1887

21 Sporulation and Other Multicellular Behaviors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

21 Sporulation and Other Multicellular Behaviors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap21-2.gif

Abstract:

This chapter focuses on multicellularity, emphasizing the two-cell differentiation process of endospore formation and attempting to note similarities to . While cell growth, division, motility, and chemotaxis clearly play roles in forming bioconvection patterns, complex colonies, and macrofibers, these multicellular phenomena have not yet been subjected to systematic genetic analysis. In contrast, recently discovered multicellular behaviors of biofilm formation and swarming motility are rapidly being elucidated by genetic and genomic approaches. The most studied and best understood multicellular behaviors of are the development of genetic competence (the ability to take up exogenous DNA) and sporulation. The chapter summarizes the understanding of how morphogenesis and intercellular signaling control the activity of cell-specific s factors, focusing on recent progress and attempting to identify questions that remain. It also reviews the results of genomic approaches to characterize the regulon of each cell-specific s factor and the functions of some of the gene products. The best-characterized multicellular behaviors of , sporulation and the development of competence to take up exogenous DNA, are regulated by extracellular peptide signaling, analogous to A-signaling. Proteolysis is already known to play roles in A-, B-, and C-signaling during development, and it seems likely that many more roles will be uncovered, based on studies of . Just as these studies have provided a host of paradigms, so too will continued investigation of the myxobacteria and their neighbors continue to yield novel insights of medical, economic, and environmental benefit.

Citation: Kroos L, Piggot P, Moran, Jr. C. 2008. 21 Sporulation and Other Multicellular Behaviors, p 363-383. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch21

Key Concept Ranking

Gene Expression and Regulation
0.6711215
Integral Membrane Proteins
0.42391986
0.6711215
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Morphological changes and the approximate time and location at which different factors become active during sporulation. See the text for explanation. Reproduced from , with permission.

Citation: Kroos L, Piggot P, Moran, Jr. C. 2008. 21 Sporulation and Other Multicellular Behaviors, p 363-383. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Regulation of σ activity. (A) Illustration of the reactions that result in σ being activated in the forespore. Critical determinants are thought to be the concentrations of SpoIIE and SpoIIAA-PO; a long-lived SpoIIAA-SpoIIAB-ADP complex (a SpoIIAA/SpoIIAB “sink”); and instability of free SpoIIAB combined with transient genetic asymmetry so that both copies of the gene are in the mother cell. (B) Schematic illustration of the effects of the sporulation division on the regulators of σ. The SpoIIAA-PO protein (open pentagons) is presumed to be evenly distributed throughout the cytoplasm so that most is present in the mother cell. The SpoIIE protein (filled diamonds) is associated with the septum, and most of it may be associated with SpoIIAA-PO, such that the SpoIIE: SpoIIAA-PO complex is distributed equally between mother cell and forespore. Only the origin-proximal 30% of a chromosome is present in the forespore when first formed. As a consequence both copies of the gene are present in the mother cell (MC), and degradation disproportionally reduces the SpoIIAB concentration in the forespore.

Citation: Kroos L, Piggot P, Moran, Jr. C. 2008. 21 Sporulation and Other Multicellular Behaviors, p 363-383. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Signaling pathway governing pro-σ processing. The upper part shows the sporangium after the asymmetric septum forms. The lower part shows components of the signaling pathway. SpoIIR made in the forespore is translocated across the forespore membrane of the septum and activates SpoIIGA to cleave pro-σ.

Citation: Kroos L, Piggot P, Moran, Jr. C. 2008. 21 Sporulation and Other Multicellular Behaviors, p 363-383. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Organization and transcription of the and operons. Indicated are the two genes of the operon, , the protease believed to process pro-σ, and , the structural gene for pro-σ. Also shown is , the gene encoding σ. An open reading frame located downstream from , (not shown), is cotranscribed with . Transcription from requires σ-RNAP and phosphorylated Spo0A. Some of the transcript reads through the operon. P is used weakly by σ RNAP and more strongly by σ RNAP.

Citation: Kroos L, Piggot P, Moran, Jr. C. 2008. 21 Sporulation and Other Multicellular Behaviors, p 363-383. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Model for the regulation of pro-σ processing. (A) The upper part shows the sporangium after engulfment of the forespore within the mother cell. Black ovals represent a protein complex that bridges the two membranes surrounding the forespore. The lower part shows an expanded view of the protein complex that bridges from the inner forespore membrane (IFM) to the outer forespore membrane (OFM). SpoIVB is a serine protease made initially under σ control in the forespore and believed to be translocated across the IFM. A low level of SpoIVB is sufficient to cause proteolysis of the SpoIIQ extracellular domain. σ RNAP boosts the level of SpoIVB and it cleaves the C-terminal extracellular domain of SpoIVFA. An unknown protein (Protein X) is proposed to localize the pro-σ processing machinery to the SpoIIQ-SpoIIIAH complex. (B) Loss of SpoIVFA renders BofA susceptible to cleavage by CtpB, a serine protease made under σ control in the mother cell and under σ control in the forespore. CtpB is believed to be translocated into the space between the two membranes, where it targets a short C-terminal extracellular domain of BofA. (C) Loss of BofA allows SpoIVFB to cleave pro-σ, releasing active σ into the mother cell. See the text for references.

Citation: Kroos L, Piggot P, Moran, Jr. C. 2008. 21 Sporulation and Other Multicellular Behaviors, p 363-383. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch21
1. Abanes-De Mello, A.,, Y. L. Sun,, S. Aung, and, K. Pogliano. 2002. A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes Dev. 16: 32533264.
2. Alper, S.,, L. Duncan, and, R. Losick. 1994. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77: 195205.
3. Arabolaza, A. L.,, A. Nakamura,, M. M. Pedrido,, L. Martel-otto,, L. Orsaria, and, R. R. Grau. 2003. Characterization of a novel inhibitory feedback of the anti-anti-sigma SpoIIAA on Spo0A activation during development in Bacillus subtilis. Mol. Microbiol. 47: 12511263.
4. Arigoni, F.,, K. Pogliano,, C. C. Webb,, P. Stragier, and, R. Losick. 1995. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science 270: 637640.
5. Arigoni, F.,, A., M. Guerout-Fleury,, I. Barak, and, P. Stragier. 1999. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 31: 14071415.
6. Bagyan, I.,, J. Hobot, and, S. Cutting. 1996. A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J. Bacteriol. 178: 45004507.
7. Barak, I., and, A. J. Wilkinson. 2005. Where asymmetry in gene expression originates. Mol. Microbiol. 57: 611620.
8. Bath, J.,, L. J. Wu,, J. Errington, and, J. C. Wang. 2000. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290: 995997.
9. Ben-Yehuda, S., and, R. Losick. 2002. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109: 257266.
10. Ben-Yehuda, S.,, D. Z. Rudner, and, R. Losick. 2003. Assembly of the SpoIIIE DNA translocase depends on chromosome trapping in Bacillus subtilis. Curr. Biol. 13: 21962200.
11. Ben-Yehuda, S.,, M. Fujita,, X. S. Liu,, B. Gorbatyuk,, D. Skoko,, J. Yan,, J. F. Marko,, J. S. Liu,, P. Eichenberger,, D. Z. Rudner, and, R. Losick. 2005. Defining a centromere-like element in Bacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA. Mol. Cell 17: 773782.
12. Blaylock, B.,, X. Jiang,, A. Rubio,, C. P. Moran, Jr., and, K. Pogliano. 2004. Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes Dev. 18: 29162928.
13. Branda, S. S.,, J. J. Gonzalez-Pastor,, S. Ben-Yehuda,, R. Losick, and, R. Kolter. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98: 1162111626.
14. Branda, S. S.,, J. J. Gonzalez-Pastor,, E. Dervyn,, S. D. Ehrlich,, R. Losick, and, R. Kolter. 2004. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol. 186: 39703979.
15. Branda, S. S.,, F. Chu,, D. B. Kearns,, R. Losick, and, R. Kolter. 2006. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59: 12291238.
16. Britton, R. A.,, P. Eichenberger,, J. E. Gonzalez-Pastor,, P. Fawcett,, R. Monson,, R. Losick, and, A. D. Grossman. 2002. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J. Bacteriol. 184: 48814890.
17. Brown, M. S.,, J. Ye,, R. B. Rawson, and, J. L. Goldstein. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391398.
18. Burbulys, D.,, K. A. Trach, and, J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545552.
19. Burkholder, W. F., and, A. D. Grossman. 2000. Regulation of the initiation of endospore formation in Bacillus subtilis, p. 151166. In Y. V. Brun and, L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, DC.
20. Burkholder, W. F.,, I. Kurtser, and, A. D. Grossman. 2001. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104: 269279.
21. Calvio, C.,, F. Celandroni,, E. Ghelardi,, G. Amati,, S. Salvetti,, F. Ceciliani,, A. Galizzi, and, S. Senesi. 2005. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J. Bacteriol. 187: 53565366.
22. Campbell, E. A., and, S. A. Darst. 2000. The anti-sigma factor SpoIIAB forms a 2:1 complex with σF, contacting multiple conserved regions of the sigma factor. J. Mol. Biol. 300: 1728.
23. Campo, N., and, D. Z. Rudner. 2006. A branched pathway governing the activation of a developmental transcription factor by regulated intramembrane proteolysis. Mol. Cell 23: 2535.
24. Carlson, H. C.,, S. Lu,, L. Kroos, and, W. G. Haldenwang. 1996. Exchange of precursor-specific elements between Pro-σE and Pro-σK of Bacillus subtilis. J. Bacteriol. 178: 546549.
25. Carniol, K.,, P. Eichenberger, and, R. Losick. 2004. A threshold mechanism governing activation of the developmental regulatory protein σF in Bacillus subtilis. J. Biol. Chem. 279: 1486014870.
26. Chagneau, C., and, M. H. Saier, Jr. 2004. Biofilm-defective mutants of Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 8: 177188.
27. Chary, V. K.,, D. W. Hilbert,, M. L. Higgins, and, P. J. Piggot. 2000. The putative DNA translocase SpoIIIE is required for sporulation of the symmetrically dividing coccal species Sporosarcina ureae. Mol. Microbiol. 35: 612622.
28. Chary, V. K.,, M. Meloni,, D. W. Hilbert, and, P. J. Piggot. 2005. Control of the expression and compartmentalization of σF activity during sporulation of Bacillus subtilis by regulators of σF and σF. J. Bacteriol. 187: 68326840.
29. Chiba, S.,, K. Coleman, and, K. Pogliano. 2007. Impact of membrane fusion and proteolysis on SpoIIQ dynamics and interaction with SpoIIIAH. J. Biol. Chem. 282: 25762586.
30. Chu, F.,, D. B. Kearns,, S. S. Branda,, R. Kolter, and, R. Losick. 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol. Microbiol. 59: 12161228.
31. Chung, J. D.,, G. Stephanopoulos,, K. Ireton, and, A. D. Grossman. 1994. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176: 19771984.
32. Clarkson, J.,, I. D. Campbell, and, M. D. Yudkin. 2004. Efficient regulation of σF, the first sporulation-specific sigma factor in B. subtilis. J. Mol. Biol. 342: 11871195.
33. Connelly, M. B.,, G. M. Young, and, A. Sloma. 2004. Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J. Bacteriol. 186: 41594167.
34. Crater, D. L., and, C. P. Moran, Jr. 2002. Two regions of GerE required for promoter activation in Bacillus subtilis. J. Bacteriol. 184: 241249.
35. Cutting, S.,, V. Oke,, A. Driks,, R. Losick,, S. Lu, and, L. Kroos. 1990. A forespore checkpoint for mother-cell gene expression during development in Bacillus subtilis. Cell 62: 239250.
36. Cutting, S.,, A. Driks,, R. Schmidt,, B. Kunkel, and, R. Losick. 1991a. Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-σF processing in Bacillus subtilis. Genes Dev. 5: 456466.
37. Cutting, S.,, S. Roels, and, R. Losick. 1991b. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J. Mol. Biol. 221: 12371256.
38. Diederich, B.,, J. F. Wilkinson,, T. Magnin,, S. M. A. Najafi,, J. Errington, and, M. D. Yudkin. 1994. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor σF of Bacillus subtilis. Genes Dev. 8: 26532663.
39. Dixit, M.,, C. S. Murudkar, and, K. Rao. 2002. epr is transcribed from a σD promoter and is involved in swarming of Bacillus subtilis. J. Bacteriol. 184:596599.
40. Doan, T.,, K. A. Marquis, and, D., Z. Rudner. 2005. Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum. Mol. Microbiol. 55:17671781.
41. Dong, T. C., and, S., M. Cutting. 2003. SpoIVB-mediated cleavage of SpoIVFA could provide the intercellular signal to activate processing of Pro-σF in Bacillus subtilis. Mol. Micro-biol. 49:14251434.
42. Driks, A. 2002. Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol. 10:251254.
43. Ducros,, V. M.,, R. J. Lewis,, C. S. Verma,, E. J. Dodson,, G. Leonard.,, J. P. Turkenburg,, G. N. Murshudov,, A. J. Wilkinson, and, J., A. Brannigan. 2001. Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J. Mol. Biol. 306:759771.
44. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick, and, P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641644.
45. Duncan, L.,, S. Alper, and, R. Losick. 1996. SpoIIAA governs the release of the cell-type specific transcription factor σF from its anti-sigma factor SpoIIAB. J. Mol. Biol. 260:147164.
46. Dworkin, J., and, R. Losick. 2001. Differential gene expression governed by chromosomal spatial asymmetry. Cell 107:339346.
47. Dworkin, J. 2003. Transient genetic asymmetry and cell fate in a bacterium. Trends Genet. 19:107112.
48. Dworkin, J., and, R. Losick. 2005. Developmental commitment in a bacterium. Cell 121:401409.
49. Dworkin, M.,, K. H. Keller, and, D. Weisberg. 1983. Experimental observations consistent with a surface tension model of gliding motility of Myxococcus xanthus. J. Bacteriol. 155:13671371.
50. Eichenberger, P., P. Fawcett, and, R. Losick. 2001. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol. Microbiol. 42:11471162.
51. Eichenberger,, P.,, S. T. Jensen,, E. M. Conlon,, C. van Ooij,, J. Silvaggi,, J. E. Gonzalez-Pastor,, M. Fujita,, S. Ben-Yehuda,, P. Stragier,, J. S. Liu, and, R. Losick. 2003. The σF regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 327:945972.
52. Eichenberger, P.,, M. Fujita,, S. T. Jensen,, E. M. Conlon,, D. Z. Rudner,, S. T. Wang,, C. Ferguson,, K. Haga,, T. Sato,, J. S. Liu, and, R. Losick. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2:16641683.
53. Ellermeier,, C. D.,, E. C. Hobbs,, J. E. Gonzalez-Pastor, and, R. Losick. 2006. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124:549559.
54. Errington, J.,, L. Appleby,, R. A. Daniel,, H. Goodfellow,, S. R. Partridge, and, M., D. Yudkin. 1992. Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for σG activity at an intermediate stage of sporulation. J. Gen. Microbiol. 138:26092618.
55. Errington, J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1:117126.
56. Fawcett, P.,, A. Melnikov, and, P. Youngman. 1998. The Bacillus SpoIIGA protein is targeted to sites of spore septum formation in a SpoIIE-independent manner. Mol. Microbiol. 28:931943.
57. Feucht, A.,, L. Abbotts, and, J. Errington. 2002. The cell differentiation protein SpoIIE contains a regulatory site that controls its phosphatase activity in response to asymmetric septation. Mol. Microbiol. 45:11191130.
58. Feucht, A.,, L. Evans, and, J. Errington. 2003. Identification of sporulation genes by genome-wide analysis of the σE regulon of Bacillus subtilis. Microbiology 149:30233034.
59. Frandsen, N., and, P. Stragier. 1995. Identification and characterization of the Bacillus subtilis spoIIP locus. J. Bacteriol. 177:716722.
60. Frandsen, N.,, I. Barak,, C. Karmazyn-Campelli, and, P. Stragier. 1999. Transient gene asymmetry during sporulation and establishment of cell specificity in Bacillus subtilis. Genes Dev. 13:394399.
61. Fujita, M., and, R. Losick. 2002. An investigation into the compartmentalization of the sporulation transcription factor σE in Bacillus subtilis. Mol. Microbiol. 43:2738.
62. Fujita, M., and, R. Losick. 2003. The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev. 17:11661174.
63. Fujita, M.,, J. E. Gonzalez-Pastor, and, R. Losick. 2005. High-and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187:13571368.
64. Gholamhoseinian, A., and, P., J. Piggot. 1989. Timing of spoII gene expression relative to septum formation during sporulation of Bacillus subtilis. J. Bacteriol. 171:57475749.
65. Gomez, M., and, S., M. Cutting. 1996. Expression of the Bacillus subtilis spoIVB gene is under dual σFF control. Microbiology 142:34533457.
66. Gomez, M., and, S., M. Cutting. 1997. bofC encodes a putative forespore regulator of the Bacillus subtilis σK checkpoint. Microbiology 143:157170.
67. Gonzalez-Pastor, J. E.,, E. C. Hobbs, and, R. Losick. 2003. Cannibalism by sporulating bacteria. Science 301:510513.
68. Halberg, R., and, L. Kroos. 1994. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J. Mol. Biol. 243:425436.
69. Hamon, M. A., and, B., A. Lazazzera. 2001. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42:11991209.
70. Hamon,, M. A.,, N. R. Stanley,, R. A. Britton,, A. D. Grossman, and, B., A. Lazazzera. 2004. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol. Microbiol. 52:847860.
71. Helmann, J. D., and, C. C. Moran,, Jr. 2002. RNA polymerase and sigma factors, p. 289312. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
72. Hilbert, D. W., and, P., J. Piggot. 2003. Novel spoIIE mutation that causes uncompartmentalized σF activation in Bacillus subtilis. J. Bacteriol. 185:15901598.
73. Hilbert, D. W.,, V. K. Chary, and, P., J. Piggot. 2004. Contrasting effects of σE on compartmentalization of σF activity during sporulation of Bacillus subtilis. J. Bacteriol. 186:19831990.
74. Hilbert, D. W., and, P., J. Piggot. 2004. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68:234262.
75. Hoa, N. T.,, J. A. Brannigan, and, S., M. Cutting. 2002. The Bacillus subtilis signaling protein SpoIVB defines a new family of serine peptidases. J. Bacteriol. 184:191199.
76. Hofmeister, A. 1998. Activation of the proprotein transcription factor Pro-σE is associated with three changes in its sub-cellular localization during sporulation in Bacillus subtilis. J. Bacteriol. 180:24262433.
77. Hofmeister,, A. E. M.,, A. Londono-Vallejo, E. Harry,, P. Stragier, and, R. Losick. 1995. Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83:219226.
78. Iber, D.,, J. Clarkson,, M. D. Yudkin, and, I., D. Campbell. 2006. The mechanism of cell differentiation in Bacillus subtilis. Nature 441:371374.
79. Ichikawa, H.,, R. Halberg, and, L. Kroos. 1999. Negative regulation by the Bacillus subtilis GerE protein. J. Biol. Chem. 274:83228327.
80. Ichikawa, H., and, L. Kroos. 2000. Combined action of two transcription factors regulates genes encoding spore coat proteins of Bacillus subtilis. J. Biol. Chem. 275:1384913855.
81. Illing, N., and, J. Errington. 1991. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the σE form of RNA polymerase. Mol. Microbiol. 5:19271940.
82. Jiang, X.,, A. Rubio,, S. Chiba, and, K. Pogliano. 2005. Engulfment-regulated proteolysis of SpoIIQ: evidence that dual checkpoints control sigma activity. Mol. Microbiol. 58:102115.
83. Jonas,, R. M.,, E. A. Weaver,, T. J. Kenney,, C. P. Moran, Jr., and, W., G. Haldenwang. 1988. The Bacillus subtilis spoIIG operon encodes both σF and a gene necessary for σF activation. J. Bacteriol. 170:507511.
84. Ju, J.,, T. Luo, and, W. Haldenwang. 1997. Bacillus subtilis pro-σE fusion protein localizes to the forespore septum and fails to be processed when synthesized in the forespore. J. Bacteriol. 179:48884893.
85. Ju, J.,, T. Luo, and, W. Haldenwang. 1998. Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J. Bacteriol. 180:16731681.
86. Ju, J.,, T. Mitchell,, H. K. Peters, and, W., G. Holdenwang. 1999. Sigma factor displacement from RNA polymerase during Bacillus subtilis sporulation. J. Bacteriol. 181:49694977.
87. Ju, J., and, W., G. Haldenwang. 2003. Tethering of the Bacillus subtilis σF proprotein to the cell membrane is necessary for its processing but insufficient for its stabilization. J. Bacteriol. 185:58975900.
88. Julien, B.,, A. D. Kaiser, and, A. Garza. 2000. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 97:90989103.
89. Karow, M. L.,, P. Glaser, and, P., J. Piggot. 1995. Identification of a gene, spoIIR, that links the activation of σE to the transcriptional activity of σF during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 92:20122016.
90. Kearns, D. B., and, R. Losick. 2003. Swarming motility in undo-mesticated Bacillus subtilis. Mol. Microbiol. 49:581590.
91. Kearns, D. B.,, F. Chu,, R. Rudner, and, R. Losick. 2004. Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol. Microbiol. 52:357369.
92. Kearns,, D. B.,, F. Chu,, S. S. Branda,, R. Kolter, and, R. Losick. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55:739749.
93. Kellner, E. M.,, A. Decatur, and, C. P. Moran, Jr. 1996. Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol. Microbiol. 21:913924.
94. Khvorova, A.,, L. Zhang,, M. L. Higgins, and, P., J. Piggot. 1998. The spoIIE locus is involved in the Spo0A-dependent switch in the location of FtsZ rings in Bacillus subtilis. J. Bacteriol. 180:12561260.
95. Khvorova, A.,, V. K. Chary,, D. W. Hilbert, and, P., J. Piggot. 2000. The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J. Bacteriol. 182:44254429.
96. Kim, H.,, M. Hahn,, P. Grabowski,, D. C. McPherson,, M. M. Otte,, R. Wang,, C. C. Ferguson,, P. Eichenberger, and, A. Driks. 2006. The Bacillus subtilis spore coat protein interaction network. Mol. Microbiol. 59:487502.
97. Kim, S. K., and, D. Kaiser. 1991. C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J. Bacteriol. 173:17221728.
98. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano,, and R. Losick. 1999. Septation, dephosphorylation, and the activation of σF during sporulation in Bacillus subtilis. Genes Dev. 13:11561167.
99. Kirchman, P. A.,, H. DeGrazia,, E. M. Kellner, and, C. P. Moran, Jr. 1993. Forespore-specific disappearance of the sigma-factor antagonist SpoIIAB: implications for its role in determination of cell fate in Bacillus subtilis. Mol. Microbiol. 8:663671.
100. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252266.
101. Kroos, L.,, B. Kunkel, and, R. Losick. 1989. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243:526529.
102. Kroos, L., and, J., R. Maddock. 2003. Prokaryotic development: emerging insights. J. Bacteriol. 185:11281146.
103. Kruse, T.,, S. Lobedanz,, N. M. Berthelsen, and, L. Søgaard-Andersen. 2001. C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol. Microbiol. 40:156168.
104. LaBell, T. L.,s, J. E. Trempy, and, W., G. Haldenwang. 1987. Sporulation-specific sigma factor, σ29, of Bacillus subtilis is synthesized from a precursor protein, Pσ31. Proc. Natl. Acad. Sci. USA 84:17841788.
105. Lazazzera, B. A., and, A., D. Grossman. 1998. The ins and outs of peptide signaling. Trends Microbiol. 6:288294.
106. Levin, P. A., and, R. Losick. 1996. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10:478488.
107. Levin, P. A.,, R. Losick,, P. Stragier, and, F. Arigoni. 1997. Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ. Mol. Micro-biol. 25:839846.
108. Li, Z., and, P., J. Piggot. 2001. Development of a two-part transcription probe to determine the completeness of temporal and spatial compartmentalization of gene expression during bacterial development. Proc. Natl. Acad. Sci. USA 98:1253812543.
109. Lichtenthaler, S. F., and, H. Steiner. 2007. Sheddases and intramembrane-cleaving proteases: RIPpers of the membrane. Symposium on Regulated Intramembrane Proteolysis. EMBO Rep. 8:537541.
110. Liu, J., and, P. Zuber. 2000. The ClpX protein of Bacillus subtilis indirectly influences RNA polymerase holoenzyme composition and directly stimulates σF-dependent transcription. Mol. Microbiol. 37:885897.
111. Londono-Vallejo, J. A., and, P. Stragier. 1995. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev. 9:503508.
112. Londono-Vallejo, J. A.,, C. Frehel, and, P. Stragier. 1997. SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol. Microbiol. 24:2939.
113. Lu, S.,, R. Halberg, and, L. Kroos. 1990. Processing of the mother-cell σ factor, σK, may depend on events occurring in the forespore during Bacillus subtilis development. Proc. Natl. Acad. Sci. USA 87:97229726.
114. Lu, S.,, S. Cutting, and, L. Kroos. 1995. Sporulation protein SpoIVFB from Bacillus subtilis enhances processing of the sigma factor precursor pro-σK in the absence of other sporulation gene products. J. Bacteriol. 177:10821085.
115. Lucet, I.,, A. Feucht,, M. D. Yudkin, and, J. Errington. 2000. Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J. 19:14671475.
116. Maamar, H., and, D. Dubnau. 2005. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56:615624.
117. Magnin, T.,, M. Lord, and, M., D. Yudkin. 1997. Contribution of partner switching and SpoIIAA cycling to regulation of σF activity in sporulating Bacillus subtilis. J. Bacteriol. 179:39223927.
118. Margolis, P.,, A. Driks, and, R. Losick. 1991. Establishment of cell type by compartmentalized activation of a transcription factor. Science 254:562565.
119. Masuda, E. S.,, H. Anaguchi,, K. Yamada, and, Y. Kobayashi. 1988. Two developmental genes encoding sigma factor homologs are arranged in tandem in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85:76377641.
120. Masuda, E. S.,, H. Anaguchi,, T. Sato,, M. Takeuchi, and, Y. Kobayashi. 1990. Nucleotide sequence of the sporulation gene spoIIGA from Bacillus subtilis. Nucleic Acids Res. 18:657.
121. McBride, S. M.,, A. Rubio,, L. Wang, and, W., G. Haldenwang. 2005. Contributions of protein structure and gene position to the compartmentalization of the regulatory proteins σE and SpoIIE in sporulating Bacillus subtilis. Mol. Microbiol. 57:434451.
122. Mendelson, N. H. 1999. Bacillus subtilis macrofibres, colonies and bioconvection patterns use different strategies to achieve multicellular organization. Environ. Microbiol. 1:471477.
123. Min, K.,, C. M. Hilditch,, B. Diederich,, J. Errington, and, M., D. Yudkin. 1993. σF, the first compartment-specific transcription factor of Bacillus subtilis, is regulated by an anti-σ factor that is also a protein kinase. Cell 74:735742.
124. Molle, V.,, M. Fujita,, S. T. Jensen,, P. Eichenberger,, J. E. Gonzalez-Pastor,, J. S. Liu, and, R. Losick. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50:16831701.
125. Nicholson,, W. L.,, N. Munakata,, G. Horneck,, H. J. Melosh, and, P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Micro-biol. Mol. Biol. Rev. 64:548572.
126. O’Connor, K. A., and, D., R. Zusman. 1988. Reexamination of the role of autolysis in the development of Myxococcus xanthus. J. Bacteriol. 170:41034112.
127. O’Connor, K. A., and, D., R. Zusman. 1991. Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J. Bacteriol. 173:33183333.
128. Okada, M.,, I. Sato,, S. J. Cho,, H. Iwata, T. Nishio, D. Dubnau, and, Y. Sakagami. 2005. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 1:2324.
129. Pan, Q.,, D. A. Garsin, and, R. Losick. 2001. Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol. Cell 8:873883.
130. Pan, Q.,, R. Losick, and, D., Z. Rudner. 2003. A second PDZ-containing serine protease contributes to activation of the sporulation transcription factor σK in Bacillus subtilis. J. Bacteriol. 185:60516056.
131. Partridge, S. R., and, J. Errington. 1993. Importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8:945955.
132. Perego, M., and, J., A. Brannigan. 2001. Pentapeptide regulation of aspartyl-phosphate phosphatases. Peptides 22:15411547.
133. Perego, M., and, J., A. Hoch. 2002. Two-component systems, phosphorelays, and regulation of their activities by phosphatases, p. 473482. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
134. Peters, H. K., and, W., G. Haldenwang. 1991. Synthesis and fractionation properties of SpoIIGA, a protein essential for Pro-σE processing in Bacillus subtilis. J. Bacteriol. 173:78217827.
135. Peters, H. K.,, H. C. Carlson, and, W., G. Haldenwang. 1992. Mutational analysis of the precursor-specific region of Bacillus subtilis σE. J. Bacteriol. 174:46294637.
136. Peters, H. K., and, W., G. Haldenwang. 1994. Isolation of a Bacillus subtilis spoIIGA allele that suppresses processing-negative mutations in the Pro-σF gene (sigE). J. Bacteriol. 176:77637766.
137. Phillips, Z. E., and, M., A. Strauch. 2002. Bacillus subtilis sporulation and stationary phase gene expression. Cell. Mol. Life Sci. 59:392402.
138. Piggot,, P. J.,, and R. Losick. 2002. Sporulation genes and inter-compartmental regulation, p. 483518. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
139. Piggot, P. J., and, D., W. Hilbert. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7:579586.
140. Pogliano, J.,, N. Osborne,, M. D. Sharp,, A. Abanes-De Mello,, A. Perez,, Y. L. Sun, and, K. Pogliano. 1999. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31:11491159.
141. Pogliano, K.,, A. Hofmeister, and, R. Losick. 1997. Disappearance of the σE transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. J. Bacteriol. 179:33313341.
142. Prince, H.,, R. Zhou, and, L. Kroos. 2005. Substrate requirements for regulated intramembrane proteolysis of Bacillus subtilis pro-σK. J. Bacteriol. 187:961971.
143. Rowland,, S. L.,, W. F. Burkholder,, K. A. Cunningham,, M. W. Maciejewski,, A. D. Grossman, and, G., F. King. 2004. Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. Mol. Cell 13:689701.
144. Rudner, D.,, P. Fawcett, and, R. Losick. 1999. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl. Acad. Sci. USA 96:1476514770.
145. Rudner, D. Z., and, R. Losick. 2002. A sporulation membrane protein tethers the pro-σK processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev. 16:10071018.
146. Rudner, D. Z.,, Q. Pan, and, R., M. Losick. 2002. Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proc. Natl. Acad. Sci. USA 99:87018706.
147. Sager, B., and, D. Kaiser. 1993. Spatial restriction of cellular differentiation. Genes Dev. 7:16451653.
148. Sanchez-Salas,, J. L.,, M. L. Santiago-Lara,, B. Setlow,, M. D. Sussman, and, P. Setlow. 1992. Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J. Bacteriol. 174:807814.
149. Schmidt, R.,, P. Margolis,, L. Duncan,, R. Coppolecchia,, Jr.,, C. C. Moran, and, R. Losick. 1990. Control of developmental transcription factor σF by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87:92219225.
150. Senesi, S.,, E. Ghelardi,, F. Celandroni,, S. Salvetti,, E. Parisio, and, A. Galizzi. 2004. Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus. J. Bacteriol. 186:11581164.
151. Serrano, M.,, S. Hovel,, C. P. Moran,, Jr.,, A. A. Henriques, and, U. Volker. 2001. Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J. Bacteriol. 183:29953003.
152. Serrano, M.,, L. Corte,, J. Opdyke,, C. P. Moran, Jr., and, A., O. Henriques. 2003. Expression of spoIIIJ in the prespore is sufficient for activation of σG and for sporulation in Bacillus subtilis. J. Bacteriol. 185:39053917.
153. Serrano, M.,, A. Neves,, C. M. Soares,, C. P. Moran, Jr., and, A., O. Henriques. 2004. Role of the anti-sigma factor SpoIIAB in regulation of σG during Bacillus subtilis sporulation. J. Bacteriol. 186:40004013.
154. Setlow, P. 2003. Spore germination. Curr. Opin. Microbiol. 6:550556.
155. Shcheptov, M.,, G. Chyu,, I. Bagyan, and, S. Cutting. 1997. Characterization of csgA, a new member of the forespore-expressed regulon from Bacillus subtilis. Gene 184:133140.
156. Smits,, W. K.,, C. C. Eschevins,, K. A. Susanna,, S. Bron,, O. P. Kuipers, and, L., W. Hamoen. 2005. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56:604614.
157. Sonenshein,, A. L.,, J. A. Hoch,, and R. Losick. 1993. Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, DC.
158. Sonenshein, A. L. 2000. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3:561566.
159. Sonenshein, A. L.,, J. A. Hoch, and, R. Losick. 2002. Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
160. Sonenshein, A. L. 2005. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8:203207.
161. Stanley,, N. R.,, R. A. Britton,, A. D. Grossman, and, B., A. Lazazzera. 2003. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185:19511957.
162. Steil, L.,, M. Serrano,, A. O. Henriques, and, U. Volker. 2005. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151:399420.
163. Stragier, P.,, C. Bonamy, and, C. Karmazyn-Campelli. 1988. Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52:697704.
164. Stragier, P.,, B. Kunkel,, L. Kroos, and, R. Losick. 1989. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243:507512.
165. Sun, D.,, P. Stragier, and, P. Setlow. 1989. Identification of a new σ-factor involved in compartmentalized gene expression during sporulation of Bacillus subtilis. Genes Dev. 3:141149.
166. Sun, D.,, R. M. Cabrera-Martinez, and, P. Setlow. 1991. Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor σG. J. Bacteriol. 173:29772984.
167. Sun, Y. L.,, M. D. Sharp, and, K. Pogliano. 2000. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J. Bacteriol. 182:29192927.
168. Tjalsma, H.,, S. Bron, and, J. M. van Dijl. 2003. Complementary impact of paralogous Oxa1-like proteins of Bacillus subtilis on post-translocational stages in protein secretion. J. Biol. Chem. 278:1562215632.
169. Tortosa, P., and, D. Dubnau. 1999. Competence for transformation: a matter of taste. Curr. Opin. Microbiol. 2:588592.
170. Tovar-Rojo, F.,, M. Chander,, B. Setlow, and, P. Setlow. 2002. The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. J. Bacteriol. 184:584587.
171. Veening, J. W.,, L. W. Hamoen, and, O., P. Kuipers. 2005. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56:14811494.
172. Wakeley,, P. R.,, R. Dorazi,, N. T. Hoa,, J. R. Bowyer, and, S., M. Cutting. 2000. Proteolysis of SpoIVB is a critical determinant in signalling of Pro-σK processing in Bacillus subtilis. Mol. Microbiol. 36:13361348.
173. Wang,, S. T.,, B. Setlow,, E. M. Conlon,, J. L. Lyon,, D. Imamura,, T. Sato,, P. Setlow,, R. Losick, and, P. Eichenberger. 2006. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358:1637.
174. Wireman, J. W., and, M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189:516523.
175. Wolfe, M. S., and, R. Kopan. 2004. Intramembrane proteolysis: theme and variations. Science 305:11191123.
176. Wu, L. J., and, J. Errington. 1994. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymetric cell division. Science 264:572575.
177. Wu,, L. J.,, P. J. Lewis,, R. Allmansberger,, P. M. Hauser, and, J. Errington. 1995. A conjugation-like mechanism for pre-spore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9:13161326.
178. Wu, L. J., and, J. Errington. 1998. Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol. Microbiol. 27:777786.
179. Wu, L. J., and, J. Errington. 2000. Identification and characterization of a new prespore-specific regulatory gene, rsfA, of Bacillus subtilis. J. Bacteriol. 182:418424.
180. Yi, L., and, R., E. Dalbey. 2005. Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (review). Mol. Membr. Biol. 22:101111.
181. York, K.,, T. J. Kenny,, S. kSatola, and, C. P. Moran, Jr. 1992. Spo0A controls the σA-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J. Bacteriol. 174:26482658.
182. Yu, Y.-T. N., and, L. Kroos. 2000. Evidence that SpoIVFB is a novel type of membrane metalloprotease governing inter-compartmental communication during Bacillus subtilis sporulation. J. Bacteriol. 182:33053309.
183. Yudkin, M. D., and, J. Clarkson. 2005. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis. Mol. Microbiol. 56:578589.
184. Zhang, B.,, R. Daniel,, J. Errington, and, L. Kroos. 1997a. Bacillus subtilis SpoIIID protein binds to two sites in the spoVD promoter and represses transcription by σE RNA polymerase. J. Bacteriol. 179:972975.
185. Zhang, B., and, L. Kroos. 1997. A feedback loop regulates the switch from one sigma factor to the next in the cascade controlling Bacillus subtilis mother cell gene expression. J. Bacteriol. 179:61386144.
186. Zhang, B.,, A. Hofmeister, and, L. Kroos. 1998. The prosequence of pro-σF promotes membrane association and inhibits RNA polymerase core binding. J. Bacteriol. 180:24342441.
187. Zhang, B.,, P. Struffi, and, L. Kroos. 1999. σK can negatively regulate sigE expression by two different mechanisms during sporulation of Bacillus subtilis. J. Bacteriol. 181:40814088.
188. Zhang, J.,, H. Ichikawa,, R. Halberg,, L. Kroos, and, A., I. Aronson. 1994. Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. J. Mol. Biol. 240:405415.
189. Zhang, L.,, M. L. Higgins,, P. J. Piggot, and, M., L. Karow. 1996. Analysis of the role of prespore gene expression in the compartmentalization of mother-cell gene expression during sporulation of Bacillus subtilis. J. Bacteriol. 178:28132817.
190. Zhang, L.,, M. L. Higgins, and, P., J. Piggot. 1997b. The division during bacterial sporulation is symmetrically located in Sporosarcina ureae. Mol. Microbiol. 25:10911098.
191. Zheng, L.,, R. Halberg,, S. Roels, H. Ichikawa,, L. Kroos, and, R. Losick. 1992. Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. J. Mol. Biol. 226:10371050.
192. Zhou, R., and, L. Kroos. 2004. BofA protein inhibits intra-membrane proteolysis of pro-σK in an intercompartmental signaling pathway during Bacillus subtilis sporulation. Proc. Natl. Acad. Sci. USA 101:63856390.
193. Zhou, R., and, L. Kroos. 2005. Serine proteases from two cell types target different components of a complex that governs regulated intramembrane proteolysis of pro-σK during Bacillus subtilis development. Mol. Microbiol. 58:835846.
194. Zupancic, M. L.,, H. Tran, and, A., E. Hofmeister. 2001. Chromosomal organization governs the timing of cell type-specific gene expression required for spore formation in Bacillus subtilis. Mol. Microbiol. 39:14711481.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error