1887

26 Multispecies Interactions and Biofilm Community Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

26 Multispecies Interactions and Biofilm Community Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap26-2.gif

Abstract:

Most studies of biofilms have focused on single species and on genes that control or are regulated by life on a surface. As more information is uncovered by studies of pure cultures, these data can be applied towards understanding the roles of specific genes in multispecies interactions. This chapter focuses mostly on multi-species interactions among oral bacteria in biofilms: a few single-species biofilms are featured to discuss responses to environmental signals, including signals generated by the occupants within the biofilm. Signals involved in cell-to-cell communication among biofilm cells include acyl homoserine lactones, oligopeptides, and autoinducer-2 (AI-2). Importantly, an optimal concentration of 4,5-dihydroxy-2,3-pentanedione (DPD) was critical for maximal biofilm development. One site where natural multispecies biofilms are unusually accessible is the tooth surface in the human oral cavity. We use a retrievable enamel chip model system that permits us to place three pieces of enamel side by side in a groove cut into an acrylic stent that is placed bilaterally on the buccal surface of the lower dentition. The majority of cells in both sequentially and coaggregateinoculated biofilms were , regardless of the inoculation order. Usually biofilms are formed only on solid or semi-solid substrata, such as steel pipes or agar, respectively. Many environmental cues and signals likely govern multispecies biofilms that form and disperse. One of the most important determinants is the distance between signal generator and signal receiver.

Citation: Kolenbrander P, Jakubovics N, Chalmers N. 2008. 26 Multispecies Interactions and Biofilm Community Development, p 453-461. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch26

Key Concept Ranking

Two-Component Signal Transduction Systems
0.49939105
Confocal Laser Scanning Microscopy
0.4945079
0.49939105
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815677.ch26
1. Ahn, S. J.,, Z. T. Wen, and, R. A. Burne. 2006. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect. Immun. 74:16311642.
2. An, D.,, T. Danhorn,, C. Fuqua, and, M. R. Parsek. 2006. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl. Acad. Sci. USA 103:38283833.
3. Bassler, B. L.,, M. Wright,, R. E. Showalter, and, M. R. Silverman. 1993. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9:773786.
4. Caiazza, N. C.,, R. M. Shanks, and, G. A. O’Toole. 2005. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol. 187:73517361.
5. Camilli, A., and, B. L. Bassler. 2006. Bacterial small-molecule signaling pathways. Science 311:11131116.
6. Chen, X.,, S. Schauder,, N. Potier, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler, and, F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
7. Cisar, J. O.,, A. L. Sandberg,, G. P. Reddy,, C. Abeygunawardana, and, C. A. Bush. 1997. Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins. Infect. Immun. 65:50355041.
8. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
9. Dudler, R., and, L. Eberl. 2006. Interactions between bacteria and eukaryotes via small molecules. Curr. Opin. Biotechnol. 17:268273.
10. Duerre, J. A.,, D. J. Baker, and, L. Salisbury. 1971. Structure elucidation of a carbohydrate derived from S-ribosylhomocysteine by enzymatic cleavage. Fed. Proc. 30:1067.
11. Egland, P. G.,, R. J. Palmer,, Jr., and, P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101:1691716922.
12. Foster, J. S., and, P. E. Kolenbrander. 2004. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl. Environ. Microbiol. 70:43404348.
13. Fuqua, C.,, M. R. Parsek, and, E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439468.
14. Gilmore,, K. S.,, P. Srinivas,, D. R. Akins,, K. L. Hatter, and, M. S. Gilmore. 2003. Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. Infect. Immun. 71:47594766.
15. Ishii, S.,, T. Kosaka,, K. Hori,, Y. Hotta, and, K. Watanabe. 2005. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl. Environ. Micro-biol. 71:78387845.
16. Itoh, Y.,, X. Wang,, B. J. Hinnebusch,, J. F. Preston III, and, T. Romeo. 2005. Depolymerization of beta-1,6- N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J. Bacteriol. 187:382387.
17. Johnson, M. R.,, C. I. Montero,, S. B. Conners,, K. R. Shockley,, S. L. Bridger, and, R. M. Kelly. 2005. Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol. Microbiol. 55:664674.
18. Kaplan, J. B.,, C. Ragunath,, N. Ramasubbu, and, D. H. Fine. 2003. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J. Bacteriol. 185:46934698.
19. Kaplan,, J. B.,, K. Velliyagounder,, C. Ragunath,, H. Rohde,, D. Mack,, J. K. Knobloch, and, N. Ramasubbu. 2004. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J. Bacteriol. 186:82138220.
20. Keller, L., and, M. G. Surette. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:249258.
21. Kirillina, O.,, J. D. Fetherston,, A. G. Bobrov,, J. Abney, and, R. D. Perry. 2004. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Micro-biol. 54:7588.
22. Klier, C. M.,, P. E. Kolenbrander,, A. G. Roble,, M. L. Marco,, S. Cross, and, P. S. Handley. 1997. Identification of a 95 kDa putative adhesin from Actinomyces serovar WVA963 strain PK1259 that is distinct from type 2 fimbrial subunits. Microbiology 143:835846.
23. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42:627656.
24. Kolenbrander, P. E.,, R. N. Andersen,, D. S. Blehert,, P. G. Egland,, J. S. Foster, and, R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66:486505.
25. Kuboniwa, M.,, G. D. Tribble,, C. E. James,, A. O. Kilic,, L. Tao,, M. C. Herzberg,, S. Shizukuishi, and, R. J. Lamont. 2006. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol. Microbiol. 60:121139.
26. Kulasakara, H.,, V. Lee,, A. Brencic,, N. Liberati,, J. Urbach,, S. Miyata,, D. G. Lee,, A. N. Neely,, M. Hyodo,, Y. Hayakawa,, F. M. Ausubel, and, S. Lory. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3’-5’)-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA 103:28392844.
27. Li, Y. H.,, N. Tang,, M. B. Aspiras,, P. C. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184:26992708.
28. Loo, C. Y.,, D. A. Corliss, and, N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182:13741382.
29. Macedo, A. J.,, U. Kuhlicke,, T. R. Neu,, K. N. Timmis, and, W. R. Abraham. 2005. Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Appl. Environ. Microbiol. 71:73017309.
30. Miller, S. T.,, K. B. Xavier,, S. R. Campagna,, M. E. Taga,, M. F. Semmelhack,, B. L. Bassler, and, F. M. Hughson. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15:677687.
31. Norskov-Lauritsen, N., and, M. Kilian. 2006. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., and Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int. J. Syst. Evol. Microbiol. 56:21352146.
32. Nudleman, E.,, D. Wall, and, D. Kaiser. 2005. Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309:125127.
33. Nyvad, B., and, M. Kilian. 1987. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95:369380.
34. Palmer, R. J., Jr.,, S. M. Gordon,, J. O. Cisar, and, P. E. Kolenbrander. 2003. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185:34003409.
35. Palmer, R. J., Jr.,, K. Kazmerzak,, M. C. Hansen, and, P. E. Kolenbrander. 2001a. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69:57945804.
36. Palmer, R. J., Jr.,, R. Wu, S. Gordon,, C. G. Bloomquist,, W. F. Liljemark,, M. Kilian, and, P. E. Kolenbrander. 2001b. Retrieval of biofilms from the oral cavity. Methods Enzymol. 337:393403.
37. Petersen, F. C.,, D. Pecharki, and, A. A. Scheie. 2004. Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J. Bacteriol. 186:63276331.
38. Ramasubbu, N.,, L. M. Thomas,, C. Ragunath, and, J. B. Kaplan. 2005. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actino-bacillus actinomycetemcomitans. J. Mol. Biol. 349:475486.
39. Rickard, A. H.,, R. J. Palmer,, Jr., D. S. Blehert,, S. R. Campagna,, M. F. Semmelhack,, P. G. Egland,, B. L. Bassler, and, P. E. Kolenbrander. 2006. Autoinducer-2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60:14461456.
40. Riedel, K.,, M. Hentzer,, O. Geisenberger,, B. Huber,, A. Steidle,, H. Wu,, N. Hoiby,, M. Givskov,, S. Molin, and, L. Eberl. 2001. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:32493262.
41. Ross, P.,, R. Mayer,, H. Weinhouse,, D. Amikam,, Y. Huggirat,, M. Benziman,, E. de Vroom,, A. Fidder,, P. de Paus,, L. A. Sliedregt,, G. A. van der Marel, and, J. H. van Boom. 1990. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J. Biol. Chem. 265:1893318943.
42. Ross, P.,, H. Weinhouse,, Y. Aloni,, D. Michaeli,, P. WeinbergerOhana,, R. Mayer,, W. Braun,, E. de Vroom,, G. A. van der Marel,, J. H. van Boom, and, M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279281.
43. Sauer, K.,, M. C. Cullen,, A. H. Rickard,, L. A. Zeef,, D. G. Davies, and, P. Gilbert. 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186:73127326.
44. Schauder, S.,, K. Shokat,, M. G. Surette, and, B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463476.
45. Semmelhack, M. F.,, S. R. Campagna,, M. J. Federle, and, B. L. Bassler. 2005. An expeditious synthesis of DPD and boron binding studies. Org. Lett. 7:569572.
46. Senadheera, M. D.,, C. Levesque,, and D. G. Cvitkovitch. 2005. Cell-density-dependent regulation of streptococcal competence, p. 233267. In D. R. Demuth, and R. J. Lamont (ed.), Bacterial Cell-to-Cell Communication: Role in Virulence and Pathogenesis. Cambridge University Press, Cambridge, United Kingdom.
47. Steidle, A.,, K. Sigl,, R. Schuhegger,, A. Ihring,, M. Schmid,, S. Gantner,, M. Stoffels,, K. Riedel,, M. Givskov,, A. Hart-mann,, C. Langebartels, and, L. Eberl. 2001. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67:57615770.
48. Stoodley, P.,, S. Wilson,, L. Hall-Stoodley,, J. D. Boyle,, H. M. Lappin-Scott, and, J. W. Costerton. 2001. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl. Environ. Microbiol. 67:56085613.
49. Tait, K.,, I. Joint,, M. Daykin,, D. L. Milton,, P. Williams, and, M. Camara. 2005. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7:229240.
50. Thormann, K. M.,, S. Duttler,, R. M. Saville,, M. Hyodo,, S. Shukla,, Y. Hayakawa, and, A. M. Spormann. 2006. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J. Bacteriol. 188:26812691.
51. Tischler, A. D., and, A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53:857869.
52. Visick, K. L., and, C. Fuqua. 2005. Decoding microbial chatter: cell-cell communication in bacteria. J. Bacteriol. 187:55075519.
53. Wang, X.,, J. F. Preston III, and, T. Romeo. 2004. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bacteriol. 186:27242734.
54. Waters, C. M., and, B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21:319346.
55. Xavier, K. B., and, B. L. Bassler. 2005. Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750753.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error