Kemmer,, G. Höfle, and, H. Reichenbach. 1984. Stigmatellin, a new antibiotic from Stigmatella aurantiaca(myxobacterales). I. Production, physico-chemical and biological properties. J. Antibiot. 37:454461.
51. Kunze, B.,, G. Höfle and, H. Reichenbach. 1987. The aurachins, new quinoline antibiotics from myxobacteria: production, physico-chemical and biological properties. J. Antibiot. 40:258265.
52. Kunze, B.,, H. Reichenbach,, R. Müller, and, G. Höfle. 2005. Aurafuron A and B, new bioactive polyketides from Stigmatella aurantiaca and Archangium gephyra (myxo-bacteria): fermentation, isolation, physico-chemical properties, structure and biological activity. J. Antibiot. 58:244251.
53. Lee, B. U.,, K. Lee,, J. Mendez, and, L. J. Shimkets. 1995. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)+-containing protein. Genes Dev. 9:29642973.
54. Li, S., and, L. Shimkets. 1988. Site-specific integration and expression of a developmental promoter in Myxococcus xanthus. J. Bacteriol. 170:55525556.
55. Lünsdorf, H.,, H. U. Schairer, and, M. Heidelbach. 1995. Localization of the stress protein SP21 in indole-induced spores, fruiting bodies, and heat-shocked cells of Stigmatella aurantiaca. J. Bacteriol. 177:70927099.
56. Lünsdorf, H., and, H. U. Schairer. 2001. Frozen motion of gliding bacteria outlines inherent features of the motility apparatus. Microbiology 147:939947.
57. Mignot, T.,, J. W. Shaevitz,, P. L. Hartzell, and, D. R. Zusman. 2007. Evidence that focal adhesion complexes power bacterial gliding motility. Science 315:853856.
58. Milosevic, A. 2003. CsgA, a putative signal molecule of the myxobacterium Stigmatella aurantiaca involved in fruiting: characterization of the csgA gene and influence of csgA inactivation on development. Ph.D. thesis. Ruprecht-Karls-Universität, Heidelberg, Germany.
59. Morikawa, Y.,, S. Takayama,, R. Fudo,, S. Yamanaka,, K. Mori, and, A. Isogai. 1998. Absolute chemical structure of the myxobacterial pheromone of Stigmatella aurantiaca that induces the formation of its fruiting body. FEMS Microbiol. Lett. 165:2934.
60. Müller, S. 2002. Morphogenese bei Stigmatella aurantiaca: Studien zur Fruchtkörperbildung. Ph.D. thesis. Ruprecht-Karls-Universität, Heidelberg, Germany.
61. Müller, S.,, H. Shen,, D. Hofmann,, H. U. Schairer, and, J. R. Kirby. 2006. Integration into the phage attachment site, attB, impairs multicellular differentiation in Stigmatella aurantiaca. J. Bacteriol. 188:17011709.
62. Neumann, B.,, A. Pospiech, and, H. U. Schairer. 1992. Size and stability of the genomes of the myxobacteria Stigmatella aurantiaca and Stigmatella erecta. J. Bacteriol. 174:63076310.
63. Neumann, B.,, A. Pospiech, and, H. U. Schairer. 1993. A physical and genetic map of Stigmatella aurantiaca DW4/3.1 chromosome. Mol. Microbiol. 10:10871099.
64. Plaga, W.,, I. Stamm, and, H. U. Schairer. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 95:1126311267.
65. Pospiech, A.,, B. Neumann,, B. Silakowski, and, H. U. Schairer. 1993. Detection of developmentally regulated genes of the myxobacterium Stigmatella aurantiaca with the transposon TnSlacZ. Arch. Microbiol. 159:201206.
66. Pradella, S.,, A. Hans,, C. Spröer,, H. Reichenbach,, K. Gerth, and, S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178:484492.
67. Qualls, G. T.,, K. Stephens, and, D. White. 1978a. Light-stimulated morphogenesis in the fruiting myxobacterium Stigma-tella aurantiaca. Science 201:444445.
68. Qualls, G. T.,, K. Stephens, and, D. White. 1978b. Morpho-genetic movements and multicellular development in the fruiting myxobacterium, Stigmatella aurantiaca. Dev. Biol. 66:270274.
69. Reichenbach, H., and, M. Dworkin. 1969. Studies on Stigmatella aurantiaca (myxobacterales). J. Gen. Microbiol. 58:314.
70. Reichenbach, H.,, H. Voelz, and, M. Dworkin. 1969. Structural changes in Stigmatella aurantiaca during myxospore induction. J. Bacteriol. 97:905911.
71. Reichenbach, H., and, M. Dworkin. 1970. Induction of myxo-spore formation in Stigmatella aurantiaca (Myxobacterales) by monovalent cations. J. Bateriol. 101:325326.
72. Reichenbach, H., and, M. Dworkin. 1992. The Myxobacteria, p. 34163487. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed. Springer-Verlag, Heidelberg, Germany. 3rd ed., http://link.springer-ny.com/link/service/books/10125/.
73. Reichenbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27:149156.
74. Rice, S. A., and, B. C. Lampson. 1996. Bacterial reverse transcriptase and msDNA. Virus Genes 11:95104.
75. Schröder, J., and, H. Reichenbach. 1970. The fatty acid composition of vegetative cells and myxospores of Stigmatella aurantiaca (myxobacterales). Arch. Mikrobiol. 71:384390.
76. Shen, H., and, H. U. Schairer. 1999. Transcriptional regulation of hspA of Stigmatella aurantiaca and function investigation of the genve product. Chin. Med. J. 112:857.
77. Shen, H. 1999. Transcriptional regulation of hspA gene in Stigmatella aurantiaca and function analysis of HspA protein. Ph.D. thesis. Ruprecht-Karls-Universität, Heidelberg, Germany.
78. Shimkets, L. J., and, M. Dworkin. 1981. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev. Biol. 84:5160.
79. Silakowski, B.,, A. Pospiech,, B. Neumann, and, H. U. Schairer. 1996. Stigmatella aurantiaca fruiting body formation is dependent on the fbfA gene encoding a polypeptide homologous to chitin synthases. J. Bacteriol. 178:67066713.
80. Silakowski, B.,, H. Ehret, and, H. U. Schairer. 1998. FbfB, a gene encoding a putative galactose oxidase, is involved in Stigmatella aurantiaca fruiting body formation. J. Bacteriol. 180:12411247.
81. Silakowski, B.,, H. U. Schairer,, H. Ehret,, B. Kunze,, S. Weinig,, G. Nordsiek,, P. Brandt,, H. Blöcker,, G. Höfle,, S. Beyer, and, R. Müller. 1999. New lessons for combinatorial biosynthesis from myxobacteria. J. Biol. Chem. 274:3739137399.
82. Silakowski, B.,, S. Müller,, H. Skladny,, H. Ehret, and, H. U. Schairer. 2001. SigB, an alternative sigma factor of the myxo-bacterium Stigmatella aurantiaca, is synthesized during development and heat shock. Microbiology 147:22652273.
83. Skladny, H.,, M. Heidelbach, and, H. U. Schairer. 1992. Cloning and DNA sequence of sigB gene of Stigmatella aurantiaca. Nucleic Acids Res. 20:6416.
84. Skladny, H.,, M. Heidelbach, and, H. U. Schairer. 1994. Cloning and characterization of the gene encoding the major sigma factor of Stigmatella aurantiaca. Gene 143:123127.
85. Stamm, I.,, A. Leclerque, and, W. Plaga. 1999. Purification of cold-shock-like proteins from Stigmatella aurantiaca—molecular cloning and characterization of the cspA gene. Arch. Microbiol. 172:175181.
86. Stamm, I., and, W. Plaga. 2000. Fluorescence-based analysis of gene expression during the developmental cycle of the myxobacterium Stigmatella aurantiaca (abstract). Biospektrum (Sonderheft 2000) 6:78.
87. Stamm, I.,, F. Lottspeich, and, W. Plaga. 2005. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development. Mol. Microbiol. 56:13861395.
88. Stephens, K., and, D. White. 1980a. Morphogenetic effects of light and guanine derivatives on the fruiting myxo-bacterium Stigmatella aurantiaca. J. Bacteriol. 144:322326.
89. Stephens, K., and, D. White. 1980b. Scanning electron micrographs of fruiting bodies of the myxobacterium Stigmatella aurantiaca lacking a coat and revealing a cellular stalk. FEMS Microbiol. Lett. 9:189192.
90. Stephens, K.,, G. D. Hegeman, and, D. White. 1982. Pheromone produced by the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 149:739747.
91. Thaxter, R. 1892. Contributions from the Cryptogamic Laboratory of Harvard University. XVIII. On the Myxobacteriaceae, a new order of Schizomycetes. Bot. Gaz. 23:395411.
92. Tiennault-Desbordes, E.,, Y. Cenatiempo, and, S. Laalami. 2001. Initiation factor 2 of Myxococcus xanthus, a large version of prokaryotic translation initiation factor 2. J. Bacteriol. 183:207213.
93. Trowitzsch, W.,, L. Witte, and, H. Reichenbach. 1981. Geosmin from earthy smelling cultures of Nannocystis exedens(myxobacterales). FEMS Microbiol. Lett. 12:257260.
94. Vasquez, G. M.,, F. Qualls, and, D. White. 1985. Morphogenesis of Stigmatella aurantiaca fruiting bodies. J. Bacteriol. 163:515521.
95. Voelz, H., and, H. Reichenbach. 1969. Fine structure of fruiting bodies of Stigmatella aurantiaca (Myxobacterales). J. Bacteriol. 99:856866.
96. Weinig, S.,, T. Mahmud, and, R. Müller. 2003. Markerless mutations in the myxothiazol biosynthetic gene cluster: a delicate megasynthase with a superfluous nonribosomal peptide synthetase domain. Chem. Biol. 10:953960.
97. Wenzel, S. C.,, B. Kunze,, G. Höfle,, B. Silakowski,, M. Scharfe,, H. Blöcker, and, R. Müller. 2005. Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. ChemBioChem 6:375385.
98. White, D.,, W. Shropshire, and, K. Stephens. 1980. Photocontrol of development by Stigmatella aurantiaca. J. Bacteriol. 142:10231024.
99. Wu, S. S., and, D. Kaiser. 1996. Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J. Bacteriol. 178:58175821.
100. Yamauchi, K.,, J.-I. Nakajima,, H. Hayashi,, R. Horiuchi, and, J. R. Tata. 1999. Xenopus cytosolic thyroid hormone-binding protein (xCTBP) is aldehyde dehydrogenase catalyzing the formation of retinoic acid. J. Biol. Chem. 274:84608469.
101. Yamauchi, K., and, J. R. Tata. 2001. Characterization of Xenopus cytosolic thyroid-hormone-binding protein (xCTBP) with aldehyde dehydrogenase activity. Chem. Biol. Interact. 130–132:309–321.

Tables

Generic image for table
Table 1

The genes

Citation: Plaga W. 2008. 18 The Challenge of Structural Complexity : as an Alternative Myxobacterial Model, p 315-327. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error