1887

27 : Cultivation, Motility, and Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

27 : Cultivation, Motility, and Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap27-2.gif

Abstract:

This chapter presents a description of methods for cultivation of laboratory strains, as well as specific protocols for analysis of motility and development. Here the authors attempt to cover representative techniques, and to mention variations only occasionally. In nature, communities of reside in the soil on decaying plant material or herbivore dung and obtain nutrients by secreting digestive enzymes (such as proteases and lysozyme) to digest macromolecules from prey microorganisms or decaying organic matter. Initiation of the developmental program resulting in fruiting body formation requires (i) nutrient limitation, (ii) a solid surface, and (iii) sufficient population density. Fruiting body morphology and timing are greatly dependent on the medium surface. Therefore, solid media for development should be prepared the day before and plates should be cured (prewarmed) by incubating the plates with lids cracked open at least 20 min at 32ºC just before use. powers its movement over solid surfaces by using two genetically distinct motility systems. Social (S) motility—the coordinated movement of cells in large groups—predominates on soft and moist surfaces and is directly mediated by the extension and retraction of polar type IV pili. Adventurous (A) motility—the movement of single isolated cells—predominates on harder and drier surfaces and has been proposed to be based on either a jet engine-like extrusion of carbohydrate slime, a twisting or inching-like motion on the part of the cell, or intracellular motors pushing against dynamic focal adhesion points within the cell.

Citation: Higgs P, Merlie, Jr. J. 2008. 27 : Cultivation, Motility, and Development, p 465-478. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch27

Key Concept Ranking

Type IV Pili
0.47851944
0.47851944
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815677.ch27
1. Astling, D. P.,, J. Y. Lee, and, D. R. Zusman. 2006. Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol. Microbiol. 59: 4555.
2. Behmlander, R. M., and, M. Dworkin. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173:78107820.
3. Bretscher, A., P., and, D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133:763768.
4. Bustamante, V. H.,, I. Martinez-Flores,, H. C. Vlamakis, and, D. R. Zusman. 2004. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol. Microbiol. 53:15011513.
5. Campos, J. M., and, D. R. Zusman. 1975. Regulation of development in Myxococcus xanthus: effect of 3´ :5´-cyclic AMP, ADP, and nutrition. Proc. Natl. Acad. Sci. USA 72: 518522.
6. Chen, H.,, I. M. Keseler, and, L. J. Shimkets. 1990. Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis. J. Bacteriol. 172: 42064213.
7. Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84: 250257.
8. Dworkin, M., and, S. M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146: 243244.
9. Gill, J. S., and, M. Dworkin. 1986. Cell surface antigens during submerged development of Myxococcus xanthus examined with monoclonal antibodies. J. Bacteriol. 168: 505511.
10. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103: 1520015205.
11. Hagen, D. C.,, A. P. Bretscher, and, D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64: 284296.
12. Hemphill, H. E., and, S. A. Zahler. 1968. Nutrition of Myxococcus xanthus FBa and some of its auxotrophic mutants. J. Bacteriol. 95: 10111017.
13. Hillesland, K. L., and, G. J. Velicer. 2005. Resource level affects relative performance of the two motility systems of Myxococcus xanthus. Microb. Ecol. 49: 558566.
14. Hodgkin, J., and, D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74: 29382942.
15. Hodgkin, J., and, A. D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Genet. Genomics 171: 171191.
16. Inouye, M.,, S. Inouye, and, D. R. Zusman. 1979. Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 209213.
17. Kaiser, A. D., and, C. Crosby. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. Cytoskeleton 3: 227245.
18. Kaiser, D. 2004. Signaling in myxobacteria. Annu. Rev. Micro-biol. 58: 7598.
19. Kashefi, K., and, P. L. Hartzell. 1995. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF-defect. Mol. Microbiol. 15: 483494.
20. Kearns, D. B.,, P. J. Bonner,, D. R. Smith, and, L. J. Shimkets. 2002. An extracellular matrix-associated zinc metallopro-tease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J. Bacteriol. 184: 16781684.
21. Komano, T.,, S. Inouye, and, M. Inouye. 1980. Patterns of protein production in Myxococcus xanthus during spore formation induced by glycerol, dimethyl sulfoxide, and phenethyl alcohol. J. Bacteriol. 144: 10761082.
22. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117: 252266.
23. Kuner, J. M., and, D. Kaiser. 1982. Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151: 458461.
24. Laue, B. E., and, R. E. Gill. 1994. Use of a phase variation-specific promoter of Myxococcus xanthus in a strategy for isolating a phase-locked mutant. J. Bacteriol. 176: 53415349.
25. Laue, B. E., and, R. E. Gill. 1995. Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development. J. Bacteriol. 177: 40894096.
26. Li, Y.,, H. Sun,, X. Ma,, A. Lu,, R. Lux,, D. Zusman, and, W. Shi. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100: 54435448.
27. Mignot, T.,, J. P. Merlie,, Jr., and, D. R. Zusman. 2005. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310: 855857.
28. Mignot, T.,, J. W. Shaevitz,, P. L. Hartzell, and, D. R. Zusman. 2007. Evidence that focal adhesion complexes power bacterial gliding motility. Science 315: 853856.
29. Ramaswamy, S.,, M. Dworkin, and, J. Downard. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J. Bacteriol. 179: 28632871.
30. Rasmussen, A. A.,, S. Wegener-Feldbrugge,, S. L. Porter,, J. P. Armitage, and, L. Søgaard-Andersen. 2006. Four signalling domains in the hybrid histidine protein kinase RodK of Myxococcus xanthus are required for activity. Mol. Micro-biol. 60: 525534.
31. Reichenbach, H. 1999. The ecology of the myxobacteria. Environ. Microbiol. 1: 1521.
32. Rosenberg, E.,, K. H. Keller, and, M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770777.
33. Sadler, W., and, M. Dworkin. 1966. Induction of cellular morphogenesis in Myxococcus xanthus. II. Macromolecular synthesis and mechanism of inducer action. J. Bacteriol. 91: 15201525.
34. Shi, W.,, T. Kohler, and, D. R. Zusman. 1993. Chemotaxis plays a role in the social behaviour of Myxococcus xanthus. Mol. Microbiol. 9: 601611.
35. Shi, W., and, D. R. Zusman. 1993. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 33783382.
36. Shi, W.,, F. K. Ngok, and, D. R. Zusman. 1996. Cell density regulates cellular reversal frequency in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 93: 41424146.
37. Shimkets, L. J. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J.Bacteriol. 166: 837841.
38. Sliusarenko, O.,, J. Neu,, D. R. Zusman, and, G. Oster. 2006. Accordion waves in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 103: 15341539.
39. Søgaard-Andersen, L.,, F. J. Slack,, H. Kimsey, and, D. Kaiser. 1996. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10: 740754.
40. Sudo, S. Z., and, M. Dworkin. 1969. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 98: 883887.
41. Sun, H.,, D. R. Zusman, and, W. Shi. 2000. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10: 11431146.
42. Wall, D., and, D. Kaiser. 1998. Alignment enhances the cell-to-cell transfer of pilus phenotype. Proc. Natl. Acad. Sci. USA 95: 30543058.
43. Wall, D.,, P. E. Kolenbrander, and, D. Kaiser. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181: 2433.
44. Wireman, J. W., and, M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189: 516523.
45. Witkin, S. S., and, E. Rosenberg. 1970. Induction of morpho-genesis by methionine starvation in Myxococcus xanthus: polyamine control. J. Bacteriol. 103: 641649.
46. Wolgemuth, C.,, E. Hoiczyk,, D. Kaiser, and, G. Oster. 2002. How myxobacteria glide. Curr. Biol. 12: 369377.
47. Wolgemuth, C. W., and, G. Oster. 2004. The junctional pore complex and the propulsion of bacterial cells. J. Mol. Micro-biol. Biotechnol. 7: 7277.
48. Wu, S. S., and, D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18: 547558.
49. Wu, S. S., and, D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179: 77487758.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error