1887

Chapter 6 : Gene Duplicates in Vibrio Genomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Gene Duplicates in Vibrio Genomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap06-2.gif

Abstract:

This chapter discusses the collection of gene duplicates (the paranome) in relation to the whole proteome, the functional composition, and organization for all currently available genomes, i.e., , , , and . The vibrio genomes are organized into two replicons, a main chromosome and an auxiliary chromosome, the latter characterized by less gene synteny than the former. The majority (>77%) of the strain-specific expansion (SSEs) consist of hypothetical proteins or proteins with unknown functions, of which most have no homologous genes outside the . The chapter provides an overview of the functional landscape of the paranome for the is presented, which allows to determine whether duplicate retention is biased toward specific functional classes for each of the bacterial strains. It appears that the preferentially retained duplicated genes mainly belong to the functional classes that are associated with amino acid metabolism (class E) and transcription (class K). Such genes are directly or indirectly (via regulation) involved in adapting to a constantly changing environment, showing the importance of gene duplicates for biological evolution. Gene duplications can occur on a gene-by-gene basis, resulting in tandem duplicates, or they can result from the duplication of larger regions. Rearrangements after duplication and acquisition of homologs via horizontal gene transfer (HGT) result in duplicates’ being dispersed over the genome.

Citation: Gevers D, Peer Y. 2006. Gene Duplicates in Vibrio Genomes, p 76-83. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch6

Key Concept Ranking

Major Facilitator Superfamily
0.5141509
Outer Membrane Proteins
0.45339605
0.5141509
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Parsimonious evolutionary scenario for vibrio proteomes. A reconstruction of acquisition, loss, and gene genesis events was based on the species tree (constructed from 16S rRNA gene sequence) and on protein families as described in the introduction. Numbers along the branches refer to the number of acquisitions, losses, and genesis, respectively. Each node has a number that refers to data in Table 2 . The number between brackets is the total number of genes for that particular genome. Inference of ancestral gene contents was made by parsimony analysis in PAUP with penalties for acquisition, deletion, and gene genesis set to 1, 1, and 5, respectively.

Citation: Gevers D, Peer Y. 2006. Gene Duplicates in Vibrio Genomes, p 76-83. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Sequence divergence within families versus family size. For each family of the CMCP6 proteome, the average amino acid sequence identity of pairwise comparisons among the members of the family is determined and plotted against the family size.

Citation: Gevers D, Peer Y. 2006. Gene Duplicates in Vibrio Genomes, p 76-83. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815714.ch06
1. Babu, M. M., and, S. A. Teichmann. 2003. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res. 31:12341244.
2. Boussau, B.,, E. O. Karlberg,, A. C., Frank,, B. A. Legault, and, S. G. Andersson. 2004. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA 101:97229727.
3. Caporale, L. H. 2003. Natural selection and the emergence of a mutation phenotype: an update of the evolutionary synthesis considering mechanisms that affect genome variation. Annu. Rev. Microbiol. 57:467485.
4. Coenye, T.,, D. Gevers,, Y. Van de Peer,, P. Vandamme, and, J. Swings. 2005. Towards a prokaryotic genomic taxonomy. FEMS Microbiol. Rev. 29:147167.
5. Coissac, E.,, E. Maillier. and, P. Netter. 1997. A comparative study of duplications in bacteria and eukaryotes: the importance of telomeres. Mol. Biol. Evol. 14:10621074.
6. Daubin, V.,, N. A. Moran, and, H. Ochman. 2003. Phylogenetics and the cohesion of bacterial genomes. Science 301:829832.
7. Gevers, D.,, K. Vandepoele,, C. Simillon, and, Y. Van de Peer. 2004. Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol. 12:148154.
8. Gogarten, J. P.,, W. F. Doolittle, and, J. G. Lawrence. 2002. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19:22262238.
9. Gomez-Gil, B.,, F. L. Thompson,, T. Sawabe,, A. Vicente,, A. Coelho,, D. Gevers, and, J. Swings. 2005. The genus Vibrio. In M. Dworkin et al., (ed.), The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd ed. Springer-Verlag, New York, N.Y.
10. Grishin, N. V.,, Y. I. Wolf, and, E. V. Koonin. 2000. From complete genomes to measures of substitution rate variability within and between proteins. Genome Res. 10:9911000.
11. Hayashi, T.,, K. Makino,, M. Ohnishi,, K. Kurokawa,, K. Ishii,, K. Yokoyama,, C. G. Han,, E. Ohtsubo,, K. Nakayama,, T. Murata,, M. Tanaka,, T. Tobe,, T. Iida,, H. Takami,, T. Honda,, C. Sasakawa,, N. Ogasawara,, T. Yasunaga,, S. Kuhara,, T. Shiba,, M. Hattori, and, H. Shinagawa. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8:1122.
12. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter, and, C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477483.
13. Hong, S. H.,, T. Y. Kim, and, S. Y. Lee. 2004. Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl. Microbiol. Biotechnol. 65:203210.
14. Hooper, S. D., and, O. G. Berg. 2003. On the nature of gene innovation: duplication patterns in microbial genomes. Mol. Biol. Evol. 20:945954.
15. Jordan, I. K.,, K. S. Makarova,, J. L. Spouge,, Y. I. Wolf, and, E. V. Koonin. 2001. Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res. 11:555565.
16. Klasson, L., and, S. G. Andersson. 2004. Evolution of minimal-gene-sets in host-dependent bacteria. Trends Microbiol. 12:3743.
17. Kolsto, A. B. 1997. Dynamic bacterial genome organization. Mol. Microbiol. 24:241248.
18. Kunin, V., and, C. A. Ouzounis. 2003. The balance of driving forces during genome evolution in prokaryotes. Genome Res. 13:15891594.
19. Kunisawa, T. 1995. Identification and chromosomal distribution of DNA sequence segments conserved since divergence of Escherichia coli and Bacillus subtilis. J. Mol. Evol. 40:585593.
20. Lerat, E.,, V. Daubin,, H. Ochman, and, N. A. Moran. 2005. Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3:e130. (First published 5 April 2005; 10.1371/journal.pbio. 0030130.)
21. Li, W. H.,, Z. Gu,, H. Wang, and, A. Nekrutenko. 2001. Evolutionary analyses of the human genome. Nature 409:847849.
22. Mirkin, B. G.,, T. I. Fenner,, M. Y. Galperin, and, E. V. Koonin. 2003. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3:2. [Online.] http://www.biomed central.com/1471–2148/3/2.
23. Mushegian, A. R., and, E. V. Koonin. 1996. Gene order is not conserved in bacterial evolution. Trends Genet. 12:289290.
24. Pushker, R.,, A. Mira, and, F. Rodriguez-Valera. 2004. Comparative genomics of gene-family size in closely related bacteria. Genome Biol. 5:R27.
25. Riehle, M. M.,, A. F. Bennett, and, A. D. Long. 2001. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl. Acad. Sci. USA 98:525530.
26. Rost, B. 1999. Twilight zone of protein sequence alignments. Protein Eng. 12:8594.
27. Saier, M. H., and, I. T. Paulsen. 1999. Paralogous genes encoding transport proteins in microbial genomes. Res. Microbiol. 150:689699.
28. Snel, B.,, P. Bork, and, M. A. Huynen. 2002. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 12:1725.
29. Suyama, M., and, P. Bork. 2001. Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet. 17:1013.
30. Tatusov, R. L.,, N. D. Fedorova,, J. D. Jackson,, A. R. Jacobs,, B. Kiryutin,, E. V. Koonin,, D. M. Krylov,, R. Mazumder,, S. L. Mekhedov,, A. N. Nikolskaya,, B. S. Rao,, S. Smirnov,, A. V. Sverdlov,, S. Vasudevan,, Y. I. Wolf,, J. J. Yin, and, D. A. Natale. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41. [Online.] http://www.biomed-central.com/1471–2105/4/41.
31. Tatusov, R. L.,, M. Y. Galperin,, D. A. Natale, and, E. V. Koonin. 2000. The Cog database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:3336.
32. Tekaia, F., and, B. Dujon. 1999. Pervasiveness of gene conservation and persistence of duplicates in cellular genomes. J. Mol. Evol. 49:591600.
33. Van de Peer, Y. 2004. Computational approaches to unveiling ancient genome duplications. Nat. Rev. Genet. 5:752763.
34. Vandepoele, K.,, Y. Saeys,, C. Simillion,, J. Raes, and, Y. Van de Peer. 2002. The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between arabidopsis and rice. Genome Res. 12:17921801.
35. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo, et al. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:14591461.
36. Wolf, Y. I.,, I. B. Rogozin,, A. S. Kondrashov, and, E. V. Koonin. 2001. Genome alignment, evolution of prokaryotic genome or ganization, and prediction of gene function using genomic con text. Genome Res. 11:356372.
37. Yamanaka, K.,, L. Fang, and, M. Inouye. 1998. The Cspa family in Escherichia coli: multiple gene duplication for stress adaptation. Mol. Microbiol. 27:247255.

Tables

Generic image for table
TABLE 1

Properties of the vibrio genomes

Citation: Gevers D, Peer Y. 2006. Gene Duplicates in Vibrio Genomes, p 76-83. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch6
Generic image for table
TABLE 2

Properties of the vibrio ancestral nodes

Citation: Gevers D, Peer Y. 2006. Gene Duplicates in Vibrio Genomes, p 76-83. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch6
Generic image for table
TABLE 3

Examples of strain-specific expansions

Citation: Gevers D, Peer Y. 2006. Gene Duplicates in Vibrio Genomes, p 76-83. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch6
Generic image for table
TABLE 4

Organization of the paranome

Citation: Gevers D, Peer Y. 2006. Gene Duplicates in Vibrio Genomes, p 76-83. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error