1887

30 Methods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

30 Methods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap30-2.gif

Abstract:

This chapter summarizes research methods to encourage further research into the complex biology of . is a cellulolytic myxobacterium that can grow on simple mineral medium with KNO as the sole nitrogen source and cellulose as the sole carbon source The authors have developed a reproducible protocol that induces fruiting body formation by strain So ce56, which grows as dispersed cells in liquid. Distinct strains of exhibit very different growth characteristics. The dispersed-growing So ce56 strain shows severely reduced swarming on several agar surfaces but does form fruiting bodies when sufficiently concentrated cell suspensions are used. They used the pMycoMarHyg transposon to construct developmental mutants of So ce56, and some of the resulting mutant phenotypes are shown in the chapter. Qualitative bioassays are useful tools for analysis of physiological differentiation defects exhibited by mutants. Chivosazole production of So ce56 was reported to depend on temperature, aeration, nitrogen source, and carbon source.

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30

Key Concept Ranking

Transmission Electron Microscopy
0.4292018
Carbon Sources
0.421539
0.4292018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Morphogenesis of strain So ce56 on P-Diff agar. At time point zero the cells were spotted onto the agar. During phase 1 no visible changes occur. Phase 2 is the early aggregation phase. Primary cyst (sori) formation is achieved in phase 3. Here several slime-connected sori are formed. Within these sori, secondary cysts (sporangia) appear in phase 4. These sporangia contain 20 to 30 microcysts on average.

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Clusters of sporangia-filled sori of So ce56 on P-Diff agar. The actual width of the image area is 1 mm.

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Morphogenesis of strain DSM14627 on yeast VY/2 agar. (a) A young swarming colony. (b) The edge of the swarming colony photographed with a 100× objective. (c) The colony edge after 3 days; bar is 1 mm. (d) Enlargement of the right boxed area of panel c; bar is 0.1 mm. (e) Enlargement of the left boxed area of panel c; bar is 0.1 mm.

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Developmental and physiological differentiation phenotypes of some So ce56 mariner mutants. The images of developing cells (first row) were taken after 7 days. The phenotypes shown are stable and did not change even with longer incubation. The second row shows the chivosazole assay phenotypes of the mutants compared to the wild type. Photographs were taken after overnight incubation. The experiments were performed according to the detailed protocols included in this chapter.

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch30
1. Arnold, J. W., and, L. J. Shimkets. 1988. Inhibition of cell-cell interactions in Myxococcus xanthus by Congo red. J. Bacteriol. 170:57655770.
2. Baur, E. 1905. Myxobakterien-Studien. Arch. Protistenk. 5:92121.
3. Coucke, P. 1969. Morphology and morphogenesis of Sorangium compositum. J. Appl. Bacteriol. 32:2429.
4. Coucke, P., and, J. P. Voets. 1967. The mineral requirements of Polyangium cellulosum. Z. Allg. Mikrobiol. 7:175182.
5. Dobson, W. J.,, H. D. McCurdy, and, T. H. MacRae. 1979. The function of fimbriae in Myxococcus xanthus. II. The role of fimbriae in cell-cell interactions. Can. J. Microbiol. 25:13591372.
6. Doß, S. 2007. Analyse der morphologischen und physiologischen Differenzierung in Sorangium cellulosum So ce56: Lon-Proteasen und Stickstoffmetabolismus. Ph.D. thesis. University of Gie;ßen, Gie;ßen, Germany. [Online: http://geb.uni-giessen.de/geb/volltexte/2007/4733/]
7. Friedrich, B.,, C. Hogrefe, and, H. G. Schlegel. 1981. Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J. Bacteriol. 147:198205.
8. Gerth, K.,, N. Bedorf,, G. Höfle,, H. Irschik, and, H. Reichen-bach. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. 49:560563.
9. Gerth, K.,, N. Bedorf,, H. Irschik,, G. Höfle, and, H. Reichen-bach. 1994. The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: fermentation, isolation, biological properties. J. Antibiot. (Tokyo) 47:2331.
10. Gerth, K.,, S. Pradella,, O. Perlova,, S. Beyer, and, R. Müller. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106:233253.
11. Gerth, K.,, D. Schummer,, G. Höfle,, H. Irschik, and, H. Reichen-bach. 1995. Ratjadon: a new antifungal compound from Sorangium cellulosum (myxobacteria) production, physio-chemical and biological properties. J. Antibiot. 48:973976.
12. Grimm, K., and, H. Kühlwein. 1973. Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales) I. Bewegliche und unbewegliche Zellen von A. violaceum. Arch. Mikrobiol. 89:105119.
13. Irschik, H.,, R. Jansen,, K. Gerth,, G. Höfle, and, H. Reichen-bach. 1987. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J. Antibiot. (Tokyo) 40:713.
14. Jaoua, S.,, S. Neff, and, T. Schupp. 1992. Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28:157165.
15. Julien, B., and, R. Fehd. 2003. Development of a mariner-based transposon for use in Sorangium cellulosum. Appl. Environ. Microbiol. 69:62996301.
16. Kegler, C.,, K. Gerth, and, R. Müller. 2006. Establishment of a real-time PCR protocol for expression studies of secondary metabolite biosynthetic gene clusters in the G/C-rich myxo-bacterium Sorangium cellulosum So ce56. J. Biotechnol. 121:201212.
17. Kleinig, H.,, H. Reichenbach,, H. Achenbach, and, J. Stadler. 1971. Carotenoid pigments of Sorangium compositum(Myxobacterales) including two new carotenoid glucoside esters and two new carotenoid rhamnosides. Arch. Mikrobiol. 78:224233.
18. Knauber, T. 2006. Der Einflu;ß der stringenten Kontrolle auf die morphologische und physiologische Differenzierung von Sorangium cellulosum So ce56. Ph.D. thesis. University of Gie;ßen, Gie;ßen, Germany.
19. Knauber, T.,, S. Doss,, K. Gerth,, O. Perlova,, R. Müller, and, A. Treuner-Lange. Mutation in the rel gene of Sorangium cellulosum affects the morphological and physiological differentiation. Mol. Microbiol ., in press.
20. Kopp, M.,, H. Irschik,, F. Gross,, O. Perlova,, A. Sandmann,, K. Gerth, and, R. Müller. 2004. Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J. Biotechnol. 107:2940.
21. Koster, M.,, S. Lykke-Andersen,, Y. A. Elnakady,, K. Gerth,, P. Washausen,, G. Höfle,, F. Sasse,, J. Kjems, and, H. Hauser. 2003. Ratjadones inhibit nuclear export by blocking CRM1/ exportin 1. Exp. Cell Res. 286:321331.
22. Krzemieniewski, H., and, S. Krzemieniewska. 1937. Die zellulosezersetzenden Myxobakterien. Bull. Int. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat. B (I):33.
23. Lampky, J. R. 1976. Ultrastructure of Polyangium cellulosum. J. Bacteriol. 126:12781284.
24. McCurdy, H. D. 1989. Order Myxococcales Tchan, Pochon and Prévot 1948, 398, p. 21392170. In J. T. Staley,, M. P. Bryant,, N. Pfennig, and, J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 3. Williams & Wilkins, Baltimore, MD.
25. Müller, R., and, K. Gerth. 2006. Development of simple media which allow investigations into the global regulation of chivosazol biosynthesis with Sorangium cellulosum So ce56. J. Biotechnol. 121:192200.
26. Perlova, O.,, K. Gerth,, O. Kaiser,, A. Hans, and, R. Muller. 2006. Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J. Biotechnol. 121:174191.
27. Peterson, E. A. 1969a. Isolation, cultivation and maintenance of the myxobacteria, p. 185210. In J. R. Norris and, D. W. Ribbons (ed.), Methods in Microbiology, vol. 3B. Academic Press, New York, NY.
28. Peterson, J. E. 1969b. The fruiting myxobacteria: their properties, distribution and isolation. J. Appl. Bacteriol. 32:512.
29. Pradella, S.,, A. Hans,, C. Sproer,, H. Reichenbach,, K. Gerth, and, S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178:484492.
30. Regentin, R.,, S. Frykman,, J. Lau,, H. Tsuruta, and, P. Licari. 2003. Nutrient regulation of epothilone biosynthesis in heterologous and native production strains. Appl. Microbiol. Biotechnol. 61:451455.
31. Reichenbach, H. 1974. Die Biologie der Myxobakterien. Biol. Unserer Zeit 2:3345.
32. Reichenbach, H., and, M. Dworkin. 1992. The Myxobacteria, p. 34163487. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K. H. Schleifer (ed.), The Prokaryotes. Springer Verlag, New York, NY.
33. Reichenbach, H. 1993. Biology of the myxobacteria: ecology and taxonomy, p. 1362. In M. Dworkin and, D. Kaiser (ed.), Myxobacteria II. ASM Press, Washington, DC.
34. Sarao, R.,, H. D. McCurdy, and, L. Passador. 1985. Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum. Can. J. Microbiol. 31:11421146.
35. Schupp, T.,, C. Toupet,, B. Cluzel,, S. Neff,, S. Hill,, J. J. Beck, and, J. M. Ligon. 1995. A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J. Bacteriol. 177:36733679.
36. Simon, R.,, U. Priefer, and, A. Puehler. 1983. A broad-host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology November:784790.
37. Sproer, C.,, H. Reichenbach, and, E. Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 49:12551262.
38. Stanier, R. Y. 1942. The cytophaga group: a contribution to the biology of myxobacteria. Bacteriol. Rev. 6:143196.
39. Sutherland, I. W. 1979. Polysaccharides produced by Cystobacter, Archangium, Sorangium and Stigmatella species. J. Gen. Microbiol. 111:211216.
40. Yan, Z. C.,, B. Wang,, Y. Z. Li,, X. Gong,, H. Q. Zhang, and, P. J. Gao. 2003. Morphologies and phylogenetic classification of cellulolytic myxobacteria. Syst. Appl. Microbiol. 26:104109.
41. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49:555570.
42. Zirkle, R.,, J. M. Ligon, and, I. Molnar. 2004. Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiol. Read. Engl. 150:27612774.

Tables

Generic image for table
Table 1

Defined media for growth of

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30
Generic image for table
Table 2

Different complex media

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30
Generic image for table
Table 3

Comparison of different conjugation strategies

Citation: Treuner-Lange A, Doß S, Knauber T. 2008. 30 Methods, p 503-511. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch30

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error