1887

23 Developmental Biology of Heterocysts, 2006

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

23 Developmental Biology of Heterocysts, 2006, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap23-2.gif

Abstract:

Over 2 billion years ago, with the growth of large numbers of O-producing cyanobacteria, our planet emerged from anaerobiosis. The cyanobacteria needed only light, water, and inorganic nutrients, with CO as a carbon source, to replicate. Numerous genes have been identified that are required specifically for synthesis and deposition of heterocyst envelope glycolipids and polysaccharide, respiratory processes in heterocysts, and cessation of division in those cells that will become heterocysts. Akinetes differentiate either specifically adjacent to heterocysts (or sometimes near but not contiguous), distant from heterocysts, or independent of heterocysts. Some nitrogen-fixing cyanobacteria establish symbiotic relationships with different plants and fungi. These cyanobacteria, mostly in the genus , are able to form symbioses with bryophytes, ferns, gymnosperms, and angiosperms and provide fixed nitrogen to the plants. The expression of is dependent on the presence of an intact , and the expression of may also be positively autoregulated. HetC is an unlikely candidate for a regulatory molecule, because its product is similar to ATP-binding cassette transporters of proteins, peptides, and polysaccharides. Cell wall metabolism evidently plays an important role in heterocyst formation, as was first shown by the observation that genes and participate in the normal formation of vegetative cell lipopolysaccharide, and yet are Fox genes, required only for aerobic growth on N.

Citation: Zhao J, Wolk C. 2008. 23 Developmental Biology of Heterocysts, 2006, p 397-418. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch23

Key Concept Ranking

Bacterial Cellular Processes
0.6301817
Gene Expression and Regulation
0.55086887
Transcription Start Site
0.50496626
0.6301817
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Stages of heterocyst development. An increase in intracellular 2-OG (2-oxoglutarate) signals nitrogen deprivation, which may be transduced by NtcA, a protein upon which numerous developmental processes depend. Itself autoregulatory, NtcA participates in autoregulation of HetR, the central regulator of heterocyst formation. Beyond commitment, heterocysts do not revert to vegetative growth. The ability to fix N and to reassimilate H, both of which require internally micro-oxic conditions, represents maturity. Semicolons demarcate known or presumptive regulatory proteins from presumptive enzymatic proteins. Short vertical arrows up represent increases, arrows down next to N and O represent decreases, horizontal arrows represent the temporal direction from precedent to subsequent and often connote a lack of knowledge of regulatory mechanisms, and blunt-ended arrows indicate negative influences. Diagonal and curved lines, and other arrows down, indicate positive influences. Short-dashed curves indicate proteolysis.

Citation: Zhao J, Wolk C. 2008. 23 Developmental Biology of Heterocysts, 2006, p 397-418. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

In the absence of fixed nitrogen, PatS and HetN are principally responsible for preventing extensive differentiation. Because mutants are highly susceptible to suppressor mutations, a mutant of sp. was modified to express from a promoter, P, for expression, forming strain UHM100. (A) As of 2 days with neither fixed nitrogen nor Cu, UHM100 shows many instances of multiple contiguous heterocysts (the Mch phenotype). (B) As of 8 days, long series of heterocysts can be seen. (C) On agar after 30 days, heterocyst formation is nearly confluent. (D) Time course of heterocyst accumulation, as a percentage of total cells, after transfer to medium lacking both fixed nitrogen and Cu of wild-type sp. (◆), a deletion mutant (▲), a P mutant (●), and UHM100 (■). Reproduced from Fig. 4 of Borthakur et al., 2005, with the kind permission of Blackwell Scientific Publications and the corresponding author.

Citation: Zhao J, Wolk C. 2008. 23 Developmental Biology of Heterocysts, 2006, p 397-418. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch23
1. Adams, D. G., and, P. S. Duggan. 1999. Heterocyst and akinete differentiation in cyanobacteria. New Phytol. 144:333.
2. Akinyanju, J., and, R. J. Smith. 1979. Accumulation of ppGpp and pppGpp during nitrogen deprivation of the cyanophyte Anabaena cylindrica. FEBS Lett. 107:173176.
3. Akinyanju, J. A., and, R. J. Smith. 1987. The accumulation of phosphorylated guanosine nucleotides in Anabaena cylindrica. New Phytol. 105:117122.
4. Apelian, D., and, S. Inouye. 1990. Development-specific σ factor essential for late stage differentiation of Myxococcus xanthus. Genes Dev. 4:13961403.
5. Argueta, C.,, K. Yuksek., and, M. Summers. 2004. Construction and use of GFP reporter vectors for analysis of cell-type-specific gene expression in Nostoc punctiforme. J. Microbiol. Methods 59:181188.
6. Argueta, C., and, M. L. Summers. 2005. Characterization of a model system for the study of Nostoc punctiforme akinetes. Arch. Microbiol. 183:338346.
7. Awai, K., and, C. P. Wolk. 2006. Identification of the glycosyl transferase required for synthesis of the principal glycolipid characteristic of heterocysts of Anabaena sp. strain PCC 7120. FEMS Microbiol. Lett. 266:98102.
8. Bauer, C. C.,, K. S. Ramaswamy,, S. Endley,, L. A. Scappino,, J. W. Golden, and, R. Haselkorn. 1997. Suppression of heterocyst differentiation in Anabaena PCC 7120 by a cosmid carrying wild-type genes encoding enzymes for fatty acid synthesis. FEMS Microbiol. Lett. 151:2330.
9. Becker, D. W., and, J. J. Brand. 1985. Anacystis nidulans demonstrates a photosystem II cation requirement satisfied only by Ca2+ and Na+. Plant Physiol. 79:552558.
10. Berkelman, T.,, P. Garret-Engele, and, N. E. Hoffman. 1994. The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca2+-transporting ATPase. J. Bacteriol. 176:44304436.
11. Bianchini, G. M.,, A. C. Pastini,, J. P. Muschietti,, M. T. Téllez-Iñón,, H. E. Martinetto,, H. N. Torres, and, M. M. Flawiá. 1990. Adenylate cyclase activity in cyanobacteria: activation by Ca2+-calmodulin and a calmodulin-like activity. Biochim. Biophys. Acta 1055:7581.
12. Black, T. A., and, C. P. Wolk. 1994. Analysis of a Het- mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J. Bacteriol. 176:22822292.
13. Black, T. A.,, Y. Cai, and, C. P. Wolk. 1993. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol. Microbiol. 9:7784.
14. Borthakur, P. B.,, C. C. Orozco,, S. S. Young-Robbins,, R. Haselkorn, and, S. M. Callahan. 2005. Inactivation of patS and hetN causes lethal levels of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 57:111123.
15. Brahamsha, B., and, R. Haselkorn. 1991. Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 173:24422450.
16. Brahamsha, B., and, R. Haselkorn. 1992. Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes. J. Bacteriol. 174:72737282.
17. Brand, J. E., and, D. W. Becker. 1988. In vivo effect of calcium on photosystem II. Methods Enzymol. 167:280285.
18. Bretz, J.,, L. Losada,, K. Lisboa, and, S. W. Hutcheson. 2002. Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol. Microbiol. 45:397409.
19. Brun, Y., and, L. Shapiro. 1992. A temporally controlled α-factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev. 6:23952408.
20. Buikema, W. J., and, R. Haselkorn. 1991. Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev. 5:321330.
21. Buikema, W. J., and, R. Haselkorn. 1993. Molecular genetics of cyanobacterial development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:3352.
22. Buikema, W. J., and, R. Haselkorn. 2001. Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc. Natl. Acad. Sci. USA 98:27292734.
23. Burbulys, D.,, K. A. Trach, and, J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545552.
24. Cai, Y., and, C. P. Wolk. 1997. Nitrogen deprivation of Anabaena sp. strain PCC 7120 elicits rapid activation of a gene cluster that is essential for uptake and utilization of nitrate. J. Bacteriol. 179:258266.
25. Callahan, S. M., and, W. J. Buikema. 2001. The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol. Microbiol. 40:941950.
26. Campbell, A. K. 1983. Intracellular Calcium: Its Universal Role as Regulator. Wiley, New York, NY.
27. Campbell, E. L.,, K. D. Hagen,, M. F. Cohen,, M. L. Summers, and, J. C. Meeks. 1996. The devR gene product is characteristic of receivers of two-component regulatory systems and is essential for heterocyst development in the filamentous cyanobacterium Nostoc sp. strain ATCC 29133. J. Bacteriol. 178:20372043.
28. Cardemil, L., and, C. P. Wolk. 1979. The polysaccharides from heterocyst and spore envelopes of a blue-green alga. Structure of the basic repeating unit. J. Biol. Chem. 254:736741.
29. Cardemil, L., and, C. P. Wolk. 1981. Polysaccharides from the envelopes of heterocysts and spores of the blue-green algae Anabaena variabilis and Cylindrospermum licheniforme. J. Phycol. 17:234240.
30. Chater, K. F. 1989. Sporulation in Streptomyces, p. 277299. In I. Smith,, R. A. Slepecky, and, P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, DC.
31. Curtis, S. E., and, P. B. Hebbar. 2001. A screen for sequences up-regulated during heterocyst development in Anabaena sp. strain PCC 7120. Arch. Microbiol. 175:313322.
32. D’Argenio, D. A., and, S. I. Miller. 2004. Cyclic di-GMP as a bacterial second messenger. Microbiology 150:24972502.
33. Dominguez, D. C. 2004. Calcium signalling in bacteria. Mol. Microbiol. 54:291297.
34. Dong, U.,, X. Huang,, X.-Y. Wu, and, J. Zhao. 2000. Identification of the active site of HetR protease and its requirement for heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 182:15751579.
35. Ehira, S.,, M. Ohmori, and, N. Sato. 2003. Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 10:97113.
36. Ehira, S., and, M. Ohmori. 2006a. NrrA, a novel nitrogen-regulating response regulator regulates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 59:16921703.
37. Ehira, S., and, M. Ohmori. 2006b. NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 188:85208525.
38. Elhai, J., and, C. P. Wolk. 1990. Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J. 9:33793388.
39. Fan, Q.,, G. Huang,, S. Lechno-Yossef,, C. P. Wolk,, T. Kaneko, and, S. Tabata. 2005. Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol. Microbiol. 58:227243.
40. Fan, Q.,, S. Lechno-Yossef,, S. Ehira,, T. Kaneko,, M. Ohmori,, N. Sato,, S. Tabata, and, C. P. Wolk. 2006. Signal transduction genes required for heterocyst maturation in Anabaena sp. strain PCC 7120. J. Bacteriol. 188:66886693.
41. Fay, P.,, W. D. P. Stewart,, A. E. Walsby, and, G. E. Fogg. 1968. Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature 220:810812.
42. Fernández-Piñas, F. Leganés, and, C. P. Wolk. 1994. A third genetic locus required for the formation of heterocysts in Anabaena sp. strain PCC 7120. J. Bacteriol. 176:52775283.
43. Fiedler, G.,, M. Arnold,, S. Hannus, and, I. Maldener. 1998. The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 27:11931202.
44. Fleming, H., and, R. Haselkorn. 1974. The program of protein synthesis during heterocyst differentiation in nitrogen-fixing blue-green algae. Cell 3:159170.
45. Forchhammer, K. 2004. Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol. Rev. 28:319333.
46. Forchhammer, K., and, N. Tandeau de Marsac. 1994. The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J. Bacteriol. 176:8491.
47. Frías, J. E.,, E. Flores, and, A. Herrero. 1994. Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 14:823832.
48. Fritsch, F. E. 1951. The heterocyst: a botanical enigma. Proc. Linn. Soc. London 162:194211.
49. Geisler, M.,, J. Richter, and, J. Schumann. 1993. Molecular cloning of a P-type ATPase gene from the cyanobacterium Synechocystis sp. PCC 6803. Homology to eukaryotic Ca2+-ATPases. J. Mol. Biol. 234:12841289.
50. Geitler, L. 1925. Synoptische Darstellung der Cyanophyceen in morphologischer und systematischer Hinsicht. Beih. Botan. Centralbl. 41:163294.
51. Gierer, A., and, H. Meinhardt. 1972. A theory of biological pattern formation. Kybernetik 12:3039.
52. Golden, J. 1998. Programmed DNA rearrangements in cyano-bacteria, p. 162173. In F. J. de Bruijn,, J. R. Lupski, and, G. M. Weinstock (ed.), Bacterial Genomes: Physical Structure and Analysis. Chapman & Hall, New York, NY.
53. Golden, J. W., and, H. S. Yoon. 2003. Heterocyst development in Anabaena. Curr. Opin. Microbiol. 6:557563.
54. Gugger, M. F., and, L. Hoffmann. 2004. Polyphyly of true branching cyanobacteria (Stigonematales). Int. J. Syst. Evol. Microbiol. 54:349357.
55. Haselkorn, R. 1998. How cyanobacteria count to 10. Science282:891892.
56. Hebbar, P. B., and, S. E. Curtis. 2000. Characterization of devH, a gene encoding a putative DNA binding protein required for heterocyst function in Anabaena sp. strain PCC 7120. J. Bacteriol. 182:35723581.
57. Herrero, A.,, A. M. Muro-Pastor, and, E. Flores. 2001. Nitrogen control in cyanobacteria. J. Bacteriol. 183:411425.
58. Herrero, A.,, A. M. Muro-Pastor,, A. Valladares, and, E. Flores. 2004. Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol. Rev. 28:469487.
59. Hirosawa, T., and, C. P. Wolk. 1980. Factors controlling the formation of akinetes adjacent to heterocysts in the cyanobacterium Cylindrospermum licheniforme Kütz. J. Gen. Microbiol. 114:423432.
60. Hoch, J. A., and, T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. ASM Press, Washington, DC.
61. Huang, G.,, Q. Fan,, S. Lechno-Yossef,, E. Wojciuch,, C. P. Wolk,, T. Kaneko, and, S. Tabata. 2005. Clustered genes required for the synthesis of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J. Bacteriol. 187:11141123.
62. Huang, X.,, Y. Dong, and, J. Zhao. 2004. HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc. Natl. Acad. Sci. USA 101:48484853.
63. Imashimizu, M.,, H. Yoshimura,, H. Katoh,, S. Ehira, and, M. Ohmori. 2005. NaCl enhances cellular cAMP and upregulates genes related to heterocyst development in the cyano-bacterium, Anabaena sp. strain PCC 7120. FEMS Microbiol. Lett. 252:97103.
64. Irmier, A.,, S. Sanner,, H. Dierks, and, K. Forchhammer. 1997. Dephosphorylation of the phosphoprotein PII in Synechococcus PCC 7942: identification of an ATP and 2-oxoglutarate phosphatase activity. Mol. Microbiol. 26:8190.
65. Janson, S.,, A. Matveyev, and, B. Bergman. 1998. The presence and expression of hetR in the non-heterocystous cyanobacteriuum Symploca PCC 8002. FEMS Microbiol. Lett. 168:173179.
66. Jones, K. M., and, R. Haselkorn. 2002. Newly identified cytochrome c oxidase operon in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 specifically induced in heterocysts. J. Bacteriol. 184:24912499.
67. Jones, K. M.,, W. J. Buikema, and, R. Haselkorn. 2003. Hetero-cyst-specific expression of patB, a gene required for nitrogen fixation in Anabaena sp. strain PCC 7120. J. Bacteriol. 185:23062314.
68. Kaneko, T.,, Y. Nakamura,, C. P. Wolk,, T. Kuritz,, S. Sasamoto,, A. Watanabe,, M. Iriguchi,, A. Ishikawa,, K. Kawashima,, T. Kimura,, Y. Kishida,, M. Kohara,, M. Matsumoto,, A. Matsuno,, A. Muraki,, N. Nakazaki,, S. Shimpo,, M. Sugimoto,, M. Takazawa,, M. Yamada,, M. Yasuda, and, S. Tabata. 2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8:205213.
69. Kangatharalingam, N.,, J. C. Priscu, and, H. W. Paerl. 1992. Heterocyst envelope thickness, heterocyst frequency and nitrogenase activity in Anabaena flos-aquae: influence of exogenous oxygen tension. J. Gen. Microbiol. 138:26732678.
70. Khudyakov, I., and, C. P. Wolk. 1997. hetC, a gene coding for a protein similar to bacterial ABC protein exporters, is involved in early regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120. J. Bacteriol. 179:69716978.
71. Khudyakov, I. Y., and, J. W. Golden. 2001. Identification and inactivation of three group 2 sigma factor genes in Anabaena sp. strain PCC 7120. J. Bacteriol. 183:66676675.
72. Khudyakov, I. Y., and, J. W. Golden. 2004. Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation. Proc. Natl. Acad. Sci. USA 101:1604016045.
73. Koksharova, O. A., and, C. P. Wolk. 2002a. Genetic tools for cyanobacteria. Appl. Microbiol. Biotechnol. 58:123137.
74. Koksharova, O. A., and, C. P. Wolk. 2002b. Novel DNA-binding proteins in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 184:39313940.
75. Kuhn, I.,, L. Peng,, S. Bedu, and, C.-C. Zhang. 2000. Developmental regulation of the cell division protein FtsZ in Anabaena sp. strain PCC 7120, a cyanobacterium capable of terminal differentiation. J. Bacteriol. 182:46404643.
76. Lammers, P. J., and, R. Haselkorn. 1983. Sequence of the nifD gene coding for the α subunit of dinitrogenase from the cyanobacterium Anabaena. Proc. Natl. Acad. Sci. USA 80:47234727.
77. Laurent, S.,, K. Forchhammer,, L. Gonzalez,, T. Heulin,, C.-C. Zhang, and, S. Bédu. 2004. Cell-type specific modification of PII is involved in the regulation of nitrogen metabolism in the cyanobacterium Anabaena PCC 7120. FEBS Lett. 576:261265.
78. Laurent, S.,, H. Chen,, S. Bédu,, F. Ziarelli,, L. Peng, and, C.-C. Zhang. 2005. Nonmetabolizable analogue of 2-oxogluta-rate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. USA 102:99079912.
79. Lázaro, S.,, F. Fernández-Piñas,, E. Fernández-Valiente,, A. Blanco-Rivero, and, F. Leganés. 2001. pbpB, a gene coding for a putative penicillin-binding protein, is required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC7120. J. Bacteriol. 183:628636.
80. Lechno-Yossef, S.,, Q. Fan,, S. Ehira,, N. Sato, and, C. P. Wolk. 2006. Mutations in four regulatory genes have interrelated effects on heterocyst maturation in Anabaena sp. strain PCC 7120. J. Bacteriol. 188:73877395.
81. Leganés, F. 1994. Genetic evidence that hepA gene is involved in the normal deposition of the envelope of both heterocysts and akinetes in Anabaena variabilis ATCC 29413. FEMS Microbiol. Lett. 123:6367.
82. Leganés, F.,, F. Fernández-Piñas, and, C. P. Wolk. 1994. Two mutations that block heterocyst differentiation have different effects on akinete differentiation in Nostoc ellipsosporum. Mol. Microbiol. 12:679684.
83. Leganés, F.,, A. Blanco-Rivero,, F. Fernández-Piñas,, M. Redondo,, E. Fernández-Valiente,, Q. Fan,, S. Lechno-Yossef, and, C. P. Wolk. 2005. Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins. Arch. Microbiol. 184:234248.
84. Li, B.,, X. Huang, and, J. Zhao. 2002. Expression of hetN during heterocyst differentiation and its inhibition of hetR up-regulation in the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett. 517:8791.
85. Li, J.-H.,, S. Laurent,, V. Konde,, S. Bédu, and, C.-C. Zhang. 2003. An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 149:32573263.
86. Liang, J.,, L. Scappino, and, R. Haselkorn. 1992. The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc. Natl. Acad. Sci. USA 89:56555659.
87. Liang, J.,, L. Scappino, and, R. Haselkorn. 1993. The patB gene product, required for growth of the cyanobacterium Anabaena sp. strain PCC 7120 under nitrogen-limiting conditions, contains ferredoxin and helix-turn-helix domains. J. Bacteriol. 175:16971704.
88. Liotenberg, S.,, D. Campbell,, A.-M. Castets,, J. Houmard, and, N. Tandeau de Marsac. 1996. Modification of the PII protein in response to carbon and nitrogen availability in filamentous heterocystous cyanobacteria. FEMS Microbiol. Lett. 144:185190.
89. Losick, R., and, P. Stragier. 1992. Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355:601604.
90. Lundgren, P.,, S. Janson,, S. Jonasson,, A. Singer, and, B. Bergman. 2005. Unveiling of novel radiations within Trichodesmium cluster by hetR gene sequence analysis. Appl. Environ. Microbiol. 71:190196.
91. Luque, I.,, E. Flores, and, A. Herrero. 1994. Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J. 13:28622869.
92. Maldener, I.,, W. Lockau,, Y. Cai, and, C. P. Wolk. 1991. Calcium-dependent protease of the cyanobacterium Anabaena: molecular cloning and expression of the gene in Escherichia coli, sequencing and site-directed mutagenesis. Mol. Gen. Genet. 225:113120.
93. Maldener, I.,, G. Fiedler,, A. Ernst,, F. Fernández-Piñas, and, C. P. Wolk. 1994. Characterization of devA, a gene required for the maturation of proheterocysts in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 176:75437549.
94. Martín-Figueroa, E.,, F. Navarro, and, F. J. Florencio. 2000. The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett. 476:282286.
95. Mazur, B. J., and, C. F. Chui. 1982. Sequence of the gene coding for the β-subunit of dinitrogenase from the blue-green alga Anabaena. Proc. Natl. Acad. Sci. USA 79:67826786.
96. Meeks, J. C., and, J. Elhai. 2002. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev. 66:94121.
97. Meinhardt, H., and, A. Gierer. 2000. Pattern formation by local self-activation and lateral inhibition. Bioessays 22:753760.
98. Merida, A.,, P. Candau, and, F. J. Florencio. 1991. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J. Bacteriol. 173:40954100.
99. Merida, A.,, E. Flores, and, F. J. Florencio. 1992. Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a Synechocystis sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene. J. Bacteriol. 174:650654.
100. Merrick, M. J., and, R. A. Edwards. 1995. Nitrogen control in bacteria. Microbiol. Rev. 59:604622.
101. Mes, T. H. M., and, L. J. Stal. 2005. Variable selection pressures across lineages in Trichodesmium and related cyanobacteria based on the heterocyst differentiation protein gene hetR. Gene 346:163171.
102. Mevarech, M.,, D. Rice, and, R. Haselkorn. 1980. Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc. Natl. Acad. Sci. USA 77:64766480.
103. Michiels, J.,, C. Xi,, J. Verhaert, and, J. Venderleyden. 2002. The function of Ca2+ in bacteria: a role for EF-hand proteins? Trends Microbiol. 10:8793.
104. Mitchison, G. J.,, M. Wilcox, and, R. J. Smith. 1976. Measurement of an inhibitory zone. Science 191:866868.
105. Mulligan, M. E., and, R. Haselkorn. 1989. Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon. J. Biol. Chem. 264:1920019207.
106. Muro-Pastor, A. M.,, A. Valladares,, E. Flores, and, A. Herrero. 1999. The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J. Bacteriol. 181:66646669.
107. Muro-Pastor, A. M.,, A. Valladares,, E. Flores, and, A. Herrero. 2002. Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol. Micro-biol. 44:13771385.
108. Muro-Pastor, A. M.,, E. Olmedo-Verd, and, E. Flores. 2006. All4312, an NtcA-regulated two-component response regulator in Anabaena sp. strain PCC 7120. FEMS Microbiol. Lett. 256:171177.
109. Muro-Pastor, M. I., and, F. J. Florencio. 2003. Regulation of ammonium assimilation in cyanobacteria. Plant Physiol. Biochem. 41:595603.
110. Muro-Pastor, M. I.,, J. C. Reyes, and, F. J. Florencio. 1996. The NADP+-isocitrate dehydrogenase gene (icd) is nitrogen regulated in cyanobacteria. J. Bacteriol. 178:40704076.
111. Muro-Pastor, M. I.,, J. C. Reyes, and, F. J. Florencio. 2001. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J. Biol. Chem. 276:3832038328.
112. Ning, D., and, X. Xu. 2004. alr0117, a two-component histi-dine kinase gene, is involved in heterocyst development in Anabaena sp. PCC 7120. Microbiology 150:447453.
113. Ochi, K.,, J. C. Kandala, and, E. Freese. 1981. Initiation of Bacillus subtilis sporulation by the stringent response to partial amino acid deprivation. J. Biol. Chem. 256:68666875.
114. O’Hara, M. B., and, J. H. Hageman. 1990. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J. Bacteriol. 172:41614170.
115. Olmedo-Verd, E.,, E. Flores,, A. Herrero, and, A. M. Muro-Pastor. 2005. HetR-dependent and -independent expression of heterocyst-related genes in an Anabaena strain overproducing the NtcA transcription factor. J. Bacteriol. 187:19851991.
116. Onek, L. A., and, R. J. Smith. 1992. Calmodulin and calcium mediated regulation in prokaryotes. J. Gen. Microbiol. 138:10391049.
117. Onek, L. A.,, P. J. Lea, and, R. J. Smith. 1994. Isolation and characterization of a calmodulin-like protein from the cyanobacterium Nostoc sp. PCC 6720. Arch. Microbiol. 161:352358.
118. Orozco, C. C.,, D. D. Risser, and, S. M. Callahan. 2006. Epistasis analysis of four genes from Anabaena sp. strain PCC 7120 suggests a connection between PatA and PatS in heterocyst pattern formation. J. Bacteriol. 188:18081816.
119. Pettersson, A., and, B. Bergman. 1989. Calmodulin in heterocystous cyanobacteria: biochemical and immunological evidence. FEMS Microbiol. Lett. 60:95100.
120. Ramasubramanian, T. S.,, T. F. Wei,, A. K. Oldham, and, J. W. Golden. 1996. Transcription of the Anabaena sp. strain PCC 7120 ntcA gene: multiple transcripts and NtcA binding. J. Bacteriol. 178:922926.
121. Ramírez, M. E.,, P. B. Hebbar,, R. Zhou,, C. P. Wolk, and, S. E. Curtis. 2005. Anabaena sp. strain PCC 7120 gene devH is required for synthesis of the heterocyst glycolipid layer. J. Bacteriol. 187:23262331.
122. Rippka, R., and, R. Y. Stanier. 1978. The effects of anaerobiosis on nitrogenase synthesis and heterocyst development by nostocacean cyanobacteria. J. Gen. Microbiol. 105:8394.
123. Risser, D. D., and, S. M. Callahan. 2007. Mutagenesis of hetR reveals amino acids necessary for HetR function in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 189:24602467.
124. Rowell, R., and, W. D. P. Stewart. 1975. Effects of L-methionine-DL-sulfoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem. Biophys. Res. Commun. 65:846856.
125. Sakr, S.,, R. Jeanjean,, C.-C. Zhang, and, T. Arcondeguy. 2006. Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 188:13961404.
126. Shi, Y.,, W. Zhao,, W. Zhang.,, Z. Ye, and, J. Zhao. 2006. Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. USA 103:1133411339.
127. Smith, G., and, J. D. Ownby. 1981. Cyclic AMP interferes with pattern formation in the cyanobacterium Anabaena variabilis. FEMS Microbiol. Lett. 11:175180.
128. Smith, R. J.,, S. Hobson., and, I. R. Ellis. 1987. Evidence for calcium-mediated regulation of heterocyst frequency and nitrogenase activity in Nostoc 6720. New Phytol. 105:531541.
129. Su, Z.,, V. Olman.,, F. Mao, and, Y. Xu. 2005. Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis. Nucleic Acids Res. 33:51565171.
130. Tamagnini, P.,, R. Axelsson,, P. Lindberg,, F. Oxelfelt,, R. Wunschiers, and, P. Lindblad. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66:120.
131. Tandeau de Marsac, N. 1994. Differentiation of hormogonia and relationships with other biological processes, p. 825842. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
132. Tanigawa, R.,, M. Shirokane,, S. I. Maeda,, T. Omata,, K. Tanaka, and, H. Takahashi. 2002. Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc. Natl. Acad. Sci. USA 99:42514255.
133. Tapia, M. I.,, J. A. G. Ochoa de Alda,, M. J. Llama, and, J. L. Serra. 1996. Changes in intracellular amino acids and organic acids induced by nitrogen starvation and nitrate or ammonium resupply in the cyanobacterium Phormidium laminosum. Planta 198:526531.
134. Thiel, T. 2004. Nitrogen fixation in heterocyst-forming cyanobacteria. In W. Klipp,, B. Masepohl,, J. R. Gallon, and, W. E. Newton (ed.), Genetics and Regulation of Nitrogen Fixing Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
135. Thiel, T., and, M. Leone. 1986. Effect of glutamine on growth and heterocyst differentiation in the cyanobacterium Anabaena variabilis. J. Bacteriol. 168:769774.
136. Thiel, T., and, B. Pratte. 2001. Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 183:280286.
137. Thiel, T.,, E. M. Lyons,, J. C. Erker, and, A. Ernst. 1995. A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc. Natl. Acad. Sci. USA 92:93589362.
138. Thomas, J.,, J. C. Meeks,, C. P. Wolk,, P. W. Shaffer, and, S. M. Austin. 1977. Formation of glutamine from [13N]ammonia, [13N]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica. J. Bacteriol. 129:15451555.
139. Tisa, L.S.,, B. M. Olivera, and, J. Adler. 1993. Inhibition of Escherichia coli chemotaxis by ω-conotoxin, a calcium ion channel blocker. J. Bacteriol. 175:12351238.
140. Tomitani, A.,, A. H. Knoll,, C. M. Cavanaugh, and, T. Ohno. 2006. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc. Natl. Acad. Sci. USA 103:54425447.
141. Torrecilla, I.,, F. Leganés,, I. Bonilla, and, F. Fernández-Piñas. 2000. Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria. Plant Physiol. 123:161176.
142. Torrecilla, I.,, F. Leganés,, I. Bonilla, and, F. Fernández-Piñas. 2004. A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC 7120. Microbiology 150:37313739.
143. Tsygankov, A. A.,, A. S. Fedorov,, S. N. Kosourov, and, K. K. Rao. 2002. Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol. Bioeng. 80:777783.
144. Turing, A.M. 1952. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B 237:3772.
145. Valladares, A.,, A. Herrero,, D. Pils,, G. Schmetterer, and, E. Flores. 2003. Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol. Microbiol. 47:12391249.
146. Vega-Palas, M.A.,, E. Flores, and, A. Herrero. 1992. NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol. Microbiol. 6:18531859.
147. Walsby, A. E. 1985. The permeability of heterocysts to the gases nitrogen and oxygen. Proc. R. Soc. Lond. B 226:345366.
148. Wang, Y., and, X. Xu. 2005. Regulation by hetC of genes required for heterocyst differentiation and cell division in Anabaena sp. strain PCC 7120. J. Bacteriol. 187:84898493.
149. Wang, Y.,, S. Lechno-Yossef,, Y. Gong,, Q. Fan,, C. P. Wolk, and, X. Xu. 2007. Predicted glycosyl transferase genes located outside the HEP Island are required for formation of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J. Bacteriol 189:53725378.
150. Wei, T.-F.,, T. S. Ramasubramanian, and, J. W. Golden. 1994. Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J. Bacteriol. 176:44734482.
151. Wigglesworth, V. B. 1940. Local and general factors in the development of “pattern” in Rhodnius prolixus. J. Exp. Biol. 17:180200.
152. Wilcox, M.,, G. J. Mitchison, and, R. J. Smith. 1973. Pattern formation in the blue-green alga, Anabaena. I. Basic mechanisms. J. Cell Sci. 12:707723.
153. Wolk, C. P. 1965. Control of sporulation in a blue-green alga. Dev. Biol. 12:1535.
154. Wolk, C. P. 1966. Evidence of a role of heterocysts in the sporulation of a blue-green alga. Am. J. Bot. 53:260262.
155. Wolk, C. P. 1967. Physiological basis of the pattern of vegetative growth of a blue-green alga. Proc. Natl. Acad. Sci. USA 57:12461251.
156. Wolk, C. P. 1968. Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J. Bacteriol. 96:21382143.
157. Wolk, C. P. 2000. Heterocyst formation in Anabaena, p. 83104. In Y. V. Brun and, L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, DC.
158. Wolk, C. P.,, A. Ernst, and, J. Elhai. 1994. Heterocyst metabolism and development, p. 769823. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
159. Wolk, C. P.,, Q. Fan,, R. Zhou,, G. Huang,, S. Lechno-Yossef,, T. Kuritz, and, E. Wojciuch. 2007. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch. Microbiol. Jul. 17: epub ahead of print.
160. Wong, F. C., and, J. C. Meeks. 2001. The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme. J. Bacteriol. 183:26542661.
161. Wood, N. B., and, R. Haselkorn. 1979. Proteinase activity during heterocyst differentiation in nitrogen-fixing cyanobacteria, p. 159166. In G. H. Cohen and, H. Holzer (ed.), Limited Proteolysis in Microorganisms. U.S. DHEW Publication No. (NIH) 79-1591, NIH, Bethesda, MD.
162. Wood, N. B., and, R. Haselkorn. 1980. Control of phycobili-protein proteolysis and heterocyst differentiation in Anabaena. J. Bacteriol. 141:13751385.
163. Wu, X.,, D. Liu,, M. H. Lee, and, J. W. Golden. 2004. patS minigenes inhibit heterocyst development of Anabaena sp. strain PCC 7120. J. Bacteriol. 186:64226429.
164. Xu, X., and, C. P. Wolk. 2001. Role for hetC in the transition to a nondividing state during heterocyst differentiation in Anabaena sp. J. Bacteriol. 183:393396.
165. Xu, X.,, I. Khudyakov, and, C. P. Wolk. 1997. Lipopolysaccha-ride dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120. J. Bacteriol. 179:28842891.
166. Yoon, H.-S., and, J. W. Golden. 1998. Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935938.
167. Yoon, H.-S., and, J. W. Golden. 2001. PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol. 183:26052613.
168. Youatt, J. 1993. Calcium and microorganisms. Crit. Rev. Microbiol. 19:8397.
169. Zhang, C.-C.,, S. Laurent,, S. Sakr,, L. Peng, and, S. Bédu. 2006. Heterocyst differentiation and pattern formation in cyano-bacteria: a chorus of signals. Mol. Microbiol. 59:367375.
170. Zhao, J.,, J. W. LaClaire II, and, J. J. Brand. 1991. Calcium and heterocyst development in Anabaena 7120, p. 105. In Abstr VII. Int. Symp. Photosynthetic Prokaryotes.
171. Zhao, Y.,, Y. Shi,, W. Zhao,, X. Huang,, D. Wang,, N. Brown,, J. Brand, and, J. Zhao. 2005. CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc. Natl. Acad. Sci. USA 102:57445748.
172. Zhou, R., and, C. P. Wolk. 2002. Identification of an akinete marker gene in Anabaena variabilis. J. Bacteriol. 184:25292532.
173. Zhou, R., and, C. P. Wolk. 2003. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J. Biol. Chem. 278:1993919946.
174. Zhou, R.,, Z. Cao, and, J. Zhao. 1998a. Characterization of HetR protein turnover in Anabaena sp. PCC 7120. Arch. Microbiol. 169:417423.
175. Zhou, R.,, X. Wei,, N. Jiang,, H. Li,, Y. Dong,, K. L. His, and, J. Zhao. 1998b. Evidence that HetR protein is an unusual serine-type protease. Proc. Natl. Acad. Sci. USA 95:49594963.
176. Zhu, J.,, R. Kong, and, C. P. Wolk. 1998. Regulation of hepA of Anabaena sp. strain PCC 7120 by elements 5’ from the gene and by hepK. J. Bacteriol. 180:42334242.
177. Zhu, J.,, K. Jäger,, T. Black,, K. Zarka,, O. Koksharova, and, C. P. Wolk. 2001. HcwA, an autolysin, is required for heterocyst maturation in Anabaena sp. strain PCC 7120. J. Bacteriol. 183:68416851.
178. Zouni, A.,, H.-T. Witt,, J. Kern,, P. Fromme,, N. Krauss,, W. Saenger, and, P. Orth. 2001. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739743.

Tables

Generic image for table
Table 1

Genes whose products regulate heterocyst formation and maturation

Citation: Zhao J, Wolk C. 2008. 23 Developmental Biology of Heterocysts, 2006, p 397-418. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error