1887

Chapter 9 : Motility and Chemotaxis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Motility and Chemotaxis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap09-2.gif

Abstract:

To possess a functioning flagellar motility system, three things are requisite: a propeller, a motor, and a system of navigation. In this chapter, the swimming and swarming systems are considered separately. There is a central processing system that is shared by both flagellar systems, i.e., chemotaxis, and it allows the bacteria to detect signals in their environment and respond by modifying their movement. Various types of polar flagellar genes and polar flagellar and linked chemotaxis genes have been provided in the chapter. Chemotaxis integrates environmental signaling to modulate behavior by biasing movement toward more favorable conditions or away from unfavorable environments. Chemotaxis integrates environmental signaling to modulate behavior by biasing movement toward more favorable conditions or away from unfavorable environments. One consequence is that not just motility, but also chemotaxis is important for survival and colonization. In , a number of studies show differential expression of various motility and chemotaxis genes under in vivo and in vitro conditions. Bacterial chemotaxis has been most extensively studied in organisms with a few (~6 to 10) peritrichously arranged flagella, e.g., , serovar Typhimurium, and . In swimmer cells, the methyl-accepting chemotaxis proteins (MCPs) localize to both poles; in the swarmer cells, MCPs are found at the poles and at intervals along the cell body. The result is that polar flagellar function influences expression of cell surface polysaccharide, which has important consequences for biofilm formation and host colonization.

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Flagellation patterns of liquid- and plategrown The swimmer cells (left panel) possess single, sheathed polar flagella. This electron micrograph is of planktonically grown cells, stained with uranyl acetate. Cell proportions are ~1 × 2 μm. The swarmer cells (right panels) are elongated and display numerous lateral flagella in addition to the single, sheathed polar flagellum. swarmer cells were harvested from a plate and stained with phosphotungstic acid. The arrows point to the partially dissolved sheath of polar flagellum. The diameter of the sheathed polar flagellum is ~30 nm, and the diameter of the unsheathed lateral flagellum is ~15 nm.

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Regulatory hierarchy and morphogenetic pathway for polar flagellar biogenesis. Flagellar assembly is an ordered process, initiating with integral membrane proteins forming a scaffold for the export and assembly of the remainder of the organelle and culminating with polymerization of the filament ( ). Gene expression is strictly regulated and tied into morphogenesis of the organelle (reviewed by Aldridge and Hughes, 2002). Early polar gene expression requires σ and late gene expression σ. The scheme of control seems conserved for the sp. in which it has been studied, and this figure, which depicts a general pathway for gene expression and organelle biogenesis, represents a summary of what is currently known (Kim and McCarter, 2000; Prouty et al., 2001; Millikan and Ruby, 2003, 2004). The master flagellar regulator FlrA (a.k.a. FlaK) directs transcription of class 2 genes, which encode the export and assembly apparatus and other regulators that act sequentially. FlhF and FlhG regulate flagellar number and placement by an unknown mechanism, but one that also influences transcription ( ). Expression of class 3 genes is controlled by the activity of a two-component regulator, FlrC (a.k.a. FlaM) and results in the assembly of the hook and basal body. Completion of the hook allows export of the anti-sigma factor FlgM, which frees the σ to direct transcription of class 4 genes (Correa et al., 2004).

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Regulatory hierarchy and morphogenetic pathway for lateral flagellar biogenesis. Although it is a distinct flagellar system, with its own complete set of flagellar genes, the lateral flagellar hierarchy of resembles the polar hierarchy in that a σ−dependent transcriptional regulator directs expression of intermediate genes, and σ controls late flagellar gene expression (Stewart and McCarter, 2003). The master lateral regulator LafK has also been shown to affect polar gene transcription (Kim and McCarter, 2004).

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815714.ch09
1. Aldridge, P., and, K. T. Hughes. 2002. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5:160165.
2. Allen, R. D., and, P. Baumann. 1971. Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J. Bacteriol. 107:295302.
3. Asai, Y.,, I. Kawagishi,, R. E. Sockett, and, M. Homma. 2000a. Coupling ion specificity of chimeras between H(+)- and Na(+)-driven motor proteins, MotB and PomB, in Vibrio polar flagella. EMBO J. 19:36393648.
4. Asai, Y.,, T. Shoji,, I. Kawagishi, and, M. Homma. 2000b. Cysteine-scanning mutagenesis of the periplasmic loop regions of PomA, a putative channel component of the sodium-driven flagellar motor in Vibrio alginolyticus. J. Bacteriol. 182:10011007.
5. Asai, Y.,, I. Kawagishi,, R. E. Sockett, and, M. Homma. 1999. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. J. Bacteriol. 181:63326338.
6. Asai, Y.,, S. Kojima,, H. Kato,, N. Nishioka,, I. Kawagishi, and, M. Homma. 1997. Putative channel components for the fastrotating sodium-driven flagellar motor of a marine bacterium. J. Bacteriol. 179:51045110.
7. Asai, Y.,, T. Yakushi,, I. Kawagishi, and, M. Homma. 2003. Ion-coupling determinants of Na+−driven and H+−driven flagellar motors. J. Mol. Biol. 327:453463.
8. Atsumi, T.,, Y. Maekawa,, T. Yamada,, I. Kawagishi,, Y. Imae, and, M. Homma. 1996. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. J. Bacteriol. 178:50245026.
9. Atsumi, T.,, L. McCarter, and, Y. Imae. 1992. Polar and lateral flagellar motors of marine Vibrio are driven by differention-motive forces. Nature 355:182184.
10. Banerjee, R.,, S. Das,, K. Mukhopadhyay,, S. Nag,, A. Chakrabortty, and, K. Chaudhuri. 2002. Involvement of in vivo induced cheY-4 gene of Vibrio cholerae in motility, early adherence to intestinal epithelial cells and regulation of virulence factors. FEBS Lett. 532:221226.
11. Banin, E.,, T. Israely,, M. Fine,, Y. Loya, and, E. Rosenberg. 2001. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett. 199:3337.
12. Bassler, B. L.,, P. J. Gibbons,, C. Yu, and, S. Roseman. 1991. Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii. J. Biol. Chem. 266:2426824275.
13. Baumann, P., and, L. Baumann. 1981. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, and Alcaligenes, p. 13021331. In M. Starr,, H. Stolp,, H. Truper,, A. Balows, and, H. Schlegel (ed.), The Prokaryotes. Springer-Verlag, New York, N.Y.
14. Belas, M. R., and, R. R. Colwell. 1982. Adsorption kinetics of laterally and polarly flagellated Vibrio. J. Bacteriol. 151:15681580.
15. Belas, R.,, M. Simon, and, M. Silverman. 1986. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol. 167:210218.
16. Berg, H. C. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:1954.
17. Blair, D. F. 2003. Flagellar movement driven by proton transloca-tion. FEBS Lett. 545:8695.
18. Blair, D. F. 1995. How bacteria sense and swim. Annu. Rev. Microbiol. 49:489522.
19. Boin, M. A.,, M. J. Austin, and, C. C. Hase. 2004. Chemotaxis in Vibrio cholerae. FEMS Microbiol. Lett. 239:18.
20. Boles, B. R., and, L. L. McCarter. 2000. Insertional inactivation of genes encoding components of the sodium-type flagellar motor and switch of Vibrio parahaemolyticus. J. Bacteriol. 182:10351045.
21. Bordas, M. A.,, M. C. Balebona,, J. M. Rodriguez-Maroto,, J. J. Borrego, and, M. A. Morinigo. 1998. Chemotaxis of pathogenic Vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 64:15731575.
22. Brown, I. I., and, C. C. Hase. 2001. Flagellum-independent surface migration of Vibrio cholerae and Escherichia coli. J. Bacteriol. 183:37843790.
23. Butler, S. M., and, A. Camilli. 2004. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101:50185023.
24. Carpenter, P. B.,, D. W. Hanlon, and, G. W. Ordal. 1992. flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol. Microbiol. 6:27052713.
25. Correa, N. E.,, J. R. Barker, and, K. E. Klose. 2004. The Vibrio cholerae FlgM homologue is an anti-sigma28 factor that is secreted through the sheathed polar flagellum. J. Bacteriol. 186:46134619.
26. Correa, N. E.,, C. M. Lauriano,, R. McGee, and, K. E. Klose. 2000. Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization. Mol. Microbiol. 35:743755.
27. Correa, N. E.,, F. Peng, and, K. E. Klose. 2005. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J. Bacteriol. 187:63246332.
28. Das, S.,, A. Chakrabortty,, R. Banerjee,, S. Roychoudhury, and, K. Chaudhuri. 2000. Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection. FEMS Microbiol. Lett. 190:8791.
29. Dasgupta, N.,, S. K. Arora, and, R. Ramphal. 2000. fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol. 182:357364.
30. Dasgupta, N., and, R. Ramphal. 2001. Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol. 183:66366644.
31. DeLoney-Marino, C. R.,, A. J. Wolfe, and, K. L. Visick. 2003. Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl. Environ. Microbiol. 69:75277530.
32. Doyle, T. B.,, A. C. Hawkins, and, L. L. McCarter. 2004. The complex flagellar torque generator of Pseudomonas aeruginosa. J. Bacteriol. 186:63416350.
33. Follett, E. A., and, J. Gordon. 1963. An electron microscope study of Vibrio flagella. J. Gen. Microbiol. 32:235239.
34. Freter, R.,, B. Allweiss,, P. C. O’Brien,, S. A. Halstead, and, M. S. Macsai. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infect. Immun. 34:241249.
35. Freter, R., and, P. C. O’Brien. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: chemotactic responses of Vibrio cholerae and description of motile non-chemotactic mutants. Infect. Immun. 34:215221.
36. Fuerst, J. A. 1980. Bacterial sheathed flagella and the rotary motor model for the mechanism of bacterial motility. J. Theor. Biol. 4:761774.
37. Fuerst, J. A., and, J. W. Perry. 1988. Demonstration of lipopolysac-charide on sheathed flagella of Vibrio cholerae O:1 by protein A-gold immunoelectron microscopy. J. Bacteriol. 170:14881494.
38. Fukuoka, H.,, T. Yakushi, and, M. Homma. 2004. Concerted effects of amino acid substitutions in conserved charged residues and other residues in the cytoplasmic domain of PomA, a stator component of Na+−driven flagella. J. Bacteriol. 186:67496758.
39. Furuno, M.,, K. Sato,, I. Kawagishi, and, M. Homma. 2000. Characterization of a flagellar sheath component, PF60, and its structural gene in marine Vibrio. J. Biochem. (Tokyo) 127:2936.
40. Gestwicki, J. E.,, A. C. Lamanna,, R. M. Harshey,, L. L. McCarter,, L. L. Kiessling, and, J. Adler. 2000. Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea. J. Bacteriol. 182:64996502.
41. Gosink, K. K., and, C. C. Hase. 2000. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. J. Bacteriol. 182:42344240.
42. Gosink, K. K.,, R. Kobayashi,, I. Kawagishi, and, C. C. Hase. 2002. Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae. J. Bacteriol. 184:17671771.
43. Graf, J.,, P. V. Dunlap, and, E. G. Ruby. 1994. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176:69866991.
44. Hang, L.,, M. John,, M. Asaduzzaman,, E. A. Bridges,, C. Vander-spurt,, T. J. Kirn,, R. K. Taylor,, J. D. Hillman,, A. Progulske-Fox,, M. Handfield,, E. T. Ryan, and, S. B. Calderwood. 2003. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100:85088513.
45. Homma, M.,, H. Oota,, S. Kojima,, I. Kawagishi, and, Y. Imae. 1996. Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology 142:27772783.
46. Hranitzky, K. W.,, A. Mulholland,, A. D. Larson,, E. R. Eubanks, and, L. T. Hart. 1980. Characterization of a flagellar sheath protein of Vibrio cholerae. Infect. Immun. 27:597603.
47. Hyakutake, A.,, M. Homma,, M. J. Austin,, M. A. Boin,, C. C. Hase, and, I. Kawagishi. 2005. Only one of the five CheY homologs of Vibro cholerae is involved in chemotaxis. J. Bacteriol. 187:84038410.
48. Imae, Y.,, H. Matsukura, and, S. Kobayashi. 1986. Sodium-driven flagellar motors motors of alkalophilic Bacillus. Methods Enzy-mol. 125:582592.
49. Jaques, S. 2004. Regulation of Swarming in Vibrio parahaemolyticus. University of Iowa Press, Iowa City, Iowa.
50. Jaques, S.,, Y. K. Kim, and, L. L. McCarter. 1999. Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. Proc. Natl. Acad. Sci. USA 96:57405745.
51. Kawagishi, I.,, M. Imagawa,, Y. Imae,, L. McCarter, and, M. Homma. 1996. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 20:693699.
52. Kawagishi, I.,, Y. Maekawa,, T. Atsumi,, M. Homma, and, Y. Imae. 1995. Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources.J. Bacteriol. 177:51585160.
53. Kawagishi, I.,, M. Nakada,, N. Nishioka, and, M. Homma. 1997. Cloning of a Vibrio alginolyticus rpoN gene that is required for polar flagellar formation. J. Bacteriol. 179:68516854.
54. Kim, Y. K., and, L. L. McCarter. 2000. Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 182:36933704.
55. Kim, Y. K., and, L. L. McCarter. 2004. Cross-regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK. J. Bacteriol. 186:40144018.
56. Kirov, S. M. 2003. Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol. Lett. 224:151159.
57. Klose, K. E., and, J. J. Mekalanos. 1998a. Differential regulation of multiple flagellins in Vibrio cholerae. J. Bacteriol. 180:303316.
58. Klose, K. E., and, J. J. Mekalanos. 1998b. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28:501520.
59. Kogure, K.,, E. Ikemoto, and, H. Morisaki. 1998. Attachment of Vibrio alginolyticus to glass surfaces is dependent on swimming speed. J. Bacteriol. 180:932937.
60. Kojima, S.,, Y. Asai,, T. Atsumi,, I. Kawagishi, and, M. Homma. 1999a. Na+−driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. J. Mol. Biol. 285:15371547.
61. Kojima, S.,, M. Kuroda,, I. Kawagishi, and, M. Homma. 1999b. Random mutagenesis of the pomA gene encoding a putative channel component of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. Microbiology 145:17591767.
62. Kojima, S.,, K. Yamamoto,, I. Kawagishi, and, M. Homma. 1999c. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J. Bacteriol. 181:19271930.
63. Kojima, S., and, D. F. Blair. 2004. The bacterial flagellar motor: structure and function of a complex molecular machine. Int. Rev. Cytol. 233:93134.
64. Kojima, S.,, T. Shoji,, Y. Asai,, I. Kawagishi, and, M. Homma. 2000. A slow-motility phenotype caused by substitutions at residue Asp31 in the PomA channel component of a sodium-driven flagellar motor. J. Bacteriol. 182:33143318.
65. Kudo, S.,, N. Imai,, M. Nishitoba,, S. Sugiyama, and, Y. Magariyama. 2005. Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella. FEMS Microbiol. Lett. 242:221225.
66. Larsen, M. H.,, N. Blackburn,, J. L. Larsen, and, J. E. Olsen. 2004. Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology 150:12831290.
67. Larsen, M. H., and, H. T. Boesen. 2001. Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol. Lett. 203:149152.
68. Lauriano, C. M.,, C. Ghosh,, N. E. Correa, and, K. E. Klose. 2004. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J. Bacteriol. 186:48644874.
69. Lee, S. H.,, S. M. Butler, and, A. Camilli. 2001. Selection for in vivo regulators of bacterial virulence. Proc. Natl. Acad. Sci. USA 98:68896894.
70. Levin, P. A.,, J. J. Shim, and, A. D. Grossman. 1998. Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J. Bacteriol. 180:60486051.
71. Macnab, R. M. 1996. Flagella and motility, p. 123146. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
72. Macnab, R. M. 2003. How bacteria assemble flagella. Annu. Rev. Microbiol. 57:77100.
73. Macnab, R. M. 1986. Proton-driven bacterial flagellar motor. Methods Enzymol. 125:563579.
74. Macnab, R. M. 2004. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694:207217.
75. Magariyama, Y.,, M. Ichiba,, K. Nakata,, K. Baba,, T. Ohtani,, S. Kudo, and, T. Goto. 2005. Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys. J. 88:36483658.
76. Magariyama, Y.,, S. Masuda,, Y. Takano,, T. Ohtani, and, S. Kudo. 2001. Difference between forward and backward swimming speeds of the single polar-flagellated bacterium, Vibrio alginolyticus. FEMS Microbiol. Lett. 205:343347.
77. Magariyama, Y.,, S. Sugiyama,, K. Muramoto,, I. Kawagishi,, Y. Imae, and, S. Kudo. 1995. Simultaneous measurement of bacterial fla-gellar rotation rate and swimming speed. Biophys. J. 69:21542162.
78. Magariyama, Y.,, S. Sugiyama,, K. Muramoto,, Y. Maekawa,, I. Kawagishi,, Y. Imae, and, S. Kudo. 1994. Very fast flagellar rotation. Nature 371:752.
79. Marston, A. L.,, H. B. Thomaides,, D. H. Edwards,, M. E. Sharpe, and, J. Errington. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12:34193430.
80. McCarter, L. L. 1994a. MotX, the channel component of the sodium-type flagellar motor. J. Bacteriol. 176:59885998.
81. McCarter, L. L. 1994b. MotY, a component of the sodium-type flagellar motor. J. Bacteriol. 176:42194225.
82. McCarter, L. L. 1995. Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus. J. Bacteriol. 177:15951609.
83. McCarter, L. 1999. The multiple identities of Vibrio parahaemolyticus. J. Mol. Microbiol. Biotechnol. 1:5157.
84. McCarter, L. L. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65:445462.
85. McCarter, L. L. 2004. Dual flagellar systems enable motility under different circumstances. J. Mol. Microbiol. Biotechnol. 7:1829.
86. McCarter, L.,, M. Hilmen, and, M. Silverman. 1988. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345351.
87. McCarter, L., and, M. Silverman. 1990. Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol. Microbiol. 4:10571062.
88. McCarter, L. L., and, M. E. Wright. 1993. Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J. Bacteriol. 175:33613371.
89. McGee, K.,, P. Horstedt, and, D. L. Milton. 1996. Identification and characterization of additional flagellin genes from Vibrio anguillarum. J. Bacteriol. 178:51885198.
90. Merrell, D. S.,, S. M. Butler,, F. Qadri,, N. A. Dolganov,, A. Alam,, M. B. Cohen,, S. B. Calderwood,, G. K. Schoolnik, and, A. Camilli. 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417:642645.
91. Millikan, D. S., and, E. G. Ruby. 2003. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185:35473557.
92. Millikan, D. S., and, E. G. Ruby. 2004. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186:43154325.
93. Milton, D.,, R. O’Toole,, P. Horstedt, and, H. Wolf-Watz. 1996. flagellin A is essential for virulence of Vibrio anguillarum. J. Bacteriol. 178:13101319.
94. Muramoto, K.,, Y. Magariyama,, M. Homma,, I. Kawagishi,, S. Sugiyama,, Y. Imae, and, S. Kudo. 1996. Rotational fluctuation of the sodium-driven flagellar motor of Vibrio alginolyticus induced by binding of inhibitors. J. Mol. Biol. 259:687695.
95. Namba, K., and, F. Vonderviszt. 1997. Molecular architecture of bacterial flagellum. Q. Rev. Biophys. 30:165.
96. Nishioka, N.,, M. Furuno,, I. Kawagishi, and, M. Homma. 1998. Flagellin-containing membrane vesicles excreted from Vibrio alginolyticus mutants lacking a polar-flagellar filament. J. Biochem. (Tokyo) 123:11691173.
97. Norqvist, A., and, H. Wolf-Watz. 1993. Characterization of a novel chromosomal virulence locus involved in expression of a major surface flagellar sheath antigen of the fish pathogen Vibrio anguillarum. Infect. Immun. 61:24342444.
98. Okabe, M.,, T. Yakushi,, Y. Asai, and, M. Homma. 2001. Cloning and characterization of motX, a Vibrio alginolyticus sodium-driven flagellar motor gene. J. Biochem. (Tokyo) 130:879884.
99. Okabe, M.,, T. Yakushi,, M. Kojima, and, M. Homma. 2002. MotX and MotY, specific components of the sodium-driven flagellar motor, colocalize to the outer membrane in Vibrio alginolyticus. Mol. Microbiol. 46:125134.
100. Okunishi, I.,, I. Kawagishi, and, M. Homma. 1996. Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus. J. Bacteriol. 178:24092415.
101. O’Shea, T. M.,, C. R. DeLoney-Marino,, S. Shibata,, S. Aizawa,, A. J. Wolfe, and, K. L. Visick. 2005. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187:20582065.
102. O’Toole, R.,, S. Lundberg,, S. A. Fredriksson,, A. Jansson,, B. Nilsson, and, H. Wolf-Watz. 1999. The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J. Bacteriol. 181:43084317.
103. O’Toole, R.,, D. L. Milton,, P. Horstedt, and, H. Wolf-Watz. 1997. RpoN of the fish pathogen Vibrio (Listonella) anguillarum is essential for flagellum production and virulence by the water-borne but not intraperitoneal route of inoculation. Microbiology 43:38493859.
104. O’Toole, R.,, D. L. Milton, and, H. Wolf-Watz. 1996. Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol. Microbiol. 19:625637.
105. Pandza, S.,, M. Baetens,, C. H. Park,, T. Au,, M. Keyhan, and, A. Matin. 2000. The G-protein FlhF as a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol. Microbiol. 36:414423.
106. Proury, M.,, N. Correa, and, K. Klose. 2001. The novel CT − and CT − dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39:15951609.
107. Ren, C. P.,, S. A. Beatson,, J. Parkhill, and, M. J. Pallen. 2005. The Flag-2 locus, an ancestral gene cluster, is potentially associated with a novel flagellar system from Escherichia coli. J. Bacteriol. 187:14301440.
108. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lostroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler, and, E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA. 102:30043009.
109. Sar, N.,, L. McCarter,, M. Simon, and, M. Silverman. 1990. Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus. J. Bacteriol. 172:334341.
110. Sato, K., and, M. Homma. 2000a. Functional reconstitution of the Na(+)-driven polar flagellar motor component of Vibrio alginolyticus. J. Biol. Chem. 275:57185722.
111. Sato, K., and, M. Homma. 2000b. Multimeric structure of PomA, a component of the Na+−driven polar flagellar motor of Vibrio alginolyticus. J. Biol. Chem. 275:2022320228.
112. Shinoda, S., and, K. Okamoto. 1977. Formation and function of Vibrio parahaemolyticus lateral flagella. J. Bacteriol. 129:12661271.
113. Shinoda, S.,, I. Yakiyama,, S. Yasui,, Y. M. Kim,, B. Ono, and, S. Nak-agami. 1992. Lateral flagella of vibrios: serological classification and genetical similarity. Microbiol. Immunol. 36:303309.
114. Sjoblad, R. D.,, C. W. Emala, and, R. N. Doetsch. 1983. Bacterial sheaths: structures in search of function. Cell Motility 3:93103.
115. Sjoblad, R. D., and, R. Mitchell. 1979. Chemotactic responses of Vibrio alginolyticus to algal extracellular products. Can. J. Microbiol. 25:964967.
116. Stewart, B. J., and, L. L. McCarter. 2003. Lateral flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 185:45084518.
117. Stewart, B. J., and, L. L. McCarter. 1996. Vibrio parahaemolyticus FlaJ, a homologue of FliS, is required for production of a flagellin. Mol. Microbiol. 20:137149.
118. Sugiyama, S. J.,, E. J. Cragoe, and, Y. Imae. 1988. Amiloride, a specific inhibitor for the Na+−driven flagellar motors of alka-lophilic Bacillus. J. Biol. Chem. 263:82158219.
119. Szurmant, H., and, G. W. Ordal. 2004. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68:301319.
120. Wadhams, G. H., and, J. P. Armitage. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5:10241037.
121. Watnick, P. I.,, C. M. Lauriano,, K. E. Klose,, L. Croal, and, R. Kolter. 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39:223235.
122. Wilson, D. R., and, T. J. Beveridge. 1993. Bacterial flagellar filaments and their component flagellins. Can. J. Microbiol. 39:451472.
123. Wolfe, A. J.,, D. S. Millikan,, J. M. Campbell, and, K. L. Visick. 2004. Vibrio fischeri σ54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70:25202524.
124. Xu, Q.,, M. Dziejman, and, J. J. Mekalanos. 2003. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl. Acad. Sci. USA 100:12861291.
125. Yakushi, T.,, N. Hattori, and, M. Homma. 2005. Deletion analysis of the carboxyl-terminal region of the PomB component of the Vibrio alginolyticus polar flagellar motor. J. Bacteriol. 187:778784.
126. Yakushi, T.,, M. Kojima, and, M. Homma. 2004a. Isolation of Vibrio alginolyticus sodium-driven flagellar motor complex composed of PomA and PomB solubilized by sucrose monocaprate. Microbiology 150:911920.
127. Yakushi, T.,, S. Maki, and, M. Homma. 2004b. Interaction of PomB with the third transmembrane segment of PomA in the Na+−driven polar flagellum of Vibrio alginolyticus. J. Bacteriol. 186:52815291.
128. Yorimitsu, T.,, Y. Asai,, K. Sato, and, M. Homma. 2000. Intermole-cular cross-linking between the periplasmic Loop3–4 regions of PomA, a component of the Na+−driven flagellar motor of Vibrio alginolyticus. J. Biol. Chem. 275:3138731391.
129. Yorimitsu, T., and, M. Homma. 2001. Na(+)-driven flagellar motor of Vibrio. Biochim. Biophys. Acta 1505:8293.
130. Yorimitsu, T.,, M. Kojima,, T. Yakushi, and, M. Homma. 2004. Multimeric structure of the PomA/PomB channel complex in the Na+−driven flagellar motor of Vibrio alginolyticus. J. Biochem. (Tokyo) 135:4351.
131. Yorimitsu, T.,, A. Mimaki,, T. Yakushi, and, M. Homma. 2003. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+−driven flagellar motor. J. Mol. Biol. 334:567583.
132. Yorimitsu, T.,, K. Sato,, Y. Asai,, I. Kawagishi, and, M. Homma. 1999. Functional interaction between PomA and PomB, the Na(+)-driven flagellar motor components of Vibrio alginolyticus. J. Bacteriol. 181:51035106.
133. Yorimitsu, T.,, Y. Sowa,, A. Ishijima,, T. Yakushi, and, M. Homma. 2002. The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+−driven flagellar motor component PomA. J. Mol. Biol. 320:403413.
134. Yu, C.,, B. L. Bassler, and, S. Roseman. 1993. Chemotaxis of the marine bacterium Vibrio furnissii to sugars. A potential mechanism for initiating the chitin catabolic cascade. J. Biol. Chem. 268:94059409.
135. Zhou, J.,, S. A. Lloyd, and, D. F. Blair. 1998. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 95:64366441.

Tables

Generic image for table
TABLE 1

Flagellation patterns of species

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9
Generic image for table
TABLE 2

Polar flagellar and linked chemotaxis genes

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9
Generic image for table
TABLE 3

lateral flagellar genes

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9
Generic image for table
TABLE 4

Multiple copies of potential chemotaxis genes are encoded in genomes

Citation: McCarter L. 2006. Motility and Chemotaxis, p 115-132. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error