1887

Chapter 10 : Adaptive Responses of Vibrios

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Adaptive Responses of Vibrios, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap10-2.gif

Abstract:

This chapter discusses several aspects of adaptation that have been suggested to play a role in the survival of vibrios, in particular, starvation adaptation, the viable but nonculturable (VBNC) response, and biofilm formation. In addition, it talks about quorum sensing, which has been shown to control many phenotypes associated with survival under different conditions. The potential role for oxidative stress in the VBNC response is discussed. Bacteria have evolved complex mechanisms to deal with conditions that are routinely encountered in the natural environment. Such adaptive responses are characterized by changes in gene expression, physiology, and morphology. The potential for nonculturable cells to resuscitate, irrespective of whether the VBNC state is truly a protective strategy or is simply a consequence of stress leading to death, does have implications for the survival of vibrios in the natural environment. A section presents some of the current theories on factors driving the generation and resuscitation of nonculturable cells. The regulation of biofilm formation is complex, involving a range of physical and biological factors, the influences of which vary between species. The chapter provides a review of biofilm formation by spp., with a strong emphasis on , for which the most data are available. Biofilm formation on biotic surfaces has implications for the outbreak of disease.

Citation: McDougald D, Kjelleberg S. 2006. Adaptive Responses of Vibrios, p 133-155. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch10

Key Concept Ranking

Microbial Ecology
0.81514144
Type III Secretion System
0.41549116
0.81514144
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Model for the entry into and exit from carbon starvation in S14 (shaded rod and coccoid forms). Ovals represent regulators (i.e., RelA, SpoT, RpoE, RpoS). Rectangles denote signaling molecules (i.e., ppGpp, quorum-sensing auto-inducer molecules). Dotted lines refer to postulated regulators and pathways. Large shaded ovals depict Sti and Iup protein re-sponders. Overlap between Sti ovals indicates protein responders, which are induced by both SpoT and RelA. One hundred fifty-seven Stis and 18 Iups have been mapped by 2D-PAGE, and their respective rates of synthesis and modes of regulation have been characterized. mRNA (~~~) modification and stability during starvation are proposed to be modulated by RNase E (large oval), mRNA-binding protein(s) (small hatched oval), and polyadenylation (polyA tail). Triangles and circles on the bacterial cells represent low-and high-affinity uptake for glucose and amino acids, respectively.

Citation: McDougald D, Kjelleberg S. 2006. Adaptive Responses of Vibrios, p 133-155. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

QS systems. Three systems regulate biofilm formation, virulence, and HA/protease production. Details of the signal transduction pathways are in the text.

Citation: McDougald D, Kjelleberg S. 2006. Adaptive Responses of Vibrios, p 133-155. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Confocal laser scanning microscope images of biofilms of strains under nongrazed (top of each panel) and grazed (bottom of each panel) treatments. Biofilms were stained with Live/Dead viability probe, and images were taken using a confocal laser scanning microscope. Magnification, ×200. Scale bar, 50 μm.

Citation: McDougald D, Kjelleberg S. 2006. Adaptive Responses of Vibrios, p 133-155. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815714.ch10
1. Albertson, N. H.,, T. Nyström, and, S. Kjelleberg. 1990a. Macro-molecular synthesis during recovery of the marine Vibrio sp. S14 from starvation. J. Gen. Microbiol. 136:22012207.
2. Albertson, N. H.,, T. Nyström, and, S. Kjelleberg. 1990b. Functional mRNA half-lives in the marine Vibrio sp. S14 during starvation and recovery. J. Gen. Microbiol. 136:21952199.
3. Amy, P. S.,, C. Pauling, and, R. Y. Morita. 1983. Starvation-survival processes of a marine Vibrio. Appl. Environ. Microbiol. 45:10411048.
4. Anderson, J. I. W., and, W. P. Heffernan. 1965. Isolation and characterization of filterable marine bacteria. J. Bacteriol. 90:17131718.
5. Arana, I.,, A. Muela,, J. Iriberri,, L. Egea, and, I. Baracina. 1992. Role of hydrogen peroxide in loss of culturability mediated by visible light in Escherichia coli in a freshwater system. Appl. Environ. Microbiol. 58:39033907.
6. Ballesteros, M.,, A. Fredriksson,, J. Henriksson, and, T. Nystrom. 2001. Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J. 20:52805289.
7. Barer, M. R.,, L. T. Gribbon,, C. R. Harwood, and, C. E. Nwoguh. 1993. The viable but non-culturable hypothesis and medical microbiology. Rev. Med. Microbiol. 4:183191.
8. Bassler, B. L.,, M. Wright,, R. E. Showalter, and, M. R. Silverman. 1993. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9:773786.
9. Bassler, B. L.,, M. Wright, and, M. R. Silverman. 1994. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13:273286.
10. Bassler, B. L.,, E. P. Greenberg, and, A. M. Stevens. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179:40434045.
11. Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2:582587.
12. Belas, R.,, M. Simon, and, M. Silverman. 1986. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol. 167:210218.
13. Bogosian, G.,, L. E. Sammons,, P. J. L. Morris,, J. P. O’Neil,, M. A. Heitkamp, and, D. B. Weber. 1996. Death of the Escherichia coli K-12 strain W3110 in soil and water. Appl. Environ. Microbiol. 62:41144120.
14. Bogosian, G.,, P. J. L. Morris, and, J. P. O’Neil. 1998. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl. Environ. Microbiol. 64:17361742.
15. Brauns, L. A.,, M. C. Hudson, and, J. D. Oliver. 1991. Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 57:26512655.
16. Campbell, M. S., and, A. C. Wright. 2003. Real-time PCR analysis of Vibrio vulnificus from oysters. Appl. Environ. Microbiol. 69:71377144.
17. Cao, J.-G., and, E. A. Meighen. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264:2167021676.
18. Cashel, M.,, D. R. Gentry,, V. J. Hernandez, and, D. Vinella. 1996. The stringent response, p. 14581496. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Maga-sanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Um-barger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
19. Casper-Lindley, C., and, F. H. Yildiz. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 186:15741578.
20. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler, and, F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
21. Coleman, S. S., and, J. D. Oliver. 1996. Optimization of conditions for the polymerase chain reaction amplification of DNA from culturable and nonculturable cells of Vibrio vulnificus. FEMS Microbiol. Ecol. 19:127132.
22. Colwell, R. R. 1996. Global climate and infectious disease: the cholera paradigm. Science 274:20252031.
23. Colwell, R. R. 2002. A voyage of discovery: cholera, climate and complexity. Environ. Microbiol. 4:6769.
24. Colwell, R. R.,, P. R. Brayton,, D. J. Grimes,, D. B. Roszak,, S. A. Huq, and, L. M. Palmer. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technology 3:817820.
25. Colwell, R. R.,, P. Brayton,, D. Herrington,, B. Tall,, A. Huq, and, M. M. Levine. 1996. Viable but non-culturable Vibrio cholerae 01 revert to a culturable state in the human intestine. World J. Microbiol. Biotechnol. 12:2831.
26. Colwell, R. R.,, A. Huq,, M. S. Islam, et al. 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl. Acad. Sci. USA 100:10511055.
27. Comstock, L. E.,, D. Maneval, Jr.,, P. Panigrahi,, A. Joseph,, M. M. Levine,, J. B. Kaper,, J. G. Morris, Jr., and, J. A. Johnson. 1995. The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect. Immun. 63:317323.
28. Costerton, J. W.,, G. G. Geesey, and, K. J. Cheng. 1978. How bacteria stick. Sci. Amer. 238:8695.
29. Coutard, F.,, M. Pommepuy,, S. Loaec, and, D. Hervio-Heath. 2005. mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. J. Appl. Microbiol. 98:951961.
30. Croxatto, A.,, V. J. Chalker,, J. Lauritz,, J. Jass,, A. Hardman,, P. Williams,, M. Camara, and, D. L. Milton. 2002. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metallopro-tease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184:16171629.
31. Croxatto, A.,, J. Pride,, A. Hardman,, P. Williams,, M. Camara, and, D. L. Milton. 2004. A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum. Mol. Microbiol. 52:16771689.
32. Cuny, C.,, L. Dukan,, L. Fraysse,, M. Ballesteros, and, S. Dukan. 2005. Investigation of the first events leading to loss of cultur-ability during Escherichia coli starvation: future noncultur-able bacteria form a subpopulation. J. Bacteriol. 187:22442248.
33. Davis, B. D.,, S. M. Luger, and, P. C. Tai. 1986. Role of ribosome degradation in the death of starved Escherichia coli cells. J. Bacteriol. 166:439445.
34. DeLisa, M. P.,, J. J. Valdes, and, W. E. Bentley. 2001. Quorum signaling via Al-2 communicates the “metabolic burden” associated with heterologous protein production in Escherichia coli. Biotechnol. Bioeng. 75:439450.
35. Desnues, B.,, G. Gregori,, S. Dukan,, H. Aguilaniu, and, T. Nyström. 2003. Differential oxidative damage and expression of stress regulons in culturable and nonculturable cells of Escherichia coli. EMBO Rep. 4:400404.
36. Dukan, S., and, T. Nystrom. 1998. Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regu-lon. Genes Dev. 12:34313441.
37. Dukan, S., and, T. Nystrom. 1999. Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J. Biol. Chem. 274:2602726032.
38. Dukan, S.,, A. Farewell,, M. Ballesteros,, F. Taddei,, M. Radman, and, T. Nystrom. 2000. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl. Acad. Sci. USA 97:57465749.
39. Dumontet, S.,, K. Krovacek,, S. B. Baloda,, R. Grottoli,, V. Pasquale, and, S. Vanucci. 1996. Ecological relationship between Aeromonas and Vibrio spp. and planktonic copepods in the coastal marine environment in Southern Italy. Comp. Immunol. Microbiol. Infect. Dis. 19:245254.
40. Dunlap, P. V., and, E. P. Greenberg. 1988. Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-LuxR protein regulatory circuit. J. Bacteriol. 170:40404046.
41. Eberhard, A.,, A. L. Burlingame,, C. Eberhard,, G. L. Kenyon,, K. H. Nealson, and, N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 28:24442449.
42. Eilers, H.,, J. Pernthaler, and, R. Amann. 2000. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl. Environ. Microbiol. 66:46344640.
43. Engebrecht, J.,, K. Nealson, and, M. Silverman. 1983. Bacterial bi-oluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773781.
44. Engebrecht, J., and, M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81:41544158.
45. Enos-Berlage, J. L.,, Z. T. Guvener,, C. E. Keenan, and, L. L. Mc-Carter. 2005. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol. Microbiol. 55:11601182.
46. Felter, R. A.,, R. R. Colwell, and, G. B. Chapman. 1969. Morphology and round body formation in Vibrio marinus. J. Bacteriol. 99:326335.
47. Fidopiastis, P. M.,, C. M. Miyamoto,, M. G. Jobling,, E. A. Meighen, and, E. G. Ruby. 2002. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 45:131143.
48. Fischer-Le Saux, M.,, D. Hervio-Heath,, S. Loaec,, R. R. Colwell, and, M. Pommepuy. 2002. Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater. Appl. Environ. Microbiol. 68:56415646.
49. Flärdh, K.,, P. S. Cohen, and, S. Kjelleberg. 1992. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 174:67806788.
50. Flärdh, K.,, T. Axberg,, N. Albertson, and, S. Kjelleberg. 1994. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene. J. Bacteriol. 176:59495957.
51. Freeman, J. A., and, B. L. Bassler. 1999a. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J. Bacteriol. 181:899906.
52. Freeman, J. A., and, B. L. Bassler. 1999b. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol. Microbiol. 31:665677.
53. Freeman, J. A.,, B. N. Lilley, and, B. L. Bassler. 2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol. Microbiol. 35:139149.
54. Gil, A. I.,, V. R. Louis,, I. N. G. Rivera, et al. 2004. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ. Microbiol. 6:699706.
55. Gilson, L.,, A. Kuo, and, P. V. Dunlap. 1995. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177:69466951.
56. Giovannoni, S., and, M. Rappé. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes, p. 4784. In D. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley-Liss, Inc., New York, N.Y.
57. Gong, L.,, K. Takayama, and, S. Kjelleberg. 2002. Role of spoT-de-pendent ppGpp accumulation in the survival of light-exposed starved bacteria. Microbiology 148:559570.
58. Gonzalez, J. M.,, J. Iriberri,, L. Egea, and, I. Barcina. 1992. Characterization of culturability, protistan grazing, and death of enteric bacteria in aquatic ecosystems. Appl. Environ. Microbiol. 58:9981004.
59. Hahn, M. W.,, E. R. B. Moore, and, M. G. Hofle. 2000. Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microb. Ecol. 39:175185.
60. Hammer, B. K., and, B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50:101104.
61. Hasan, J. A. K.,, M. A. R. Chowdhury,, M. Shahabuddin,, A. Huq,, L. Loomis, and, R. R. Colwell. 1994. Cholera toxin gene poly-merase chain reaction for detection of non-culturable Vibrio cholerae O1. World J. Microbiol. Biotechnol. 10:568571.
62. Haugo, A. J., and, P. I. Watnick. 2002. Vibrio cholerae CytR is a repressor of biofilm development. Mol. Microbiol. 45:471483.
63. Heithoff, D. M., and, M. J. Mahan. 2004. Vibrio cholerae biofilms: stuck between a rock and a hard place. J. Bacteriol. 186:48354837.
64. Hengge-Aronis, R. 1993. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72:165168.
65. Hengge-Aronis, R. 1996. Regulation of gene expression during entry into stationary phase, p. 14971512. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
66. Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the σ(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373395.
67. Henke, J. M., and, B. L. Bassler. 2004a. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186:37943805.
68. Henke, J. M., and, B. L. Bassler. 2004b. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186:69026914.
69. Holmquist, L., and, S. Kjelleberg. 1993. Changes in viability, respiratory activity and morphology of the marine Vibrio sp. strain S14 during starvation of individual nutrients and subsequent recovery. FEMS Microbiol. Ecol. 12:215224.
70. Hood, M. A.,, J. B. Guckert,, D. C. White, and, F. Deck. 1986. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52:788793.
71. Hood, M. A., and, P. A. Winter. 1997. Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiol. Ecol. 22:215223.
72. Israely, T.,, E. Banin, and, E. Rosenberg. 2001. Growth, differentiation and death of Vibrio shiloi in coral tissue as a function of seawater temperature. Aquat. Microb. Ecol. 24:18.
73. Jefferson, K. K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236:163173.
74. Jenkins, D. E.,, J. E. Schultz, and, A. Matin. 1988. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J. Bacteriol. 170:39103914.
75. Jenkins, D. E.,, S. A. Chaisson, and, A. Matin. 1990. Starvation-induced cross protection against osmotic challenge in Escherichia coli. J. Bacteriol. 172:27792781.
76. Jobling, M. G., and, R. K. Holmes. 1997. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26:10231034.
77. Joseph, L. A., and, A. C. Wright. 2004. Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J. Bacteriol. 186:889893.
78. Josephson, K. L.,, C. P. Gerba, and, I. L. Pepper. 1993. Polymerase chain reaction detection of nonviable bacterial pathogens. Appl. Environ. Microbiol. 59:35133515.
79. Jouper-Jaan, Å.,, A. E. Goodman, and, S. Kjelleberg. 1992. Bacteria starved for prolonged periods develop increased protection against lethal temperatures. FEMS Microbiol. Ecol. 101:229236.
80. Jurgens, K.,, J. Pernthaler,, S. Schalla, and, R. Amann. 1999. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65:12411250.
81. Kell, D. B.,, A. S. Kaprelyants,, D. H. Weichart,, C. R. Harwood, and, M. R. Bare. 1998. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek 73:169187.
82. Kierek, K., and, P. I. Watnick. 2003a. Environmental determinants of Vibrio cholerae biofilm development. Appl. Environ. Microbiol. 69:50795088.
83. Kierek, K., and, P. I. Watnick. 2003b. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+−dependent biofilm development in sea water. Proc. Natl. Acad. Sci. USA 100:1435714362.
84. Kim, S. Y.,, S. E. Lee,, Y. R. Kim,, C. M. Kim,, P. Y. Ryu,, H. E. Choy,, S. S. Chung, and, J. H. Rhee. 2003. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Mol. Microbiol. 48:16471664.
85. Kjelleberg, S.,, N. Albertson,, K. Flärdh,, L. Holmquist,, Å. Jouper-Jaan,, R. Marouga,, J. Östling,, B. Svenblad, and, D. Weichart. 1993. How do non-differentiating bacteria adapt to starvation? Antonie Leeuwenhoek 63:333341.
86. Koga, T., and, K. Takumi. 1995. Nutrient starvation induces cross protection against heat, osmotic or H2O2 challenge in Vibrio parahaemolyticus. Microbiol. Immunol. 39:213215.
87. Kogure, K.,, U. Simidu, and, N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415420.
88. Kolter, R.,, D. A. Siegele, and, A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47:855874.
89. Kong, I.-S.,, T. C. Bates,, A. Hulsmann,, H. Hassan,, B. E. Smith, and, J. D. Oliver. 2004. Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50:133142.
90. Kovacikova, G., and, K. Skorupski. 1999. A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J. Bacteriol. 181:42504256.
91. Kovacikova, G., and, K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46:11351147.
92. Kumazawa, N. H.,, N. Fukuma, and, Y. Komoda. 1991. Attachment of Vibrio parahaemolyticus strains to estuarine algae. J. Vet. Med. Sci. 53:201205.
93. Kuo, A.,, N. V. Blough, and, P. V. Dunlap. 1994. Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 176:75587565.
94. Lange, R., and, R. Hengge-Aronis. 1991. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol. Microbiol. 5:4959.
95. Lauriano, C. M.,, C. Ghosh,, N. E. Correa, and, K. E. Klose. 2004. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J. Bacteriol. 186:48644874.
96. Lee, K.-H., and, E. G. Ruby. 1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal sea-water. Appl. Environ. Microbiol. 61:278283.
97. Lenz, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen, and, B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:6982.
98. Lilley, B. N., and, B. L. Bassler. 2000. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma 54. Mol. Microbiol. 36:940954.
99. Lupp, C.,, M. Urbanowski,, E. P. Greenberg, and, E. G. Ruby. 2003. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50:319331.
100. Lupp, C., and, E. G. Ruby. 2004. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J. Bacteriol. 186:38733881.
101. Lupp, C., and, E. G. Ruby. 2005. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187:36203629.
102. MacDonell, M. T., and, M. A. Hood. 1982. Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl. Environ. Microbiol. 43:566571.
103. Mae, A.,, M. Montesano,, V. Koiv, and, E. T. Palva. 2001. Trans-genic plants producing the bacterial pheromone N-acyl-ho-moserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol. Plant-Microbe Interact. 14:10351042.
104. Makino, K.,, H. Shinagawa,, M. Amemura,, T. Kawamoto,, M. Yamada, and, A. Nakata. 1989. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J. Mol. Biol. 210:551559.
105. Malmcrona-Friberg, K.,, A. Tunlid,, P. Mårdén,, S. Kjelleberg, and, G. Odham. 1986. Chemical changes in cell envelope and poly-β-hydroxybutyrate during short term starvation of a marine bacterial isolate. Arch. Microbiol. 144:340345.
106. Marco-Noales, E.,, M. Milan,, B. Fouz,, E. Sanjuan, and, C. Amaro. 2001. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2). Appl. Environ. Microbiol. 67:47174725.
107. Mårdén, P.,, A. Tunlid,, K. Malmcrona-Friberg,, G. Odham, and, S. Kjelleberg. 1985. Physiological and morphological changes during short term starvation of marine bacterial isolates. Arch. Microbiol. 142:326332.
108. Marouga, R., and, S. Kjelleberg. 1996. Synthesis of immediate upshift (Iup) proteins during recovery of marine Vibrio sp. strain S14 subjected to long-term carbon starvation. J. Bacteriol. 178:817822.
109. Mason, C. A., and, T. Egli. 1993. Dynamics of microbial growth in the decelerating and stationary phase of batch culture, p. 81102. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.
110. Matin, A.,, E. A. Auger,, P. H. Blum, and, J. E. Schultz. 1989. Genetic basis of starvation survival in nondifferentiating bacteria. Annu. Rev. Microbiol. 43:293316.
111. Matin, A. 1991. The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol. Microbiol. 5:310.
112. Matz, C.,, J. Boenigk,, H. Arndt, and, K. Jurgens. 2002a. Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat. Microb. Ecol. 27:137148.
113. Matz, C.,, P. Deines, and, K. Jurgens. 2002b. Phenotypic variation in Pseudomonas sp. CM10 determines microcolony formation and survival under protozoan grazing. FEMS Microbiol. Ecol. 39:5765.
114. Matz, C.,, T. Bergfeld,, S. A. Rice, and, S. Kjelleberg. 2004. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ. Microbiol. 6:218226.
115. Matz, C.,, D. McDougald,, A. M. Moreno,, P. Y. Yung,, F. H. Yildiz, and, S. Kjelleberg. 2005. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 102:1681916824.
116. McCarter, L. L.,, M. Hilmen, and, M. Silverman. 1988. Flagellar dynamometer controls swarmer cell differentiation of Vibrio parahaemolyticus. Cell 54:345351.
117. McCarter, L. L. 1998. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. J. Bacteriol. 180:31663173.
118. McDougald, D.,, S. A. Rice,, D. Weichart, and, S. Kjelleberg. 1998. Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 25:19.
119. McDougald, D.,, S. A. Rice, and, S. Kjelleberg. 1999. New perspectives on the viable but nonculturable response. Biologia 54:617623.
120. McDougald, D.,, S. A. Rice, and, S. Kjelleberg. 2001. SmcR-depen-dent regulation of adaptive responses in Vibrio vulnificus. J. Bacteriol. 183:758762.
121. McDougald, D.,, L. Gong,, S. Srinivasan,, E. Hild,, L. Thompson,, K. Takayama,, S. A. Rice, and, S. Kjelleberg. 2002. Defences against oxidative stress during starvation in bacteria. Antonie Leeuwenhoek 81:313.
122. McDougald, D.,, S. Srinivasan,, S. A. Rice, and, S. Kjelleberg. 2003. Signal-mediated cross-talk regulates stress adaptation in Vibrio species. Microbiology 149:19231933.
123. Miller, M. B.,, K. Skorupski,, D. H. Lenz,, R. K. Taylor, and, B. L. Bassler. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303314.
124. Milton, D. L.,, A. Hardman,, M. Camara,, S. R. Chhabra,, B. W. Bycroft,, G. S. Stewart, and, P. Williams. 1997. Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-ho-moserine lactone. J. Bacteriol. 179:30043012.
125. Milton, D. L.,, V. J. Chalker,, D. Kirke,, A. Hardman,, M. Camara, and, P. Williams. 2001. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexa-noyl)homoserine lactone and N-hexanoylhomoserine lactone. J. Bacteriol. 183:35373547.
126. Miyamoto, C. M.,, Y. H. Lin, and, E. A. Meighen. 2000. Control of bioluminescence in Vibrio fischeri by the LuxO signal response regulator. Mol. Microbiol. 36:594607.
127. Mizunoe, Y.,, S. N. Wai,, A. Takade, and, S.-I. Yoshida. 1999. Restoration of culturability of starvation-stressed and low-temperature-stressed Escherichia coli O157 cells by using H2O2-degrading compounds. Arch. Microbiol. 172:6367.
128. Mizunoe, Y.,, S. N. Wai,, T. Ishikawa,, A. Takade, and, S.-I. Yoshida. 2000. Resuscitation of viable but nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS Microbiol. Lett. 186:115120.
129. Mok, K. C.,, N. S. Wingreen, and, B. L. Bassler. 2003. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J. 22:870881.
130. Montanari, M. P.,, C. Pruzzo,, L. Pane, and, R. R. Colwell. 1999. Vibrios associated with plankton in a coastal zone of the Adriatic Sea (Italy). FEMS Microbiol. Ecol. 29:241247.
131. Moriarty, D. J. W., and, R. T. Bell. 1993. Bacterial growth and starvation in aquatic environments, p. 2553. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.
132. Nealson, K. H. 1977. Autoinduction of bacterial luciferase: occurrence, mechanism and significance. Arch. Microbiol. 112:7379.
133. Nealson, K. H., and, J. W. Hastings. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43:496518.
134. Nelson, D. R.,, Y. Sadlowski,, M. Eguchi, and, S. Kjelleberg. 1997. The starvation-stress response of Vibrio (Listonella) anguillarum. Microbiology 143:23052312.
135. Nilsson, L.,, J. D. Oliver, and, S. Kjelleberg. 1991. Resuscitation of Vibrio vulnificus from the viable by nonculturable state. J. Bacteriol. 173:50545059.
136. Nishino, T.,, B. B. Nayak, and, K. Kogure. 2003. Density-dependent sorting of physiologically different cells of Vibrio parahaemolyticus. Appl. Environ. Microbiol. 69:35693572.
137. Novitsky, J. A., and, R. Y. Morita. 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine Vibrio. Appl. Environ. Microbiol. 32:617622.
138. Novitsky, J. A., and, R. Y. Morita. 1977. Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Appl. Environ. Microbiol. 33:635641.
139. Novitsky, J. A., and, R. Y. Morita. 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48:289295.
140. Nyström, T.,, N. Albertson, and, S. Kjelleberg. 1988. Synthesis of membrane and periplasmic proteins during starvation of a marine Vibrio sp. J. Gen. Microbiol. 134:16451651.
141. Nyström, T.,, K. Flärdh, and, S. Kjelleberg. 1990. Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 172:70857097.
142. Nyström, T.,, R. M. Olsson, and, S. Kjelleberg. 1992. Survival, stress resistance, and alteration in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 58:5565.
143. Nyström, T. 1998. To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS Microbiol. Rev. 21:283290.
144. Nyström, T. 1999. Starvation, cessation of growth and bacterial aging. Curr. Opin. Microbiol. 2:214219.
145. Nyström, T. 2004. Stationary-phase physiology. Annu. Rev. Microbiol. 58:161181.
146. Oliver, J. D., and, W. F. Stringer. 1984. Lipid composition of a psychrophilic marine Vibrio sp. during starvation-induced morphogenesis. Appl. Environ. Microbiol. 47:461466.
147. Oliver, J. D.,, L. Nilsson, and, S. Kjelleberg. 1991. The formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol. 57:26402644.
148. Oliver, J. D. 1993a. Formation of viable but nonculturable cells, p. 239272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.
149. Oliver, J. D. 1993b. Nonculturability and resuscitation of Vibrio vulnificus, p. 187191. In R Guerrero and, C Pedrós-Alió (ed.), Trends in Microbial Ecology. Spanish Society for Microbiology, Madrid, Spain.
150. Oliver, J. D., and, R. Bockian. 1995. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61:26202623.
151. Oliver, J. D.,, F. Hite,, D. McDougald,, N. L. Andon, and, L. M. Simpson. 1995. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl. Environ. Microbiol. 61:26242630.
152. Ostling, J.,, L. Holmquist,, K. Flärdh,, B. Svenblad,, Å. Jouper-Jaan, and, S. Kjelleberg. 1993. Starvation and recovery of Vibrio, p. 103127. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.
153. Ostling, J.,, L. Holmquist, and, S. Kjelleberg. 1996. Global analysis of the carbon starvation response of a marine Vibrio species with disruptions in genes homologous to relA and SpoT. J. Bacteriol. 178:49014908.
154. Ostling, J.,, D. McDougald,, R. Marouga, and, S. Kjelleberg. 1997. Global analysis of physiological responses in marine bacteria. Electrophoresis 18:14411450.
155. Paludan-Müller, C.,, D. Weichart,, D. McDougald, and, S. Kjelle-berg. 1996. Analysis of starvation conditions that allow for prolonged culturability of Vibrio vulnificus at low temperature. Microbiology 142:16751684.
156. Preyer, J. M., and, J. D. Oliver. 1993. Starvation-induced thermal tolerance as a survival mechanism in a psychrophilic marine bacterium. Appl. Environ. Microbiol. 59:26532656.
157. Rahman, I.,, M. Shahamat,, P. A. Kirchman,, E. Russek-Cohen, and, R. R. Colwell. 1994. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 60:35733578.
158. Randa, M. A.,, M. F. Polz, and, E. Lim. 2004. Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Appl. Environ. Microbiol. 70:54695476.
159. Rao, N. N., and, A. Kornberg. 1996. Inorganic phosphate supports resistance and survival of stationary-phase Escherichia coli. J. Bacteriol. 178:13941400.
160. Ravel, J.,, I. T. Knight,, C. E. Monahan,, R. T. Hill, and, R. R. Colwell. 1995. Temperature induced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation? Microbiology 141:377383.
161. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365370.
162. Reguera, G., and, R. Kolter. 2005. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J. Bacteriol. 187:35513555.
163. Rice, S. A.,, D. McDougald, and, S. Kjelleberg. 2000. Vibrio vulnificus: a physiological and genetic approach to the viable but nonculturable response. J. Infect. Chemother. 6:115120.
164. Rice, S. A.,, D. McDougald,, N. Kumar, and, S. Kjelleberg. 2005. The use of quorum sensing blockers as therapeutic agents for the control of biofilm associated infections. Curr. Opin. Invest. Drugs 6:178184.
165. Rodriguez, G. G.,, D. Phipps,, K. Ishiguro, and, H. F. Ridgeway. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:18011808.
166. Rosenberg, E., and, Y. Ben-Haim. 2002. Microbial diseases of corals and global warming. Environ. Microbiol. 4:318326.
167. Schauder, S.,, K. Shokat,, M. G. Surette, and, B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463476.
168. Shao, C.-P., and, L.-I. Hor. 2001. Regulation of metalloprotease ene expression in Vibrio vulnificus by a Vibrio harveyi LuxR homologue. J. Bacteriol. 183:13691375.
169. Showalter, R. E.,, M. O. Martin, and, M. R. Silverman. 1990. Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J. Bacteriol. 172:29462954.
170. Siegele, D. A., and, R. Kolter. 1992. Life after log. J. Bacteriol. 174:345348.
171. Spira, B.,, N. Silberstein, and, E. Yagil. 1995. Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi. J. Bacteriol. 177:40534058.
172. Srinivasan, S.,, J. Ostling,, T. Charlton,, R. deNys,, K. Takayama, and, S. Kjelleberg. 1998. Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14. J. Bacteriol. 180:201209.
173. Stevens, A. M.,, K. M. Dolan, and, E. P. Greenberg. 1994. Synergis-tic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA 91:1261912623.
174. Stevens, A. M., and, E. P. Greenberg. 1997. Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. Bacteriol. 179:557562.
175. Stoodley, P.,, K. Sauer,, D. G. Davies, and, J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56:187209.
176. Surette, M. G.,, M. B. Miller, and, B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96:16391644.
177. Sussman, M.,, Y. Loya,, M. Fine, and, E. Rosenberg. 2003. The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ. Microbiol. 5:250255.
178. Takayama, K., and, S. Kjelleberg. 2000. The role of RNA stability during bacterial stress responses and starvation. Environ. Microbiol. 2:355365.
179. Tischler, A. D., and, A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53:857869.
180. Villarino, A.,, O. M. Bouvet,, B. Regnault,, S. Martin-Delautre, and, P. A. D. Grimont. 2000. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in live and heator UV-killed cells. Res. Microbiol. 151:755768.
181. Wai, S. N.,, T. Moriya,, K. Kondo,, H. Misumi, and, K. Amako. 1996. Resuscitation of Vibrio cholerae O1 strain TSI-4 from a viable but nonculturable state by heat shock. FEMS Microbiol. Lett. 136:187191.
182. Wai, S. N.,, Y. Mizunoe,, A. Takade,, S.-L. Kawabata, and, S.-I. Yoshida. 1998. Vibrio cholerae O1 strain TSI-4 produces the ex-opolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl. Environ. Microbiol. 64:36483655.
183. Warner, J. M., and, J. D. Oliver. 1998. Randomly amplified polymorphic DNA analysis of starved and viable nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 64:30253028.
184. Watnick, P.,, K. J. Fullner, and, R. Kolter. 1999. A role for the man-nose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J. Bacteriol. 181:36063609.
185. Watnick, P. I., and, R. Kolter. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34:586595.
186. Watnick, P. I.,, C. M. Lauriano,, K. E. Klose,, L. Croal, and, R. Kolter. 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39:223235.
187. Webb, J. S.,, L. S. Thompson,, S. James,, T. Charlton,, T. Tolker-Nielsen,, B. Koch,, M. Givskov, and, S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185:45854592.
188. Weichart, D.,, J. D. Oliver, and, S. Kjelleberg. 1992. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100:205210.
189. Weichart, D., and, S. Kjelleberg. 1996. Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiology 142:845853.
190. Weichart, D.,, D. McDougald,, D. Jacobs, and, S. Kjelleberg. 1997. In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus. Appl. Environ. Microbiol. 63:27542758.
191. Whitesides, M. D., and, J. D. Oliver. 1997. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl. Environ. Microbiol. 63:10021115.
192. Williams, P. 2000. Heterotrophic bacteria and the dynamics of dissolved organic material, p. 153200. In D. L. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley-Liss, Inc, New York, N.Y.
193. Winzer, K.,, K. R. Hardie,, N. Burgess, et al. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148:909922.
194. Wong, H.-C.,, Y.-C. Chung, and, J.-A. Yu. 2002. Attachment and inactivation of Vibrio parahaemolyticus on stainless steel and glass surface. Food Microbiol. 19:341350.
195. Wong, H. C., and, P. Wang. 2004. Induction of viable but nonculturable state in Vibrio parahaemolyticus and its susceptibility to environmental stresses. J. Appl. Microbiol. 96:359366.
196. Xu, H.-S.,, N. Roberts,, F. L. Singleton,, R. W. Attwell,, D. J. Grimes, and, R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313323.
197. Yildiz, F. H., and, G. K. Schoolnik. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA 96:40284033.
198. Yildiz, F. H.,, N. A. Dolganov, and, G. K. Schoolnik. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPSETr-associated phenotypes in Vibrio cholerae O1 El Tor. J. Bacteriol. 183:17161726.
199. Yildiz, F. H.,, X. S. Liu,, A. Heydorn, and, G. K. Schoolnik. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol. Microbiol. 53:497515.
200. Zampini, M.,, C. Pruzzo,, V. P. Bondre,, R. Tarsi,, M. Cosmo,, A. Bacciaglia,, A. Chhabra,, R. Srivastava, and, B. S. Srivastava. 2005. Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. FEMS Microbiol. Lett. 244:267.
201. Zhu, J.,, M. B. Miller,, R. E. Vance,, M. Dziejman,, B. L. Bassler, and, J. J. Mekalanos. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 99:31293134.
202. Zhu, J., and, J. J. Mekalanos. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5:647656.

Tables

Generic image for table
TABLE 1

Quorum-sensing homologues in spp.; system components are grouped together

Citation: McDougald D, Kjelleberg S. 2006. Adaptive Responses of Vibrios, p 133-155. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error