1887

29 Genetic Tools for Studying Biology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

29 Genetic Tools for Studying Biology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap29-2.gif

Abstract:

has a remarkable repertoire of complex multicellular behaviors, including social gliding motility, predation, rippling, and fruiting body formation. There are a few genetic tools such as an autonomously replicating plasmid and a defined library of mutant strains that have yet to be developed to study these complex behaviors. This chapter contains a description of genetic tools and their practical applications. Generalized transducing particles form when by mistake a bacteriophage head or capsid assembles around a fragment of a donor bacterium’s chromosomal DNA or around a plasmid instead of the phage genome. When these particles infect a recipient host, the donor bacterium’s DNA is inserted into the recipient host and is free to undergo homologous recombination with the host cell chromosome. In , generalized transducing phages are typically used for genetic mapping and for strain constructions. The plasmids are introduced into cells, strains that carry the plasmid integrated into phage attachment sites in the chromosome are identified, and the appropriate assays are performed. Gene fusions have been used to assay the transcriptional/translational regulation of genes/proteins and to examine protein localization in bacterial cells. Fusions belong to one of two classes: transcriptional fusions or translational fusions. In the case of a transcriptional fusion, the reporter gene lacks a promoter, but it possesses a functional ribosome-binding site. In the case of a translational fusion, the reporter gene lacks a promoter and a functional ribosome-binding site.

Citation: Murphy K, Garza A. 2008. 29 Genetic Tools for Studying Biology, p 491-501. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch29

Key Concept Ranking

Genetic Elements
0.5357675
Type IV Pili
0.48175353
Chromosomal DNA
0.420712
0.5357675
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Procedure for linking chromosomal mutations to Tn . The diagram shows a Tn insertion being genetically linked to a mutation (*) that causes a gliding motility defect (Mot), but it is applicable to any chromosomal mutation that produces a distinguishable phenotype. Open rectangles represent cells, and the ovals inside the rectangles represent the chromosome. The small, shaded rectangles denote Tn chromosomal insertions that impart kanamycin resistance to recipient cells. Hexagons represent the indicated phages.

Citation: Murphy K, Garza A. 2008. 29 Genetic Tools for Studying Biology, p 491-501. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Site-specific recombination at a chromosomal Mx8 phage attachment site. A plasmid carrying a gene conferring kanamycin resistanc (Kan), the Mx8 phage attachment site (gray box) located within the coding sequence for the integrase gene (stippled box), and the locus of interest (cross-hatched box) is shown. The plasmid integrates into the chromosomal Mx8 phage attachment site via site-specific recombination between the and sites. The integration event produces the indicated DNA arrangement in the chromosome.

Citation: Murphy K, Garza A. 2008. 29 Genetic Tools for Studying Biology, p 491-501. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of Tn and its derivatives. (A) Tn containing the genes that confer resistance to kanamycin (Kan), tetracycline (Tet), or trimethoprim (Tmp) flanked by IS elements. (B) A derivative of Tn used to create transcriptional fusions. In this Tn derivative, a segment of the IS element is replaced with a promoterless reporter gene. (C) A derivative of Tn used to create PhoA translational fusions. A segment of the IS element is replaced with a fragment of the gene. The fragment lacks sequences corresponding to the PhoA translational start site and sequences needed for export of the PhoA protein across the cytoplasmic membrane.

Citation: Murphy K, Garza A. 2008. 29 Genetic Tools for Studying Biology, p 491-501. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Strategy for making targeted insertions. An internal fragment of the gene of interest is generated using PCR, the PCR fragment is cloned into a plasmid vector that confers resistance to an antibiotic such as kanamycin, and plasmid DNA is electroporated into wild-type cells. A single homologous crossover produces a tandem duplication of the internal fragment and incorporation of the vector into the chromosomal copy of the gene. The likely result of the crossover is an inactivated copy of the gene.

Citation: Murphy K, Garza A. 2008. 29 Genetic Tools for Studying Biology, p 491-501. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch29
1. Avery, L., and, D. Kaiser. 1983. In situ transposon replacement and isolation of a spontaneous tandem duplication. Mol. Gen. Genet. 191:99109.
2. Barsom, E. K., and, G. F. Hatfull. 1996. Characterization of Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol. Microbiol. 21:159170.
3. Caberoy, N. B.,, R. D. Welch,, J. S. Jakobsen,, S. C. Slater, and, A. G. Garza. 2003. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J. Bacteriol. 185:60836094.
4. Campos, J. M.,, J. Geisselsoder, and, D. R. Zusman. 1978. Isolation of bacteriophage Mx4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119:167178.
5. Chavira, M.,, N. Cao,, K. Le,, T. Riar,, N. Moradshahi,, M. McBride,, R. Lux, and, W. Shi. 20 October 2006. βD-Allose inhibits fruiting body formation and sporulation in Myxococcus xanthus. J. Bacteriol. doi: 10.1128/JB.0079206.
6. Cho, K., and, D. R. Zusman. 1999a. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34:714725.
7. Cho, K., and, D. R. Zusman. 1999b. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol.Microbiol. 34:268281.
8. Fisseha, M.,, M. Gloudemans,, R. E. Gill, and, L. Kroos. 1996. Characterization of the regulatory region of a cell interaction-dependent gene in Myxococcus xanthus. J. Bacteriol. 178:25392550.
9. Geisselsoder, J.,, J. M. Campos, and, D. R. Zusman. 1978. Physical characterization of bacteriophage Mx4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119:179189.
10. Gill, R. E.,, M. G. Cull, and, S. Fly. 1988. Genetic identification and cloning of a gene required for developmental cell interactions in Myxococcus xanthus. J. Bacteriol. 170:52795288.
11. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A.Sullivan,, M. Vaudin,, R. Wiegand, and, H. B.Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
12. Hodgkin, J., and, D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl.Acad. Sci. USA 74:29382942.
13. Hodgkin, J., and, D. Kaiser. 1979a. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167176.
14. Hodgkin, J., and, D. Kaiser. 1979b. Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol. Gen. Genet. 171:177191.
15. Hodgson, D. A. 1993. Light-induced carotenogenesis in Myxococcus xanthus: genetic analysis of the carR region. Mol.Microbiol. 7:471488.
16. Hoffman, C., and, A. Wright. 1985. Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc. Natl. Acad. Sci. USA 82:51075111.
17. Jakobsen, J. S.,, L. Jelsbak,, L. Jelsbak,, R. D. Welch,, C. Cummings,, B. Goldman,, E. Stark,, S. Slater, and, D. Kaiser. 2004. σ54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J. Bacteriol. 186:43614368.
18. Jelsbak, L., and, D. Kaiser. 2005. Regulating pilin expression reveals a threshold for S motility in Myxococcus xanthus. J. Bacteriol. 187:21052112.
19. Jelsbak, L.,, M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with a forkhead-associated domain and the 54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
20. Julien, B. 2003. Characterization of the integrase gene and attachment site for the Myxococcus xanthus bacteriophage Mx9. J. Bacteriol. 185:63256330.
21. Kaiser, D. 1984. Genetics of Myxobacteria, p. 163184. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, NY.
22. Kalos, M., and, J. Zissler. 1990. Transposon tagging of genes for cell-to-cell signaling in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 87:83168320.
23. Kashefi, K., and, P. L. Hartzell. 1995. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF-defect. Mol. Microbiol. 15:483494.
24. Kroos, L., and, D. Kaiser. 1984. Construction of Tn5lac, a transposon that fuses lacZ expression to endogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81:58165820.
25. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252266.
26. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1990. Defects in fruiting body development caused by Tn5lac insertions in Myxococcus xanthus. J. Bacteriol. 172:484487.
27. Kuner, J., and, D. Kaiser. 1981. Introduction of transposon Tn 5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. USA 78:425429.
28. Lampe, D.,, M. E. Churchill, and, H. M. Robertson. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15:54705479.
29. Letouvet-Pawlek, B.,, C. Monnier,, S. Barray,, D. A. Hodgson, and, J. F. Guespin-Michel. 1990. Comparison of β-galactosidase production by two inducible promoters in Myxococcus xanthus. Res. Microbiol. 141:425435.
30. Li, S.,, B.-U. Lee, and, L. J. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. genes Dev. 6:401410.
31. Li, S. F., and, L. J. Shimkets. 1988. Site-specific integration and expression of a developmental promoter in Myxococcus xanthus. J. Bacteriol. 170:55525556.
32. Lu, A.,, K. Cho,, W. P. Black,, X. Y. Duan,, R. Lux,, Z. Yang,, H. B. Kaplan,, D. R. Zusman, and, W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206220.
33. Magrini, V.,, C. Creighton, and, P. Youderian. 1999. Site-specific recombination of temperate Myxococcus xanthus phage Mx8: genetic elements required for integration. J. Bacteriol. 181:40504061.
34. Manoil, C., and, J. Beckwith. 1985. Tn phoA: a transposon probe for protein export sequences. Proc. Natl. Acad. Sci. USA 82:81298133.
35. Martin, S.,, E. Sodergren,, T. Masuda., and, D. Kaiser. 1978. Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88:4453.
36. Michaelis, S.,, H. Inouye,, D. Oliver, and, J. Beckwith. 1983. Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J. Bacteriol. 154:366374.
37. O’Connor, K. A., and, D. R. Zusman. 1983. Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus: use for complementation and recombinational analyses. J. Bacteriol. 155:317329.
38. Plasterk, R. H. A.,, Z. Izsváak, and, Z. Ivics. 1999. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15:326332.
39. Ried, J. L., and, A. Collmer. 1987. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. gene 57:239246.
40. Rodriguez, A. M., and, A. M. Spormann. 1999. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181: 43814390.
41. Rothstein, S. J.,, R. A. Jorgensen,, J. C.-P. Yin,, Z. Yong-Di,, R. C. Johnson, and, W. S. Reznikoff. 1981. Genetic organization of Tn5. Cold Spring Harbor Symp. Quant. Biol. 45:99105.
42. Rubin, E. J.,, B. J. Akerley,, V. N. Novik,, D. J. Lampe,, R. N. Husson, and, J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96:16451650.
43. Sasakawa, C., and, M. Yoshikawa. 1987. A series of Tn5 variants with various drug-resistance markers and suicide vector for transposon mutagenesis. gene 56:283288.
44. Silhavy, T. J., and, J. R. Beckwith. 1985. Uses of lac fusions for the study of biological problems. Microbiol. Rev 49:398418.
45. Simunovic, V.,, F. C. Gherardini, and, L. J. Shimkets. 2003. Membrane localization of motility, signaling, and polyketide synthetase proteins in Myxococcus xanthus. J. Bacteriol. 185:50665075.
46. Sodergren, E., and, D. Kaiser. 1983. Insertions of Tn5 near genes that govern stimulatable cell motility in Myxococcus. J. Mol. Biol. 167:295310.
47. Stellwag, E.,, J. M. Fink, and, J. Zissler. 1985. Physical characterization of the genome of the Myxococcus xanthus bacteriophage Mx8. Mol. Gen. Genet. 199:123132.
48. Tojo, N.,, S. Inouye, and, T. Komano. 1993. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J. Bacteriol. 175:45454549.
49. Tojo, N., and, T. Komano. 2003. The IntP C-terminal segment is not required for excision of bacteriophage Mx8 from the Myxococcus xanthus chromosome. J. Bacteriol. 185:21872193.
50. Ueki, T.,, S. Inouye, and, M. Inouye. 1996. Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. gene 183:153157.
51. Whitworth, D. E.,, S. J. Bryan,, A. E. Berry,, S. J. McGowan, and, D. A. Hodgson. 2004. Genetic dissection of the light-inducible carQRS promoter region of Myxococcus xanthus. J. Bacteriol. 186:78367846.
52. Wu, S. S., and, D. Kaiser. 1996. Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J. Bacteriol. 178:58175821.
53. Wu, T. T. 1966. A model for three-point analysis of random generalized transduction. genetics 54:405410.
54. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49:555570.
55. Youderian, P., and, P. L. Hartzell. 2006. Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics 172:13971410.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error