1887

Chapter 11 : Lurie’s Pulmonary Tubercle-Count Method

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Lurie’s Pulmonary Tubercle-Count Method, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815684/9781555813734_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815684/9781555813734_Chap11-2.gif

Abstract:

Lurie’s tubercle-count method consists of counting the number of grossly visible primary pulmonary tubercles, present 5 weeks after an aerosol infection of rabbits with virulent human-type tubercle bacilli. It is a quantitative measure of clinically apparent disease. At 5 weeks, the grossly visible primary tubercles are easily recognized, and many microscopic tubercles have regressed. Since human-type tubercle bacilli are not fully virulent for rabbits, the pulmonary-count method has a sensitivity that is not possible with fully virulent strains. The number of grossly visible pulmonary tubercles produced by human-type bacilli decreases (i) when rabbits are infected with bacilli of reduced virulence, (ii) when rabbits of high genetic (innate) resistance are used, and (iii) when rabbits are effectively immunized, so that they can rapidly activate macrophages and stop the development of early tubercles while they are still microscopic in size. Therefore, the pulmonary tubercle-count method can be used to assess (i) bacillary virulence, (ii) the genetic resistance of the host, and (iii) the efficacy of vaccines for tuberculosis.

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Formalin-fixed lungs of a commercial rabbit that inhaled about 33,000 virulent human-type tubercle bacilli (H37Rv) 5 weeks previously. Upon dissection, these lungs contained 131 grossly visible primary tubercles, with no apparent secondary tubercles. The ratio of the number of bacilli estimated as inhaled to the number of grossly visible primary tubercles produced was 250. Effective BCG (and other vaccines for tuberculosis) should increase this ratio at least fivefold (9, 12). Small areas of caseous necrosis are visible in many of the tubercles. On the left, this photograph shows the ventral surface of the right upper, middle, and azygous lobes; on the right, the entire left lung (upper and lower lobes) is shown. The right lower lobe had been removed for culture. This right lower lobe contained 23 grossly visible tubercles and 1.35 × 105 culturable tubercle bacilli. Magnification, ×1.1. Reproduced with permission from reference 3.

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

A tissue section of a primary lesion similar to the lesions shown in Fig. 1. From left to right are (i) one of the small sites of caseous necrosis, (ii) a surrounding area of large epithelioid macrophages, and (iii) an outside area that is densely infiltrated by smaller macrophages, lymphocytes, and plasma cells. Azure-eosin stain. Magnification, ×350. Reproduced with permission from reference 3.

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815684.ch11
1. Lurie, M. B. 1964. Resistance to Tuberculosis: Experimental Studies in Native and Acquired Defensive Mechanisms. Harvard University Press, Cambridge, Mass.
2. Lurie, M. B.,, P. Zappasodi, and, C. Tickner. 1955. On the nature of genetic resistance to tuberculosis in the light of the host-parasite relationships in natively resistant and susceptible rabbits. Am. Rev. Tuberc. 72:297329.
3. Dannenberg, A. M., Jr. 1998. Lurie’s tubercle-count method to test TB vaccine efficacy in rabbits. Front. Biosci. 3:c2733. Available at http://www.bioscience.org/1998/v3/c/dannenbe/list.htm.
4. Bishai, W. R.,, A. M. Dannenberg, Jr.,, N. Parrish,, R. Ruiz,, P. Chen,, B. C. Zook,, W. Johnson,, J. W. Boles, and, M. L. M. Pitt. 1999. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie’s pulmonary tubercle-count method. Infect. Immun. 67:49314934.
5. Manabe, Y. C.,, A. M. Dannenberg, Jr.,, S. K. Tyagi,, C. L. Hatem,, M. Yoder,, S. C. Woolwine,, B. C. Zook,, M. L. M. Pitt, and, W. R. Bishai. 2003. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect. Immun. 71:60046011.
6. Dorman, S.,, C. L. Hatem,, S. K. Tyagi,, K. Aird,, J. Lopez-Molina,, M. L. M. Pitt,, B. C. Zook,, A. M. Dannenberg, Jr.,, W. R. Bishai, and, Y. C. Manabe. 2003. Susceptibility to tuberculosis: clues from studies with inbred and outbred New Zealand White rabbits. Infect. Immun. 72:17001705.
7. Lurie, M. B.,, P. Zappasodi,, A. M. Dannenberg, Jr., and, G. H. Weiss. 1953. On the mechanism of genetic resistance to tuberculosis and its mode of inheritance. Am. J. Hum. Genet. 4:302314.
8. Dannenberg, A. M., Jr.,, K. Mizunoe,, M. Peace, and, P. Zappasodi. 1965. Dermal response to the liposaccharide PmKo from tubercle bacilli as an index of resistance to tuberculosis. Bull. Johns Hopkins Hosp. 117:174194.
9. Lurie, M. B.,, P. Zappasodi,, E. Cardona-Lynch, and, A. M. Dannenberg, Jr. 1952. The response to the intracutaneous inoculation of BCG as an index of native resistance to tuberculosis. J. Immunol. 68:369387.
10. Converse, P. J.,, A. M. Dannenberg, Jr.,, J. E. Estep,, K. Sugisaki,, Y. Abe,, B. H. Schofield, and, M. L. M. Pitt. 1996. Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect. Immun. 64:47764787.
11. Converse, P. J.,, A. M. Dannenberg, Jr.,, T. Shigenaga,, D. N. McMurray,, S. W. Phalen,, J. L. Stanford,, G. A. W. Rook,, T. Koru-Sengul,, H. Abbey,, J. E. Estep, and, M. L. M. Pitt. 1998. Pulmonary bovine-type tuberculosis in rabbits: bacillary virulence, inhaled dose effects, tuberculin sensitivity, and Mycobacterium vaccae immunotherapy. Clin. Diagn. Lab. Immunol. 5:871881.
12. Dannenberg, A. M., Jr.,, W. R. Bishai,, N. Parrish,, R. Ruiz,, W. Johnson,, B. C. Zook,, J. W. Boles, and, M. L. M. Pitt. 2000. Efficacies of BCG and vole bacillus (Mycobacterium microti) vaccines in preventing clinically apparent pulmonary tuberculosis in rabbits: a preliminary report. Vaccine 19:796800.
13. Allison, M. J.,, P. Zappasodi, and, M. B. Lurie. 1962. Host-parasite relationships in natively resistant and susceptible rabbits on quantitative inhalation of tubercle bacilli. Am. Rev. Respir. Dis. 85:553569.
14. Lurie, M. B.,, A. G. Heppleston,, S. Abramson, and, I. B. Swartz. 1950. An evaluation of the method of quantitative airborne infection and its use in the study of the pathogenesis of tuberculosis. Am. Rev. Tuberc. 61:765797.
15. Lurie, M. B.,, S. Abramson, and, A. G. Heppleston. 1952. On the response of genetically resistant and susceptible rabbits to the quantitative inhalation of human-type tubercle bacilli and the nature of resistance to tuberculosis. J. Exp. Med. 95:119134.
16. Francis, J. 1958. Tuberculosis in Animals and Man. A Study in Comparative Pathology, p. 293318. Cas-sell and Company, Ltd., London, United Kingdom.
17. Brown, J. H.,, K. M. Cook,, F. G. Ney, and, T. Hatch. 1950. Influence of particle size upon the retention of particulate matter in the human lung. Am. J. Public Health 40:450458.
18. Goldberg, L. J., and, W. R. Leif. 1950. The use of radioactive isotopes in determining the retention and initial distribution of airborne bacteria in the mouse. Science 112:299300.
19. Sonkin, L. S. 1951. The role of particle size in experimental airborne infection. Am. J. Public Health 53:337354.
20. Dannenberg, A. M., Jr.,, M. Burstone,, P. C. Walter, and, J. W. Kinsley. 1963. A histochemical study of phagocytic and enzymatic functions of rabbit mononuclear and polymorphonuclear exu-date cells and alveolar macrophages. I. Survey and quantitation of enzymes, and states of cellular activation. J. Cell Biol. 17:465486.
21. Myrvik, Q. N.,, E. Soto Leake, and, D. Gonzalez-Ojeda. 1962. Enzymatic differences between normal rabbit alveolar macrophages and oil-induced peritoneal macrophages. Bacteriol. Proc. 62:79.
22. Myrvik, Q. N.,, E. Soto Leake, and, B. Fariss. 1961. Lysozyme content of alveolar and peritoneal macrophages from the rabbit. J. Immunol. 86:133136.
23. Dannenberg, A. M., Jr.,, P. C. Walter, and, F. A. Kapral. 1963. A histochemical study of phagocytic and enzymatic functions of rabbit mononuclear and polymorphonuclear exudate cells and alveolar macrophages. II. The effect of particle ingestion on enzyme activity; two phases of in vitro activation. J. Immunol. 90:448465.
24. Dannenberg, A. M., Jr. 1991. Delayed-type hyper-sensitivity and cell-mediated immunity in the pathogenesis of tuberculosis. Immunol. Today 12:228233.
25. Dannenberg, A. M., Jr. 1993. Immunopatho-genesis of pulmonary tuberculosis. Hosp. Pract. 28:3340 (Off. ed. 51–58).
26. Dannenberg, A. M., Jr., and, G. A. W. Rook. 1994. Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses—dual mechanisms that control bacillary multiplication, p. 459483. In B. R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
27. Dannenberg, A. M., Jr., and, J. F. Tomashefski, Jr. 1998. Pathogenesis of pulmonary tuberculosis, p. 24472471. In A. P. Fishman (ed.), Fishman’s Pulmonary Diseases and Disorders, 3rd ed., vol. 2. McGraw-Hill Co., Inc, New York, N.Y.
28. Dannenberg, A. M., Jr. 1999. Pathophysiology: basic aspects. I. Pathogenesis of tuberculosis. II. Immunology of tuberculosis, p. 1747. In D. Schlossberg (ed.), Tuberculosis and Nontuberculous Mycobacterial Infections, 4th ed. The W. B. Saunders Co., Philadelphia, Pa.
29. Henderson, H. J.,, A. M. Dannenberg, Jr., and, M. B. Lurie. 1963. Phagocytosis of tubercle bacilli by rabbit pulmonary alveolar macrophages and its relation to native resistance to tuberculosis. J. Immunol. 91:553556.
30. Heppleston, A. G. 1949. Quantitative air-borne tuberculosis in the rabbit. The course of human-type infection. J. Exp. Med. 89:597610.
31. Lurie, M. B. 1941. Heredity, constitution and tuberculosis. An experimental study. Am. Rev. Tuberc. 44(Suppl. 3):1125.
32. Manca, C.,, L. Tsenova,, C. E. Barry III,, A. Bergtold,, S. Freeman,, P. A. J. Haslett,, J. M. Musser,, V. H. Freedman, and, G. Kaplan. 1999. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J. Immunol. 162:67406746.
33. Kelley, C. L., and, F. M. Collins. 1999. Growth of a highly virulent strain of Mycobacterium tuberculosis in mice of differing susceptibility to tuberculous challenge. Tuber. Lung Dis. 79:367370.
34. North, R. J.,, L. Ryan,, R. LaCource,, T. Mogues, and, M. E. Goodrich. 1999. Growth rate of mycobacteria in mice as an unreliable indicator of mycobacterial virulence. Infect. Immun. 67:54835485.
35. Orme, I. M. 1999. Virulence of recent notorious Mycobacterium tuberculosis isolates. Tuber. Lung Dis. 79:379381.
36. Strober, W.,, B. Kelsall, and, T. Marth. 1998. Oral tolerance. J. Clin. Immunol. 18:130.
37. McKinney, J. D.,, K. Höner zu Bentrup,, E. J. Muñoz-Elías,, A. Miczak,, B. Chen,, W.-T. Chan,, D. Svenson,, J. C. Sacchettini,, W. R. Jacobs, Jr., and, D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735738.
38. Glickman, M. S.,, J. S. Cox, and, W. R. Jacobs, Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5:717727.
39. Horowitz, M. A.,, G. Harth,, B. J. Dillon, and, S. Maslesa-Galic. 2000. Recombinant bacillus Calmette-Guérin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. USA 97:1385313858.
40. Medina, E., and, R. J. North. 1999. Genetically susceptible mice remain proportionally more susceptible to tuberculosis after vaccination. Immunology 96:1621.
41. Dannenberg, A. M., Jr., and, E. M. Scott. 1956. Determination of respiratory LD50 from number of primary lesions as illustrated by melioidosis. Proc. Soc. Exp. Biol. Med. 92:571575.
42. Dannenberg, A. M., Jr., and, E. M. Scott. 1958. Melioidosis: pathogenesis and immunity in mice and hamsters. I. Studies with virulent strains of Malleomyces pseudomallei. J. Exp. Med. 107:153166.
43. Dannenberg, A. M., Jr., and, E. M. Scott. 1958. Melioidosis: pathogenesis and immunity in mice and hamsters. II. Studies with avirulent strains of Malleomyces pseudomallei. Am. J. Pathol. 34:10991121.
44. Dannenberg, A. M., Jr., and, E. M. Scott. 1960. Melioidosis: pathogenesis and immunity in mice and hamsters. III. The effect of vaccination with avirulent strains of Pseudomonas pseudomallei on the resistance to the establishment and the resistance to the progress of respiratory melioidosis caused by virulent strains: all-or-none aspects of this disease. J. Immunol. 84:233246.

Tables

Generic image for table
TABLE 1

The number of inhaled bovine-type tubercle bacilli (Ravenel) required to produce one primary pulmonary tubercle in Lurie’s inbred rabbits a

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Generic image for table
TABLE 2

The relative resistance of inbred rabbit strains as determined by their response to quantitative inhalation of human-type bacilli (H37Rv) a

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Generic image for table
TABLE 3

Number of inhaled virulent human-type bacilli (H37Rv) required to produce one grossly visible primary pulmonary tubercle (the ratio) in commercial outbred New Zealand White rabbits a

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Generic image for table
TABLE 4

Virulence of two strains of human-type tubercle bacilli—H37Rv and CDC1551 (Oshkosh)—assessed in rabbits by Lurie’s tubercle-count method a

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Generic image for table
TABLE 5

Variability in tubercle counts in two of Lurie’s inbred rabbit strains a

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11
Generic image for table
TABLE 6

Vaccine efficacy: number of inhaled human tubercle bacilli (H37Rv) required to produce one grossly visible primary pulmonary tubercle in unvaccinated and vaccinated rabbits a

Citation: Dannenberg, Jr. A. 2006. Lurie’s Pulmonary Tubercle-Count Method, p 196-212. In Pathogenesis of Human Pulmonary Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555815684.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error