1887

22 Developmental Control in : Strategies for Survival in Oligotrophic Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

22 Developmental Control in : Strategies for Survival in Oligotrophic Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap22-2.gif

Abstract:

In stalked alphaproteobacteria such as , , and , development is not triggered by environmental changes but is a consequence of normal progression through the cell cycle. In contrast to and , the oligotrophic has adopted a different strategy to cope with almost constant famine. First, the production of a chemotactically competent swarmer cell allows dispersal towards more nutritionally rich environments. Second, the successive synthesis of a flagellum, pili, and holdfast at the same pole of the cell optimizes attachment of swarmer cells to surfaces, thus improving the cell’s access to nutrients absorbed to surfaces. Finally, once attached tightly to a surface by its holdfast, the cell synthesizes a stalk, which dramatically improves nutrient uptake in the diffusion-limited environment where typically lives. This chapter focuses on the mechanisms of surface adhesion and stalk function, as well as how the overall developmental cycle is controlled. Differentiation is an essential process for adhesion of to surfaces. The stalk is an extension of the cell wall and membranes devoid of ribosomes, DNA, and cytoplasmic proteins. The stalk is transected perpendicularly by crossbands synthesized during each round of cell division, which may serve to compartmentalize the stalk from the cell body. A complex signal transduction pathway ensures that polar development, DNA replication, and cell division are coordinated. The new pole remains marked until late in cell division when TipN moves from the pole to the site of division.

Citation: Pierce D, Brun Y. 2008. 22 Developmental Control in : Strategies for Survival in Oligotrophic Environments, p 385-395. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch22

Key Concept Ranking

Outer Membrane Proteins
0.4590513
Cell Division
0.43120947
0.4590513
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The cell cycle of . Each round of cell division produces a stalked cell and a motile swarmer cell. The swarmer cell must differentiate into a stalked cell prior to undergoing cell division.

Citation: Pierce D, Brun Y. 2008. 22 Developmental Control in : Strategies for Survival in Oligotrophic Environments, p 385-395. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Diagram of the stages of adhesion. From left to right, a swarmer cell approaches a substrate so that the pili and/or the flagellum binds the surface; weak attachment persists transiently, during which time the pili retract until tight attachment forms, mediated by the holdfast.

Citation: Pierce D, Brun Y. 2008. 22 Developmental Control in : Strategies for Survival in Oligotrophic Environments, p 385-395. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Nutrient uptake model of stalk function in . Two nonexclusive models are proposed to explain nutrient uptake by the stalk. The periplasmic diffusion model illustrates nutrients binding to periplasmic receptors and being transported to the cell body through the periplasm, where they can then be taken up by the cell. The stalk core diffusion model shows the possibility of nutrients binding to periplasmic receptors and then being taken into the core of the stalk by transport proteins. The nutrients would then diffuse into the cell body. The available experimental data support the periplasmic diffusion model. Reprinted from (Wagner and Brun, 2007) with permission of the publisher.

Citation: Pierce D, Brun Y. 2008. 22 Developmental Control in : Strategies for Survival in Oligotrophic Environments, p 385-395. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Regulatory pathway controlling cell division and polar development in . Sensor kinases and response regulators, along with other factors, coordinate polar development with cell cycle progression. Figure adapted from Biondi et al. ( a).

Citation: Pierce D, Brun Y. 2008. 22 Developmental Control in : Strategies for Survival in Oligotrophic Environments, p 385-395. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch22
1. Abu-Lail, N. I., and, T. A. Camesano. 2003. Polysaccharide properties probed with atomic force microscopy. J. Microsc. 212:217238.
2. Aldridge, P., and, U. Jenal. 1999. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. Mol. Microbiol. 32:379391.
3. Aldridge, P.,, R. Paul,, P. Goymer,, P. Rainey, and, U. Jenal. 2003. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol. Microbiol. 47:16951708.
4. Berg, H. C. 1993. Random Walks in Biology. Princeton University Press, Princeton, NJ.
5. Berg, H. C., and, E. M. Purcell. 1977. Physics of chemoreception. Biophys. J. 20:193219.
6. Biondi, E. G.,, S. J. Reisinger,, J. M. Skerker,, M. Arif,, B. S. Perchuk,, K. R. Ryan, and, M. T. Laub. 2006a. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444:899904.
7. Biondi, E. G.,, J. M. Skerker,, M. Arif,, M. S. Prasol,, B. S. Perchuk, and, M. T. Laub. 2006b. A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Mol. Microbiol. 59:386401.
8. Bodenmiller, D.,, E. Toh, and, Y. V. Brun. 2004. Development of surface adhesion in Caulobacter crescentus. J. Bacteriol. 186:14381447.
9. Brun, Y. V., and, R. Janakiraman. 2000. The dimorphic life cycle of Caulobacter and stalked bacteria, p. 297317. In Y. V. Brun and, L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, DC.
10. Chen, J. C.,, A. K. Hottes,, H. H. McAdams,, P. T. McGrath,, P. H. Viollier, and, L. Shapiro. 2006. Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. EMBO J. 25:377386.
11. Chen, J. C.,, P. H. Viollier, and, L. Shapiro. 2005. A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant. Mol. Microbiol. 55:10851103.
12. Cole, J.,, G. G. Hardy,, D. Bodenmiller,, E. Toh,, A. Hinz, and, Y. V. Brun. 2003. The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk. Mol. Microbiol. 49:16711683.
13. Collins, R. F.,, K. Beis,, C. Dong,, C. H. Botting,, C. McDonnell,, R. C. Ford,, B. R. Clarke,, C. Whitfield, and, J. H. Naismith. 2007. The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccha-rides in Escherichia coli. Proc. Natl. Acad. Sci. USA 104:23902395.
14. Crymes, W. B., Jr.,, D. Zhang, and, B. Ely. 1999. Regulation of podJ expression during the Caulobacter crescentus cell cycle. J. Bacteriol. 181:39673973.
15. Domian, I. J.,, K. C. Quon, and, L. Shapiro. 1997. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90:415424.
16. Domian, I. J.,, A. Reisenauer, and, L. Shapiro. 1999. Feedback control of a master bacterial cell-cycle regulator. Proc. Natl. Acad. Sci. USA 96:66486653.
17. Dong, C.,, K. Beis,, J. Nesper,, A. L. Brunkan-Lamontagne,, B. R. Clarke,, C. Whitfield, and, J. H. Naismith. 2006. Wza, the translocon for E. coli capsular polysaccharides, defines a new class of membrane protein. Nature 444:226229.
18. Drummelsmith, J., and, C. Whitfield. 2000. Translocation of group 1 capsular polysaccharide to the surface of Escherichia coli requires a multimeric complex in the outer membrane. EMBO J. 19:5766.
19. Dworkin, M. 2000. Introduction to the Myxobacteria, p. 221242. In Y. V. Brun and, L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, DC.
20. Gonin, M.,, E. M. Quardokus,, D. O’Donnol,, J. Maddock, and, Y. V. Brun. 2000. Regulation of stalk elongation by phosphate in Caulobacter crescentus. J. Bacteriol. 182:337347.
21. Hecht, G. B., and, A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177:62236229.
22. Hinz, A. J.,, D. E. Larson,, C. S. Smith, and, Y. V. Brun. 2003. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator. Mol. Microbiol. 47:929941.
23. Holtzendorff, J.,, D. Hung,, P. Brende,, A. Reisenauer,, P. H. Viollier,, H. H. McAdams, and, L. Shapiro. 2004. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304:983987.
24. Hottes, A. K.,, L. Shapiro, and, H. H. McAdams. 2005. DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol. Microbiol. 58:13401353.
25. Huitema, E.,, S. Pritchard,, D. Matteson,, S. K. Radhakrishnan, and, P. H. Viollier. 2006. Bacterial birth scar proteins mark future flagellum assembly site. Cell 124:10251037.
26. Hung, D. Y., and, L. Shapiro. 2002. A signal transduction protein cues proteolytic events critical to Caulobacter cell cycle progression. Proc. Natl. Acad. Sci. USA 99:1316013165.
27. Iniesta, A. A.,, P. T. McGrath,, A. Reisenauer,, H. H. McAdams, and, L. Shapiro. 2006. A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc. Natl. Acad. Sci. USA 103:1093510940.
28. Ireland, M. M.,, J. A. Karty,, E. M. Quardokus,, J. P. Reilly, and, Y. V. Brun. 2002. Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol. Microbiol. 45:10291041.
29. Jacobs, C.,, N. Ausmees,, S. J. Cordwell,, L. Shapiro, and, M. Laub. 2003. Functions of the CckA histidine kinase in Caulobacter cell cycle control. Mol. Microbiol. 47:12791290.
30. Jacobs, C.,, I. J. Domian,, J. R. Maddock, and, L. Shapiro. 1999. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97:111120.
31. Jenal, U., and, T. Fuchs. 1998. An essential protease involved in bacterial cell-cycle control. EMBO J. 17:56585669.
32. Jenal, U., and, J. Malone. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40:385407.
33. Jiang, M.,, W. Shao,, M. Perego, and, J. A. Hoch. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38:535542.
34. Kurtz, H. D., Jr., and, J. Smit. 1992. Analysis of a Caulobacter crescentus gene cluster involved in attachment of the holdfast to the cell. J. Bacteriol. 174:687694.
35. Kurtz, H. D., Jr., and, J. Smit. 1994. The Caulobacter crescentus holdfast: identification of holdfast attachment complex genes. FEMS Microbiol. Lett. 116:175182.
36. Lam, H.,, W. B. Schofield, and, C. Jacobs-Wagner. 2006. A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124:10111023.
37. Larson, R. J., and, J. L. Pate. 1976. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum. J. Bacteriol. 126:282293.
38. Laub, M. T.,, S. L. Chen,, L. Shapiro, and, H. H. McAdams. 2002. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. USA 99:46324637.
39. Lawler, M. L.,, D. E. Larson,, A. J. Hinz,, D. Klein, and, Y. V. Brun. 2006. Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus. Mol. Microbiol. 59:301316.
40. Levi, A., and, U. Jenal. 2006. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. J. Bacteriol. 188:53155318.
41. Li, G.,, C. S. Smith,, Y. V. Brun, and, J. X. Tang. 2005. The elastic properties of the Caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J. Bacteriol. 187:257265.
42. Loferer, H.,, M. Hammar, and, S. Normak. 1997. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol. Microbiol. 26:1123.
43. Marczynski, G. T., and, L. Shapiro. 2002. Control of chromosome replication in Caulobacter crescentus. Annu. Rev. Microbiol. 56:625656.
44. Martin, M. E., and, Y. V. Brun. 2000. Coordinating development with the cell cycle in Caulobacter. Curr. Opin. Micro-biol. 3:589595.
45. Matroule, J. Y.,, H. Lam,, D. T. Burnette, and, C. Jacobs-Wagner. 2004. Cytokinesis monitoring during development: rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter. Cell 118:579590.
46. McGrath, P. T.,, A. A. Iniesta,, K. R. Ryan,, L. Shapiro, and, H. H. McAdams. 2006. A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124:535547.
47. Merker, R. I., and, J. Smit. 1988. Characterization of the adhesive holdfast of marine and freshwater caulobacters. Appl. Environ. Microbiol. 54:20782085.
48. Mitchell, D., and, J. Smit. 1990. Identification of genes affecting production of the adhesion organelle of Caulobacter crescentus CB2. J. Bacteriol. 172:54255431.
49. Ohta, N., and, A. Newton. 2003. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J. Bacteriol. 185:44244431.
50. Ong, C. J.,, M. L. Y. Wong, and, J. Smit. 1990. Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. J. Bacteriol. 172:14481456.
51. Paul, R.,, S. Weiser,, N. C. Amiot,, C. Chan,, T. Schirmer,, B. Giese, and, U. Jenal. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18:715727.
52. Paulsen, I. T.,, A. M. Beness, and, M. H. Saier, Jr. 1997. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143:26852699.
53. Pierce, D. L.,, D. S. O’Donnol,, R. C. Allen,, J. W. Javens,, E. M. Quardokus, and, Y. V. Brun. 2006. Mutations in DivL and CckA rescue a divJ null mutant of Caulobacter crescentus by reducing the activity of CtrA. J. Bacteriol. 188:24732482.
54. Poindexter, J. L. S., and, G. C. Bazire. 1964. The fine structure of stalked bacteria belonging to the family Caulobacteraceae. J. Cell Biol. 23:587607.
55. Poindexter, J. S., and, J. T. Staley. 1996. Caulobacter and Asticcacaulis stalk bands as indicators of stalk age. J. Bacteriol. 178:39393948.
56. Robinson, L. S.,, E. M. Ashman,, S. J. Hultgren, and, M. R. Chapman. 2006. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol. Microbiol. 59:870881.
57. Ryan, K. R.,, S. Huntwork, and, L. Shapiro. 2004. Recruitment of a cytoplasmic response regulator to the cell pole is linked to its cell cycle-regulated proteolysis. Proc. Natl. Acad. Sci. USA 101:74157420.
58. Ryan, K. R.,, E. M. Judd, and, L. Shapiro. 2002. The CtrA response regulator essential for Caulobacter crescentus cell-cycle progression requires a bipartite degradation signal for temporally controlled proteolysis. J. Mol. Biol. 324:443455.
59. Seitz, L. C., and, Y. V. Brun. 1998. Genetic analysis of mecillinam-resistant mutants of Caulobacter crescentus deficient in stalk biosynthesis. J. Bacteriol. 180:52355239.
60. Smith, C. S.,, A. Hinz,, D. Bodenmiller,, D. E. Larson, and, Y. V. Brun. 2003. Identification of genes required for synthesis of the adhesive holdfast in C aulobacter crescentus. J. Bacteriol. 185:14321442.
61. Sommer, J. M., and, A. Newton. 1991. Pseudoreversion analysis indicates a direct role of cell division genes in polar morphogenesis and differentiation in Caulobacter crescentus. Genetics 129:623630.
62. Sommer, J. M., and, A. Newton. 1989. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. J. Bacteriol. 171:392401.
63. Stephenson, K., and, J. A. Hoch. 2002. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46:297304.
64. Tam, E., and, J. L. Pate. 1985. Amino acid transport by pros-thecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system. J. Gen. Microbiol. 131:26872699.
65. Tsang, P. H.,, G. Li,, Y. V. Brun,, L. B. Freund, and, J. X. Tang. 2006. Adhesion of single bacterial cells in the micronewton range. Proc. Natl. Acad. Sci. USA 103:57645768.
66. Viollier, P. H.,, N. Sternheim, and, L. Shapiro. 2002. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc. Natl. Acad. Sci. USA 99:1383113836.
67. Wagner, J. K., and, Y. V. Brun. 2007. Out on a limb: how the Caulobacter stalk can boost the study of bacterial cell shape. Mol. Microbiol. 64:2833.
68. Wagner, J. K.,, C. D. Galvani, and, Y. V. Brun. 2005. Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. J. Bacteriol. 187:544553.
69. Wagner, J. K.,, S. Setayeshgar,, L. A. Sharon,, J. P. Reilly, and, Y. V. Brun. 2006. A nutrient uptake role for bacterial cell envelope extensions. Proc. Natl. Acad. Sci. USA 103:1177211777.
70. Wang, S. P.,, P. L. Sharma,, P. V. Schoenlein, and, B. Ely. 1993. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 90:630634.
71. Wheeler, R. T., and, L. Shapiro. 1999. Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol. Cell 4:683694.
72. White, A. P.,, D. L. Gibson,, S. K. Collinson,, P. A. Banser, and, W. W. Kay. 2003. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. J. Bacteriol. 185:53985407.
73. Whitfield, C., and, A. Paiment. 2003. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338:24912502.
74. Whittenbury, R., and, C. S. Dow. 1977. Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol. Rev. 41:754808.
75. Wu, J.,, N. Ohta,, J. L. Zhao, and, A. Newton. 1999. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc. Natl. Acad. Sci. USA 96:1306813073.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error