1887

20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap20-2.gif

Abstract:

This chapter describes about the isolation of and myxobacteria from similar soil environments, and the employment of an arsenal of hydrolytic enzymes to kill and digest other bacteria to provide for their own growth and division. It concentrates on the ecology and motility systems of , followed by an overview of the hydrolytic enzymes used in prey digestion. It is clear that the nonobligately symbiotic or parasitic, predatory bacteria like and have large genomes akin to those of heterotrophs; thus, determining whether transfer of predatory gene islands is responsible for apparently quite diverse bacteria adapting to fit certain predatory niches is not trivial and can ultimately be answered only by full comparative analysis of multiple predatory genomes, although there is little evidence of recent horizontal gene transfer in the HD100 genome. Gliding motility genes are implicated in myxococcal motility, but these systems seem to be not present in , or they were made redundant so long ago that the genes involved are no longer recognizable as such. Homology searches found no significant homologues of genes involved in gliding. preys upon only gram-negative bacteria, albeit a wide range of these, as it penetrates the outer layers and enters the periplasmic space of its prey. By far the largest group of hydrolases in both bacteria is proteases; this probably reflects the importance to predatory bacteria in breaking down prey proteins for uptake and consumption by the predator.

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20

Key Concept Ranking

Bdellovibrio bacteriovorus
0.4218402
Type IV Pili
0.42045254
Gram-Positive Bacteria
0.41641605
Gram-Negative Bacteria
0.41371655
16s rRNA Sequencing
0.40255228
0.4218402
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The predatory life cycle and host-independent growth phases of .

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Transmission electron micrographs of attaching to DFB225 prey (A) and forming a bdelloplast and preying upon DFB225 (B). Bars, 1 μm. Both stained with 1% phosphotungstic acid (pH7).

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Ecological, genomic, and phylogenetic relationships between the type strains of and the myxobacteria.

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Comparison of the operon structure of genes in and . (A) Organization of genes, taken from . (B) genes are scattered around the genome, but a -like, possibly ancestral, organization can be seen with the gene order being conserved. The starred annotated within the operon is a good homologue, but Bd3852 on the left is a better homologue, suggesting a duplication event. does not have significant homologues of .

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparison (not to scale) of motility systems in (A) and myxobacterial (B) cells. The cytoplasm is shown in white and the periplasm in gray in each. EPS, extracellular polysaccharide.

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch20
1. Abram, D., and, B. K. Davis. 1970. Structural properties and features of parasitic Bdellovibrio bacteriovorus. J. Bacteriol. 104: 948965.
2. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 33893402.
3. Baer, M. L.,, J. Ravel,, S. A. Pineiro,, D. Guether-Borg, and, H. N. Williams. 2004. Reclassification of salt-water Bdellovibrio sp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int. J. Syst. Evol. Microbiol. 54: 10111016.
4. Baer, M. L.,, J. Ravel,, J. Chun,, R. T. Hill, and, H. N. Williams. 2000. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov., as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 50: 219224.
5. Burger, A.,, G. Drews, and, R. Ladwig. 1968. Host range and infection cycle of a newly isolated strain of Bdellovibrio bacteriovorus. Arch. Mikrobiol. 61: 261279. (In German.)
6. Burnham, J. C.,, T. Hashimoto, and, S. F. Conti. 1968. Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into gram-negative bacterial hosts. J. Bacteriol. 96: 13661381.
7. Davidov, Y., and, E. Jurkevitch. 2004. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int. J. Syst. Evol. Microbiol. 54: 14391452.
8. Davidov, Y.,, D. Huchon,, S. F. Koval, and, E. Jurkevitch. 2006. A new alpha-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ. Microbiol. 8: 21792188.
9. Drake, S. L.,, S. A. Sandstedt, and, M. Koomey. 1997. PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass mulitmer. Mol. Microbiol. 23: 657.
10. Engelking, H. M., and, R. J. Seidler. 1974. The involvement of extracellular enzymes in the metabolism of Bdellovibrio. Arch. Mikrobiol. 95: 293304.
11. Evans, K. J.,, C. Lambert, and, R. E. Sockett. 2007. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J. Bacteriol. 189: 48504859.
12. Gophna, U.,, R. L. Charlebois, and, W. F. Doolittle. 2006. Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. Trends Microbiol. 14: 6469.
13. Gottesman, S. 2003. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19: 565587.
14. Gray, M. W.,, G. Burger, and, B. F. Lang. 2001. The origin and early evolution of mitochondria. Genome Biol. 2: reviews1018.11018.5
15. Guerrero, R.,, C. Pedros-Alio,, I. Esteve,, J. Mas,, D. Chase, and, L. Margulis. 1986. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc. Natl. Acad. Sci. USA 83: 21382142.
16. Hartzell, P., and, D. Kaiser. 1991a. Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus. J. Bacteriol. 173: 76157624.
17. Hartzell, P., and, D. Kaiser. 1991b. Upstream gene of the mgl operon controls the level of the MglA protein in Myxococcus xanthus. J. Bacteriol. 173: 76257635.
18. Henderson, I. R.,, F. Navarro-Garcia,, M. Desvaux,, R. C. Fernandez, and, D. Ala’Aldeen. 2004. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68: 692744.
19. Henrichson, J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36: 478503.
20. Hespell, R. B.,, G. F. Miozzari, and, S. C. Rittenberg. 1975. Ribonucleic acid destruction and synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus. J. Bacteriol. 123: 481491.
21. Higgins, D.,, J. Thompson,, T. Gibson,, J. D. Thompson,, D. G. Higgins, and, T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 46734680.
22. Jelsbak, L., and, D. Kaiser. 2005. Regulating pilin expression reveals a threshold for S motility in Myxococcus xanthus. J. Bacteriol. 187: 21052112.
23. Jurkevitch, E.,, D. Minz,, B. Ramati, and, G. Barel. 2000. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl. Environ. Microbiol. 66: 23652371.
24. Lambert, C.,, K. J. Evans,, R. Till,, L. Hobley,, M. J. Capeness,, S. Rendulic,, S. C. Schuster,, S.-I. Aizawa, and, R. E. Sockett. 2006. Characterising the flagella filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol. Microbiol. 60: 274286.
25. Lambert, C.,, M. C. M. Smith, and, R. E. Sockett. 2003. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ. Microbiol. 5: 127132.
26. Larkin, J. M.,, M. C. Henk, and, S. D. Burton. 1990. Occurrence of a Thiothrix sp. attached to mayfly larvae and presence of parasitic bacteria in the Thiothrix sp. Appl. Environ. Microbiol. 56: 357361.
27. Maier, B.,, L. Potter,, M. So,, H. S. Seifert, and, M. P. Sheetz. 2002. Single pilus motor forces exceed 100pN. Proc. Natl. Acad. Sci. USA 99: 1601216017.
28. Martin, M. O. 2002. Predatory prokaryotes: an emerging research opportunity. J. Mol. Microbiol. Biotechnol. 4: 467477.
29. Martin, P. R.,, A. A. Watson,, T. F. McCaul, and, J. S. Mattick. 1995. Characterisation of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 16: 497508.
30. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56: 289314.
31. Mignot, T.,, J. P. Merlie, and, D. R. Zusman. 2005. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310: 855857.
32. Nudleman, E.,, D. Wall, and, D. Kaiser. 2006. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60: 1629.
33. Nunez, M. E.,, M. O. Martin,, L. K. Duong,, E. Ly, and, E. M. Spain. 2003. Investigations into the life cycle of the bacterial predator Bdellovibrio bacteriovorus 109J at an interface by atomic force microscopy. Biophys. J. 84: 33793388.
34. Nunn, D.,, S. Bergman, and, S. Lory. 1990. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J. Bacteriol. 172: 29112919.
35. Odelson, D. A.,, M. A. Patterson, and, R. B. Hespell. 1982. Periplasmic enzymes in Bdellovibrio bacteriovorus and Bdellovibrio stolpii. J. Bacteriol. 151: 756763.
36. Quardokus, E., M., and, Y. V. Brun. 2003. Cell cycle timing and developmental checkpoints in Caulobacter crescentus. Curr. Opin. Microbiol. 6: 541549.
37. Rao, M. B.,, A. M. Tanksale,, M. S. Ghatge, and, V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597635.
38. Ravenschlag, K.,, K. Sahm,, J. Pernthaler, and, R. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65: 39823989.
39. Rendulic, S.,, P. Jagtap,, A. Rosinus,, M. Eppinger,, C. Baar,, C. Lanz,, H. Keller,, C. Lambert,, K. J. Evans,, A. Goesmann,, F. Meyer,, R. E. Sockett, and, S. C. Schuster. 2004. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303: 689692.
40. Rodriguez, A. M., and, A. M. Spormann. 1999. Genetic and molecular analysis of cglB, a gene essential for single cell gliding in Myxococcus xanthus. J. Bacteriol. 181: 43814390.
41. Rodriguez-Soto, J. P., and, D. Kaiser. 1997a. The tgl gene: social motility and stimulation in Myxococcus xanthus. J. Bacteriol. 179:43614371.
42. Rodriguez-Soto, J. P., and, D. Kaiser. 1997b. Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility. J. Bacteriol. 179: 43724381.
43. Rosenberg, E., and, M. Varon. 1984. Antibiotics and lytic enzymes, p. 109125. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer, New York, NY.
44. Sacchi, L.,, E. Bigliardi,, S. Corona,, T. Beninati,, N. Lo, and, A. Franceschi. 2004. A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue Cell 36: 4353.
45. Sanford, R. A.,, J. R. Cole, and, J. M. Tiedje. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68: 893900.
46. Schoeffield, A. J.,, W. A. Falkler,, D. Desai, and, H. N. Williams. 1991. Serogrouping of halophilic bdellovibrios from Chesapeake Bay and environs by immunodiffusion and immuno-electrophoresis. Appl. Environ. Microbiol. 57: 34703475.
47. Schwudke, D., E. Strauch,, M. Krueger, and, B. Appel. 2001. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst. Appl. Micro-biol. 24: 385394.
48. Seidler, R. J.,, M. Mandel, and, J. N. Baptist. 1972. Molecular heterogeneity of the bdellovibrios: evidence of two new species. J. Bacteriol. 109: 209217.
49. Shemesh, Y., Y. Davidov,, S. Koval, and, E. Jurkevitch. 2003. Small eats big: ecology and diversity of Bdellovibrio and like organisms, and their dynamics in predator-prey interactions. Agronomie 23: 433439.
50. Shi, M.,, L. Zou,, X. Liu,, Y. Gao,, Z. Zhang,, W. Wu,, D. Wen,, Z. Chen, and, C. An. 2006. A novel bacterium Saprospira sp. strain PdY3 forms bundles and lyses cyanobacteria. Front. Biosci. 11: 19161923.
51. Shi, W., and, D. R. Zusman. 1993. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 33783382.
52. Shilo, M. 1969. Morphological and physical aspects of the interaction of Bdellovibrio with host bacteria. Curr. Top. Microbiol. and Immunol. 50: 174204.
53. Shilo, M., and, B. Bruff. 1965. Lysis of gram-negative bacteria by host-independent ectoparasitic Bdellovibrio bacteriovorus isolates. J. Gen. Microbiol. 40: 317328.
54. Snyder, A. R.,, H. N. Williams,, M. L. Baer,, K. E. Walker, and, O. C. Stine. 2002. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int. J. Syst. Evol. Microbiol. 52: 20892094.
55. Sockett, R. E., and, C. Lambert. 2004. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat. Rev. Microbiol. 2: 669675.
56. Stolp, H., and, M. P. Starr. 1963. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Leeuwenhoek 29: 217248.
57. Tudor, J. J.,, M. P. McCann, and, I. A. Acrich. 1990. A new model for the penetration of prey cells by bdellovibrios. J. Bacteriol. 172: 24212426.
58. Turner, L. R.,, J. C. Lara,, D. N. Nunn, and, S. Lory. 1993. Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 175: 49624969.
59. Wall, D.,, P. E. Kolenbrander, and, D. Kaiser. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homo-logue required for Type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181: 2433.
60. Wall, D., and, D. Kaiser. 1999. Type IV pili and cell motility. Mol. Microbiol. 32: 110.
61. Ward, M., and, D. Zusman. 1999. Motility in M. xanthus and its role in developmental aggregation. Curr. Opin. Microbiol. 2: 624629.
62. Wireman, J. W., and, M. Dworkin. 1977. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129: 798802.
63. Wu, S. S.,, J. Wu, and, D. Kaiser. 1997. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23: 109121.
64. Wu, S. S., and, D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18: 547.
65. Wu, S. S., and, D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179: 77487758.
66. Wu, S. S.,, J. Wu,, Y. L. Cheng, and, D. Kaiser. 1998. The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol. Microbiol. 29: 1249.
67. Yang, R., S. Bartle,, R. Otto,, A. Stassinopoulos,, M. Rogers,, L. Plamann, and, P. Hartzell. 2004. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus .J. Bacteriol. 186: 61686178.
68. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus using the transposable element mariner. Mol. Microbiol. 49: 555570.
69. Zahrl, D.,, M. Wagner,, K. Bischof,, M. Bayer,, B. Zavecz,, A. Beranek,, C. Ruckenstuhl,, G. E. Zarfel, and, G. Koraimann. 2005. Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151: 34553467.

Tables

Generic image for table
Table 1

Pilus genes found in compared to the genome, using reciprocal homology searches and protein level alignment to determine appropriate homologues

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20
Generic image for table
Table 2

Predicted location and classes of and proteases

Citation: Evans K, Hobley L, Lambert C, Sockett R. 2008. 20 : Lone Hunter “Cousin” of the “Pack Hunting” Myxobacteria, p 351-362. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error