Chapter 11 : Extremophilic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Extremophilic , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap11-2.gif


Currently, eight genera are included in the extremophilic . According to , these genera are , , , , , , , and . Any luminous spots appearing after overnight incubation generally belong to . This organism is an important source of spoilage of modified atmosphere-packed fish products stored at low temperatures, where it respires trimethylamine oxide and produces trimethylamine. One of the challenges in describing low-temperature adaptation in the is that many of the model systems that have been used for the studies have undergone taxonomic reclassification. Among the cold shock proteins (CSP), nucleic acid-binding proteins, the CspA family proteins have received the most attention. The isocitrate dehydrogenase (ICDH) isozymes produced by strain ABE-1 (now classified as ) are particularly fascinating examples of psychrophile enzyme adaptation to low temperature. A major breakthrough in studies of the molecular basis of high-pressure adaptation has been the recent report of the complete SS9 genome sequence. preferentially transports glutamate at high osmolarity. Under conditions of external proline, osmotic adaptation in follows the osmotic induction of proline transport and its conversion to glutamate. In response to starvation conditions at low temperature many bacteria enter into a physiological state in which they cannot be propagated on culture media but remain metabolically active. Such cells have been referred to as having entered the viable but nonculturable (VBNC) state.

Citation: Bartlett D. 2006. Extremophilic , p 156-171. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch11

Key Concept Ranking

Restriction Fragment Length Polymorphism
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Growth characteristics of the strain SS9 (β-ketoacyl-acyl carrier protein synthase I) mutant at low pressure (0.1 MPa, 9°C) and high pressure (28 MPa, 9°C) compared with the parental SS9R strain. Tween 80 (18:1) was supplemented at a final concentration of 0.025% (vol/vol) (E. E. Allen and D. H. Bartlett, unpublished results).

Citation: Bartlett D. 2006. Extremophilic , p 156-171. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, R.,, B. J.,, M. Kogut, and, N. J. Russell. 1987. The role of osmotic effects in haloadaptation of Vibrio costicola. J. Gen. Microbiol. 133:18611870.
2. Adler, E., and, J. A. Knowles. 1995. Thermolabile triosephosphate isomerase from the psychrophile Vibrio sp. strain ANT-300. Arch. Biochem. Biophys. 321:137139.
3. Aguilar, P. S.,, A. M. Hernandez-Arriaga,, L. E. Cybulski,, A. C. Er-azo, and, D. de Mendoza. 2001. Molecular basis of thermosens-ing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20:16811691.
4. Alain, K.,, V. G. Marteinsson,, M. L. Miroshnichenko,, E. A. Bonch-Osmolovskaya,, D. Prieur, and, J.-L. Birrien. 2002. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52:13311339.
5. Allen, E. E., and, D. H. Bartlett. 2000. FabF is required for piezoregulation of cis-vaccenic acid levels and piezophilic growth of the deep-sea bacterium Photobacterium profundum strain SS9. J. Bacteriol. 182:12641271.
6. Allen, E. E., and, D. H. Bartlett. 2001. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148:19031913.
7. Allen, E. E.,, D. Facciotti, and, D. H. Bartlett. 1999. Monounsatu-rated but not polyunsaturated fatty acids are required for growth at high pressure and low temperature in the deep-sea bacterium Photobacterium profundum strain SS9. Appl. Environ. Microbiol. 65:17101720.
8. Araki, T. 1991a. Changes in rates of synthesis of individual proteins in a psychrophilic bacterium after a shift in temperature. Can. J. Microbiol. 37:840847.
9. Araki, T. 1991b. The effect of temperature shifts on protein synthesis by the psychrophilic bacterium Vibrio sp. strain ANT-300. J. Gen. Microbiol. 137:817826.
10. Arnorsdottir, J.,, R. B. Smaradottir,, O. T. Magnusson,, S. H. Thorb-jarnardottir,, G. Eggertsson, and, M. M. Kristjansson. 2002. Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species. Eur. J. Biochem. 269:55365546.
11. Asgeirsson, B., and, O. S. Andresson. 2001. Primary structure of cold-adapted alkaline phosphatase from a Vibrio sp. as deduced from the nucleotide gene sequence. Biochim. Biophys. Acta 1549:99111.
12. Attard, G. S.,, R. H. Templer,, W. S. Smith,, A. N. Hunt, and, S. Jack-owski. 2000. Modulation of CTP:phosphocholine cytidylyl-transferase by membrane curvature elastic stress. Proc. Natl. Acad. Sci. USA 97:90329036.
13. Bale, S. J.,, K. Goodman,, P. A. Rochelle,, J. R. Marchesi,, J. C. Fry,, A. J. Weightman, and, R. J. Parkes. 1997. Desulfovibrio profundus sp nov, a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol. 47:515521.
14. Bartlett, D. H. 1999. Microbial adaptations to the psychrosphere/ piezosphere. J. Mol. Microbiol. Biotechnol. 1:93100.
15. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
16. Bartlett, D. H., and, K. A. Bidle. 1999. Membrane-based adaptations of deep-sea piezophiles, p. 501512. In J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Publishing Co., Dordrecht, The Netherlands.
17. Bartlett, D. H., and, E. Chi. 1994. Genetic characterization of ompH mutants in the deep-sea bacterium Photobacterium species strain SS9. Arch. Microbiol. 162:323328.
18. Bartlett, D. H., and, M. F. Roberts. 2000. Osmotic stress, p. 502516. In J. Lederberg (ed.), Encyclopedia of Microbiology. Academic Press, Inc., San Diego, Calif.
19. Batacidos, M. C. L.,, C. R. LaVilla-Pitogo,, E. R. Cruz-Lacierda,, L. D. De La Pena, and, N. A. Sunaz. 1990. Studies on the chemical control of luminous bacteria Vibrio harveyi and Vibrio splendidus isolated from diseased Penaeus mondon larvae and rearing water. Dis. Aquat. Org. 9:133140.
20. Bauer, J. C., and, C. M. Young. 2000. Epidermal lesions and mortality caused by vibriosis in deep-sea Bahamian echinoids: a laboratory study. Dis. Aquat. Org. 39:193199.
21. Baumann, P.,, L. Baumann, and, M. Mandel. 1971. Taxonomy of marine bacteria: the genus Benekea. J. Bacteriol. 107:268294.
22. Baumann, P., and, L. Baumann. 1977. Biology of the marine enter-obacteria: genera Benekea and Photobacterium. Annu. Rev. Microbiol. 31:3961.
23. Baumann, P., and, L. Baumann. 1981. The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes, p. 13021331. In H. S. M. P. Starr,, H. G. Trüper,, A. Balows, and, H. G. Schlegel (ed.), The Prokaryotes. Springer-Verlag, Berlin, Germany.
24. Bendt, A.,, H. Huller,, U. Kammel,, E. Helmke, and, T. Schweder. 2001. Cloning, expression, and characterization of a chitinase gene from the antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7. Extremophiles 5:119126.
25. Benediktsdottir, E.,, S. Helgason, and, H. Sigurjonsdottir. 1998. Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature J. Fish Dis. 21:1928.
26. Benediktsdottir, E.,, L. Verdonck,, C. Sproer,, S. Helgason, and, J. Swings. 2000. Characterization of Vibrio viscosus and Vibrio wodanis isolated at different geographical locations: a proposal for reclassification of Vibrio viscosus as Moritella viscosa comb. nov. Int. J. Syst. Evol. Microbiol. 50:479488.
27. Bernhardt, G.,, R. Jaenicke,, H.-D. Ludemann,, H. Koning, and, K. O. Stetter. 1988. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolitho-trophicus without extending its temperature range. Appl. Environ. Microbiol. 54:12581261.
28. Bidle, K. A., and, D. H. Bartlett. 1999. RecD function is required for high pressure growth in a deep-sea bacterium. J. Bacteriol. 181:23302337.
29. Borrego, J. J.,, D. Castro,, A. Luque,, C. Paillard,, P. Maes,, M. T. Garcia, and, A. Ventosa. 1996. Vibrio tapetis sp. nov., the causative agent of the brown ring disease affecting cultured clams. Int. J. Syst. Bacteriol. 46:480484.
30. Bowman, J. P.,, S. A. McCammon,, J. A. Gibson,, L. Robertson, and, P. D. Nichols. 2003. Prokaryotic metabolic activity and community structure in antarctic continental shelf sediments. Appl. Environ. Microbiol. 69:24482462.
31. Bryan, P. J.,, R. J. Steffan,, A. DePaola,, J. W. Foster, and, A. K. Bej. 1999. Adaptive response to cold temperatures in Vibrio vulnificus. Curr. Microbiol. 38:168175.
32. Budsberg, K. J.,, C. F. Wimpee, and, J. F. Braddock. 2003. Isolation and identification of Photobacterium phosphoreum from an unexpected niche: migrating salmon. Appl. Environ. Microbiol. 69:69386942.
33. Bylund, G. O.,, L. C. Wipemo,, L. A. C. Lundberg, and, P. M. Wikstrom. 1998. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J. Bacteriol. 180:7382.
34. Chaiyanan, S.,, S. Chaiyanan,, A. Huq,, T. Maugel, and, R. R. Colwell. 2001. Viability of the nonculturable Vibrio cholerae O1 and O139. Syst. Appl. Microbiol. 24:331341.
35. Chattopadhyay, M. K. 2000. Cold-adaptation of antarctic microorganisms—possible involvement of viable but nonculturable state. Polar Biol. 23:223224.
36. Chi, E., and, D. H. Bartlett. 1993. Use of a reporter gene to follow high pressure signal transduction in the deep-sea bacterium Pho-tobacterium SS9. J. Bacteriol. 175:75337540.
37. Chi, E., and, D. H. Bartlett. 1995. An rpoE-like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep-sea bacterium Photobacterium SS9. Mol. Microbiol. 17:713726.
38. Chilukuri, L. N., and, D. H. Bartlett. 1997. Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth. Microbiology 143:11631174.
39. Colliec-Jouault, S.,, P. Zanchetta,, D. Helley,, J. Ratiskol,, C. Sin-quin,, A. M. Fischer, and, J. Guezennec. 2004. [Microbial poly-saccharides of marine origin and their potential in human therapeutics] [In French.] Pathol. Biol. (Paris) 52:127130.
40. Colquhoun, D. J.,, K. Alvheim,, K. Dommarsnes,, C. Syvertsen, and, H. Sorum. 2002. Relevance of incubation temperature for Vibrio salmonicida vaccine production. J. Appl. Microbiol. 92:10871096.
41. Csonka, L. N., and, W. Epstein. 1996. Osmoregulation, p. 12101223. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
42. Dalgaard, P.,, L. Garcia Munoz, and, O. Mejlholm. 1998. Specific inhibition of photobacterium phosphoreum extends the shelf life of modified-atmosphere-packed cod fillets. J. Food Prot. 61:11911194.
43. Dalgaard, P.,, G. P. Manfio, and, M. Goodfellow. 1997a. Classification of photobacteria associated with spoilage of fish products by numerical taxonomy and pyrolysis mass spectrometry. Zentbl. Bakteriol. 285:157168.
44. Dalgaard, P.,, O. Mejholm,, T. J. Christiansen, and, H. H. Huss. 1997b. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett. Appl. Microbiol. 24:373378.
45. Dalluge, J. J.,, T. Hamamoto,, K. Horikoshi,, R. Y. Morita,, K. O. Stetter, and, J. A. Mccloskey. 1997. Posttranscriptional modification of tRNA in psychrophilic bacteria. J. Bacteriol. 179:19181923.
46. Datta, P. P., and, R. K. Bhadra. 2003. Cold shock response and major cold shock proteins of Vibrio cholerae. Appl. Environ. Microbiol. 69:63616369.
47. DeLong, E. F. 1986. Adaptations of Deep-Sea Bacteria to the Abyssal Environment. Ph.D. thesis. University of California, San Diego.
48. DeLong, E. F.,, D. G. Franks, and, A. A. Yayanos. 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63:21052108.
49. DeLong, E. F.,, K. Y. Wu,, B. B. Prezelin, and, R. V. M. Jovine. 1994. High abundance of archaea in antarctic marine picoplankton. Nature 371:695696.
50. Deming, J. W.,, L. K. Somers,, W. L. Straube,, D. G. Swartz, and, M. T. Macdonell. 1988. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst. Appl. Microbiol. 10:152160.
51. Dersch, P.,, S. Kneip, and, E. Bremer. 1994. The nucleoid-associated DNA binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol. Gen. Genet. 245:255259.
52. Droffner, M. L., and, N. Yamamoto. 1991. Prolonged environmental stress via a two step process selects mutants of Escherichia, Salmonella and Pseudomonas that grow at 54 degrees C. Arch. Microbiol. 156:307311.
53. Enger, Ø. 1990. Starvation survival of the fish pathogenic bacteria Vibrio anguillarum and Vibrio salmonicida in marine environments. FEMS Microbiol. Ecol. 74:215220.
54. Enger, Ø.,, B. Husevag, and, J. Goksoyr. 1991. Seasonal variation in presence of Vibrio salmonicida and total bacterial counts in Norwegian fishfarm water. Can. J. Microbiol. 37:618623.
55. Ermolenko, D. N., and, G. I. Makhatadze. 2002. Bacterial cold-shock proteins. Cell. Mol. Life Sci. 59:19021913.
56. Esiobu, N., and, K. Yamazaki. 2003. Analysis of bacteria associated with the gut of healthy wild penaeid shrimps: a step towards effective probiotics in aquaculture. J. Aquacult. Tropics 18:275286.
57. Farmer, J. J., III. 1999. The family Vibrionaceae. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community. Springer-Verlag, New York, N.Y. http://link. springer-ny.com/link/service/books/10125/.
58. Farmer, J. J., III, and, F. W. Hickman-Brenner. 1992. The genera Vibrio and Photobacterium, p. 29523011. In A. Balow,, H. G. Truper,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer-Verlag, New York, N.Y.
59. Feller, G.,, D. d’Amico, and, C. Gerday. 1999. Thermodynamic stability of a cold-active alpha-amylase from the antarctic bacterium Alteromonas haloplanctis. Biochemistry 38:46134619.
60. Feller, G., and, C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1:200208.
61. Ferrer, M.,, T. N. Chernikova,, M. M. Yakimov,, P. Golyshin, and, K. N. Timmis. 2003. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21:12661267.
62. Ferrer, M.,, H. Lunsdorf,, T. N. Chernikova,, M. Yakimov,, K. N. Timmis, and, P. N. Golyshin. 2004. Functional consequences of single:double ring transitions in chaperonins: life in the cold. Mol. Microbiol. 53:167182.
63. Fidopiastis, P. M.,, S. von Boletzky, and, E. G. Ruby. 1998. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180:5964.
64. Fredrickson, J. K., and, T. C. Onstott. 1996. Microbes deep inside the earth. Sci. Am. 275:6873.
65. Fuhrman, J. A.,, K. McCallum, and, A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148149.
66. Fukunaga, N.,, M. Wada,, M. Honjo,, Y. Setaishi,, N. Hayashinaka,, Y. Takada, and, J. Nishikawa. 1995. Effects of temperature and salt on lipid and fatty acid compositions of a bacterium isolated from the bottom layer of Lake Vanda, Antarctica. J. Gen. Appl. Microbiol. 41:191205.
67. Galperin, M. Y. 2005. The vibrio that sheds light. Environ. Microbiol. 7:757760.
68. Gardel, C. L., and, J. J. Mekalanos. 1994. Regulation of cholera toxin by temperature, pH, and osmolarity. Methods Enzymol. 235:517527.
69. Garwin, J. L.,, A. L. Klages, and, J. E. Cronan. 1980. Structural, enzymatic, and genetic studies of fj-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J. Biol. Chem. 255:1194911956.
70. Gatesoupe, F. J.,, C. Lambert, and, J. L. Nicolas. 1999. Pathogenicity of Vibrio splendidus strains associated with turbot larvae, Scophthalmus maximus. J. Appl. Microbiol. 87:757763.
71. Genevaux, P.,, F. Keppel,, F. Schwager,, P. S. Langendijk-Genevaux,, F. U. Hartl, and, C. Georgopoulos. 2004. In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep. 5:195200.
72. Giangrossi, M.,, A. M. Giuliodori,, C. O. Gualerzi, and, C. L. Pon. 2002. Selective expression of the beta-subunit of nucleoid-asso-ciated protein HU during cold shock in Escherichia coli. Mol. Microbiol. 44:205216.
73. Gillett, M. B.,, J. R. Suko,, F. O. Santoso, and, P. H. Yancey. 1997. Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation? J. Exp. Zool. 279:386391.
74. Glansdorff, N., and, Y. Xu. 2002. Microbial life at low temperatures: mechanisms of adaptation and extreme biotopes. Implications for exobiology and the origin of life. Recent Res. Dev. Microbiol. 6:121.
75. Goldstein, J.,, N. S. Pollitt, and, M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87:283287.
76. Grimes, D. J.,, D. Jacobs,, D. G. Swartz,, P. R. Brayton, and, R. R. Colwell. 1993. Numerical taxonomy of gram-negative, oxidase-positive rods from carcharhinid sharks. Int. J. Syst. Bacterial. 43:8898.
77. Gross, M.,, I. J. Kosmowsky,, R. Lorenz,, H. P. Molitoris, and, R. Jaenicke. 1994. Response of bacteria and fungi to high-pressure stress as investigated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 15:15591565.
78. Gross, M., and, R. Jaenicke. 1994. Proteins under pressure—the influence of high hydrostatic pressure on structure, function and assembly of protein complexes. Eur. J. Biochem. 221:617630.
79. Gross, M.,, K. Lehle,, R. Jaenicke, and, K. H. Nierhaus. 1993. Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Stabilizing conditions and identification of the most sensitive functional state. Eur. J. Biochem. 218:463468.
80. Gualerzi, C. O.,, A. M. Giuliodori, and, C. L. Pon. 2003. Tran-scriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331:527539.
81. Hamamoto, T.,, N. Takata,, T. Kudo, and, K. Horikoshi. 1994. Effect of temperature and growth phase on fatty acid composition of the psychrophilic Vibrio sp. strain 5710. FEMS Microbiol. Lett. 119:7782.
82. Hauksson, J. B.,, O. S. Andresson, and, B. Asgeirsson. 2000. Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enzyme Microb. Technol. 27:6673.
83. Henderson, R. J.,, R.-M. Millar,, J. R. Sargent, and, J.-P. Jostensen. 1993. Trans-monoenoic and polyunsaturated fatty acids in phospholipids of a Vibrio species of bacterium in relation to growth conditions. Lipids 28:389396.
84. Hochachka, P. W., and, G. N. Somero. 2002. Biochemical Adaptation. Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, England.
85. Holm, K. O.,, E. Strom,, K. Stensvag,, J. Raa, and, T. Jorgensen. 1985. Characteristics of a Vibrio sp. associated with the “Hitra disease” of Atlantic salmon in Norwegian fish farms. Fish Pathol. 20:125130.
86. Huang, C. Y.,, J. L. Garcia,, B. K. Patel,, J. L. Cayol,, L. Baresi, and, R. A. Mah. 2000. Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. Int. J. Syst. Evol. Microbiol. 50:615622.
87. Huels, K. L.,, Y. J. Brady,, M. A. Delaney, and, J. A. Bader. 2003. Evidence of a cold shock response in Vibrio vulnificus, a human pathogen transmitted via raw eastern oysters, Crassostrea virginica, from the Gulf of Mexico. J. Shellfish Res. 22:336.
88. Ingraham, J. L., and, A. G. Marr. 1996. Effect of temperature, pressure, pH, and osmotic stress on growth, p. 15701578. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella ty-phimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
89. Ishii, A.,, S. Imagawa,, N. Fukunaga,, S. Sasaki,, O. Minowa,, Y. Mizuno, and, H. Shiokawa. 1987. Isozymes of isocitrate de-hydrogenase from an obligately psychrophilic bacterium, Vibrio sp. strain ABE-1: purification and modulation of activities by growth conditions. J. Biochem. 102:14891498.
90. Ishii, A.,, T. Oshima,, T. Sato,, K. Nakasone,, H. Mori, and, C. Kato. 2005. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9:6573.
91. Ishii, A.,, T. Sato,, M. Wachi,, K. Nagai, and, C. Kato. 2004. Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:19651972.
92. Jensen, S.,, O. B. Samuelsen,, K. Andersen,, L. Torkildsen,, C. Lambert,, G. Choquet,, C. Paillard, and, O. Bergh. 2003. Characterization of strains of Vibrio splendidus and V. tapetis isolated from corkwing wrasse Symphodus melops suffering vibriosis. Dis. Aquat. Org. 53:2531.
93. Jones, P. G.,, M. Mitta,, Y. Kim,, W. Jiang, and, M. Inouye. 1996. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 93:7680.
94. Kadouri, D.,, E. Jurkevitch, and, Y. Okon. 2003. Poly beta-hydroxy-butyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch. Microbiol. 180:309318.
95. Kamekura, M.,, S. Bardocz,, P. Anderson,, R. Wallace, and, D. J. Kushner. 1986. Polyamines in moderately and extremely halo-philic bacteria. Biochim. Biophys. Acta 880:204208.
96. Kamimura, K.,, H. Fuse,, O. Takimura, and, Y. Yamaoka. 1993. Effects of growth pressure and temperature on fatty acid composition of a barotolerant deep-sea bacterium. Appl. Environ. Microbiol. 59:924926.
97. Kandror, O.,, A. DeLeon, and, A. L. Goldberg. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA 99:97279732.
98. Kandror, O., and, A. L. Goldberg. 1997. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc. Natl. Acad. Sci. USA 94:49784981.
99. Kanki, M.,, T. Yoda,, M. Ishibashi, and, T. Tsukamoto. 2004. Pho-tobacterium phosphoreum caused a histamine fish poisoning incident. Int. J. Food Microbiol. 92:7987.
100. Karner, M. B.,, E. F. DeLong, and, D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507510.
101. Kato, C.,, L. Li,, Y. Nogi,, Y. Nakamura,, J. Tamaoka, and, K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64:15101513.
102. Kato, C.,, T. Sato, and, K. Horikoshi. 1995. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers. Conserv. 4:19.
103. Kato, C.,, H. Tamegai,, A. Ikegami,, R. Usami, and, K. Horikoshi. 1996. Open reading frame 3 of the barotolerant bacterium strain DSS12 is complementary with cydD in Escherichia coli: cydD functions are required for cell stability at high pressure. J. Biochem. (Tokyo) 120:301305.
104. Kawano, H.,, K. Nakasone,, M. Matsumoto,, Y. Yoshida,, R. Usami,, C. Kato, and, F. Abe. 2004. Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli. Extremophiles 8:367375.
105. Kelly, R. H., and, P. H. Yancey. 1999. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol. Bull. 196:1825.
106. Kong, I.-S.,, T. C. Bates,, A. Hulsmann,, H. Hassan,, B. E. Smith, and, J. D. Oliver. 2004. Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50:133142.
107. Kristjansson, M. M.,, O. T. Magnusson,, H. M. Gudmundsson,, G. A. Alfredsson, and, H. Matsuzawa. 1999. Properties of a sub-tilisin-like proteinase from a psychrotrophic Vibrio species—comparison with proteinase K and aqualysin I. Biochemistry 260:752760.
108. Lacoste, A.,, F. Jalabert,, S. Malham,, A. Cueff,, F. Gelebart,, C. Cordevant,, M. Lange, and, S. A. Poulet. 2001. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 46:139145.
109. Landau, J. V. 1967. Induction, transcription, and translation in Escherichia coli: a hydrostatic pressure study. Biochim. Bio-phys. Acta 149:506512.
110. Lease, R. A., and, M. Belfort. 2000. Riboregulation by DsrA RNA: transactions for global economy. Mol. Microbiol. 38:667672.
111. Lee, J. H.,, N. Y. Park,, M. H. Lee, and, S. H. Choi. 2003. Characterization of the Vibrio vulnificus putAP operon, encoding proline dehydrogenase and proline permease, and its differential expression in response to osmotic stress. J. Bacteriol. 185:38423852.
112. Li, L.,, J. Guezennec,, P. Nichols,, P. Henry,, M. Yanagibayashi, and, C. Kato. 1999a. Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J. Oceanography 55:635642.
113. Li, L. N.,, C. Kato, and, K. Horikoshi. 1999b. Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 8:659677.
114. Liesack, W.,, H. Weyland, and, E. Stackebrandt. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb. Ecol. 21:191198.
115. Lin, C.,, R.-C. Yu, and, C.-C. Chou. 2004. Susceptibility of Vibrio parahaemolyticus to various environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92:207215.
116. Lopez-Garcia, P.,, A. Lopez-Lopez,, D. Moreira, and, F. Rodriguez-Valera. 2001a. Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol. Ecol. 36:193202.
117. Lopez-Garcia, P.,, D. Moreira,, A. Lopez-Lopez, and, F. Rodríguez-Valera. 2001b. A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ. Microbiol. 3:7278.
118. Lopez-Garcia, P.,, F. Rodriguez-Valera,, C. Pedros-Alio, and, D. Mor-eira. 2001c. Unexpected diversity of small eukaryotes in deep-sea antarctic plankton. Nature 409:603607.
119. Lunder, T.,, H. Sorum,, G. Holstad,, A. G. Steigerwalt,, P. Mow-inckel, and, D. J. Brenner, 2000. Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with “winter ulcer.” Int. J. Syst. Bacteriol. 50:427450.
120. Luttinger, A.,, J. Hahn, and, D. Dubnau. 1996. Polynucleotide phosphorylase in necessary for competence development in Bacillus subtilis. Mol. Microbiol. 19:343356.
121. Makemson, J. C. 1973. Control of in vivo luminescence in psychrophilic marine photobacterium. Arch. Microbiol. 93:347358.
122. Marquis, R. E., and, G. R. Bender. 1987. Barophysiology of Prokaryotes and Proton-Translocating ATPases. Academic Press, Inc., London, England.
123. Marteinsson, V. T.,, J. L. Birrien,, A. L. Reysenbach,, M. Vernet,, D. Marie,, A. Gambacorta,, P. Messner,, U. Sleytr, and, D. Prieur. 1999a. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 49:351359.
124. Marteinsson, V. T.,, A.-L. Reysenbach,, J.-L. Birrien, and, D. Prieur. 1999b. A stress protein is induced in the deep-sea barophilic hy-perthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3:277282.
125. Marteinsson, V. T.,, P. Moulin,, J.-L. Birrien,, A. Gambacorta,, M. Vernet, and, D. Prieur. 1997. Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 63:12301236.
126. Martin, D. D.,, D. H. Bartlett, and, M. F. Roberts. 2002. Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507514.
127. Martinkearley, J., and, J. A. Gow. 1994. Numerical taxonomy of Vibrionaceae from Newfoundland coastal waters. Can. J. Microbiol. 40:355361.
128. Martinkearley, J.,, J. A. Gow,, M. Peloquin, and, C. W. Greer. 1994. Numerical analysis and the application of random amplified polymorphic DNA polymerase chain reaction to the differentiation of Vibrio strains from a seasonally cold ocean. Can. J. Microbiol. 40:446455.
129. Matsumura, P., and, R. E. Marquis. 1977. Energetics of strepto-coccal growth inhibition by hydrostatic pressure. Appl. Environ. Microbiol. 33:885892.
130. McElhaney, R. N. 1982. Effects of membrane lipids on transport and enzymic activities, p. 317380. In S. Razin and, S. Rottem (ed.), Current Topics in Membranes and Transport. Academic Press, Inc., New York, N.Y.
131. McGovern, V. P., and, J. D. Oliver. 1995. Induction of cold-responsive proteins in Vibrio vulnificus. J. Bacteriol. 177:41314133.
132. Meganathan, R., and, R. E. Marquis. 1973. Loss of bacterial motility under pressure. Nature 246:526527.
133. Miller, J. F.,, N. N. Shah,, C. M. Nelson,, J. M. Lulow, and, D. S. Clark. 1988. Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl. Environ. Microbiol. 54:30393042.
134. Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39:144167.
135. Munro, P. M., and, M. J. Gauthier. 1994. Uptake of glutamate by Vibrio cholerae in media of low and high osmolarity, and in sea-water. Lett. Appl. Microbiol. 18:197199.
136. Nakayama, A.,, Y. Yano, and, K. Yoshida. 1994. New method for isolating barophiles from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Appl. Environ. Microbiol. 60:42104212.
137. Nishiguchi, M. K. 2000. Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl. Environ. Microbiol. 66:35503555.
138. Nogi, Y.,, S. Hosoya,, C. Kato, and, K. Horikoshi. 2004. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int. J. Syst. Evol. Microbiol. 54:16271631.
139. Nogi, Y.,, C. Kato, and, K. Horikoshi. 2002. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int. J. Syst. Evol. Microbiol. 52:15271532.
140. Nogi, Y.,, N. Masui, and, C. Kato. 1998a. Photobacterium profundum sp. nov., a new moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:17.
141. Nogi, Y.,, N. Masui, and, C. Kato. 1998b. Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new moderately barophilic bacterial species. Arch. Microbiol. 170:331338.
142. Novitsky, J. A., and, R. Y. Morita. 1978. Starvation-induced barotolerance as a survival mechanism of a psychrophilic marine Vibrio in the waters of the Atlantic convergence. Mar. Biol. 49:710.
143. Ochiai, T.,, N. Fukunaga, and, S. Sasaki. 1979. Purification and some properties of two NADP-specific isocitrate dehydrogenases from an obligately psychrophilic marine bacterium, Vibrio sp. strain ABE-1. J. Biochem. 86:377384.
144. Onarheim, A. M.,, R. Wiik,, J. Burghardt, and, E. Stackerbrandt. 1994. Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water—description of Vibrio iliopiscarius sp nov. Syst. Appl. Microbiol. 17:370379.
145. Ortigosa, M.,, E. Garay, and, M.-J. Pujalte. 1994. Numerical taxonomy of Vibrionaceae isolated from oysters and seawater along an annual cycle. Syst. Appl. Microbiol. 17:216225.
146. Pagan, R., and, B. Mackey. 2000. Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential-and stationary-phase cells and variation among strains. Appl. Environ. Microbiol. 66:28292834.
147. Pflughoeft, K. J.,, K. Kierek, and, P. I. Watnick. 2003. Role of ectoine in Vibrio cholerae osmoadaptation. Appl. Environ. Microbiol. 69:59195927.
148. Phadtare, S., and, M. Inouye. 2004. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J. Bacteriol. 186:70077014.
149. Phadtare, S.,, M. Inouye, and, K. Severinov. 2004. The mechanism of nucleic acid melting by a CspA family protein. J. Mol. Biol. 337:147155.
150. Pinhassi, J.,, F. Azam,, J. Hemphälä,, R. Long,, J. Martinez,, U. Zweifel, and, Å. Hagström. 1999. Coupling between bacteri-oplankton species composition, population dynamics, and organic matter degradation. Aquat. Microb. Ecol. 17:1326.
151. Pogliano, K. J., and, J. Beckwith. 1993. The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics 133:763773.
152. Polissi, A.,, W. De Laurentis,, S. Zangrossi,, F. Briani,, V. Longhi,, G. Pesole, and, G. Deho. 2003. Changes in Escherichia coli tran-scriptome during acclimatization at low temperature. Res. Microbiology 154:573580.
153. Preyer, J. M., and, J. D. Oliver. 1993. Starvation-induced thermal tolerance as a survival mechanism in a psychrophilic marine bacterium. Appl. Environ. Microbiol. 59:26532656.
154. Prud’homme-Genereux, A.,, R. K. Beran,, I. Lost,, C. S. Ramey,, G. A. Mackie, and, R. W. Simons. 2004. Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a “cold shock degradosome.” Mol. Microbiol. 54:14091421.
155. Qing, G.,, L.-C. Ma,, A. Khorchid,, G. V. T. Swapna,, T. K. Mal,, M. M. Takayama,, B. Xia,, S. Phadtare,, H. Ke,, T. Acton,, G. T. Montelione,, M. Ikura, and, M. Inouye. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22:877882.
156. Radjasa, O. K.,, H. Urakawa,, K. Kita-Tsukamoto, and, K. Ohwada. 2001. Characterization of psychrotrophic bacteria in the surface and deep-sea waters from the northwestern Pacific Ocean based on 16S ribosomal DNA analysis. Mar. Biotechnol. 3:454462.
157. Raguénès, G.,, R. Christen,, J. Guezennec,, P. Pignet, and, G. Barbier. 1997. Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Bacteriol. 47:989995.
158. Reichelt, J. L.,, P. Baumann, and, L. Baumann. 1976. Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch. Microbiol. 110:101120.
159. Reid, H. I.,, H. L. Duncan,, L. A. Laidler,, D. Hunter, and, T. H. Birkbeck. 2003. Isolation of Vibrio tapetis from cultivated Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 221:6574.
160. Ruby, E. G.,, E. P. Greenberg, and, J. W. Hastings. 1980. Planktonic marine luminous bacteria: species distribution in the water column. Appl. Environ. Microbiol. 39:302306.
161. Ruby, E. G., and, J. G. Morin. 1978. Specificity of symbiosis between deep-sea fishes and psychrotrophic luminous bacteria. Deep-Sea Res. 25:161167.
162. Ruby, E. G., and, K. H. Nealson. 1977. A luminous bacterium that emits yellow light. Science 196:432434.
163. Rueger, H.-J. 1988. Substrate-dependent cold adaptations in some deep-sea sediment bacteria. Syst. Appl. Microbiol. 11:9093.
164. Russell, N. J. 1990. Cold adaptation of microorganisms. Phil. Trans. R. Soc. London B 326:595611.
165. Russell, N. J., and, T. Hamamoto. 1998. Psychrophiles, p. 2545. In K. Horikoshi and, W. D. Grant (ed.), Extremophiles: Microbial Life in Extreme Environments. Wiley-Liss, Inc., New York, N.Y.
166. Sahara, T.,, M. Suzuki,, J.-I. Tsuruha,, Y. Takada, and, N. Fuku-naga. 1999. cis-Acting elements responsible for low-tempera-ture-inducible expression of the gene coding for the thermolabile isocitrate dehydrogenase isozyme of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J. Bacteriol. 181:26022611.
167. Saito, R., and, A. Nakayama. 2004. Differences in malate dehydro-genases from obligately piezophilic deep-sea bacterium Moritella sp. strain 2d2 and the psychrophilic bacterium Moritella sp. strain 5710. FEMS Microbiol. Lett. 233:165172.
168. Saunders, N. F. W.,, T. Thomas,, P. M. G. Curmi,, J. S. Mattick,, E. Kuczek,, R. Slade,, J. Davis,, P. D. Franzmann,, D. Boone,, K. Rusterholtz,, R. Feldman,, C. Gates,, S. Bench,, K. R. Sowers,, K. Kadner,, A. Aerts,, P. Dehal,, C. Detter,, T. Glavina,, S. Lucas,, P. M. Richardson,, F. Larimer,, L. Hauser,, M. Land, and, R. Cavicchioli. 2003. Mechanisms of thermal adaptation revealed from the genomes of the antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13:15801588.
169. Schiewe, M. H.,, T. J. Trust, and, J. H. Crosa. 1981. Vibrio ordalii sp. nov.: a causative agent of vibriosis in fish. Curr. Microbiol. 6:343348.
170. Schmitz, R. P. H., and, E. A. Galinski. 1996. Compatible solutes in luminescent bacteria of the genera Vibrio, Photobacterium and Photorhabdus (Xenorhabdus): occurrence of ectoine, betaine and glutamate. FEMS Microbiol. Lett. 142:195201.
171. Schwarz, J. R., and, J. V. Landau. 1972. Inhibition of cell-free protein synthesis by hydrostatic pressure. J. Bacteriol. 112:12221227.
172. Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54:438463.
173. Somero, G. N. 1990. Life at low volume change: hydrostatic pressure as a selective factor in the aquatic environment. Am. Zool. 30:123135.
174. Somero, G. N. 1992. Biochemical ecology of deep-sea animals. Experientia 48:537543.
175. Sorokin, D. Y. 1992. Catenococcus thiocyclus gen. nov.—a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area. J. Gen. Microbiol. 138:22872292.
176. Suutari, M., and, S. Laakso. 1994. Microbial fatty acids and thermal adaptation. Crit. Rev. Microbiol. 20:285328.
177. Svingor, A.,, J. Kardos,, I. Hajdu,, A. Nemeth, and, P. Zavodszky. 2001. A better enzyme to cope with cold—comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IP-MDHS. J. Biol. Chem. 276:2812128125.
178. Tamegai, H.,, C. Kato, and, K. Horikoshi. 1998. Pressure-regulated respiratory system in barotolerant bacterium Shewanella sp. strain DSS12. J. Biochem. Mol. Biol. Biophys. 1:213220.
179. Tendeng, C.,, C. Badaut,, E. Krin,, P. Gounon,, S. Ngo,, A. Danchin,, S. Rimsky, and, P. Bertin. 2000. Isolation and characterization of vicH, encoding a new pleiotropic regulator in Vibrio cholerae. J. Bacteriol. 182:20262032.
180. Thompson, F. L.,, C. C. Thompson,, Y. Li,, B. Gomez-Gil,, J. Van-denberghe,, B. Hoste, and, J. J. Swings. 2003. Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int. J. Syst. Bacteriol. 53:753759.
181. Urakawa, H.,, K. Kita-Tsukamoto and, K. Ohwada. 1999a. 16S rDNA restriction fragment length polymorphism analysis of psychrotrophic vibrios from Japanese coastal water. Can. J. Microbiol. 45:10011007.
182. Urakawa, H.,, K. Kita-Tsukamoto, and, K. Ohwada. 1999b. Reassessment of the taxonomic position of Vibrio iliopiscarius (Onarheim et al. 1994) and proposal for Photobacterium iliopiscarium comb. nov. Int. J. Syst. Bacteriol. 49:257260.
183. Urakawa, H.,, K. Kita-Tsukamoto, and, K. Ohwada. 1999c. Restriction fragment length polymorphism analysis of psychrophilic and psychrotrophic Vibrio and Photobacterium from the northwestern Pacific Ocean and Otsuchi Bay, Japan. Can. J. Microbiol. 45:6776.
184. Valentine, R. C., and, D. L. Valentine. 2004. Omega-3 fatty acids in cellular membranes: a unified concept. Prog. Lipid Res. 43:383402.
185. VanBogelen, R. A., and, F. C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:55895593.
186. van de Vossenberg, J. L.,, T. Ubbink-Kok,, M. G. Elferink,, A. J. Driessen, and, W. N. Konings. 1995. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol. Microbiol. 18:925932.
187. Ventosa, A.,, J. J. Nieto, and, A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62:504544.
188. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D. H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:14591461.
189. Vorachek-Warren, M. K.,, S. M. Carty,, S. Lin,, R. J. Cotter, and, C. R. H. Raetz. 2002. An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis. J. Biol. Chem. 277:1418614193.
190. Wallon, G.,, S. T. Lovett,, C. Magyar,, A. Svingor,, A. Szilagyi,, P. Za-vodszky,, D. Ringe, and, G. A. Petsko. 1997. Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp I5 suggest reasons for thermal instability. Protein Eng. 10:665672.
191. Wassarman, K. M. 2002. Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 109:141144.
192. Watanabe, S.,, Y. Takada, and, N. Fukunaga. 2001. Purification and characterization of a cold-adapted isocitrate lyase and a malate synthase from Colwellia maris, a psychrophilic bacterium. Biosci. Biotechnol. Biochem. 65:10951103.
193. Watanabe, S.,, N. Yamaoka,, Y. Takada, and, N. Fukunaga. 2003. The cold-inducible icl gene encoding thermolabile isocitrate lyase of a psychrophilic bacterium, Colwellia maris. Microbiology 148:25792589.
194. Welch, T. J., and, D. H. Bartlett. 1996. Isolation and characterization of the structural gene for OmpL, a pressure-regulated porin-like protein from the deep-sea bacterium Photobacterium species strain SS9. J. Bacteriol. 178:50275031.
195. Welch, T. J., and, D. H. Bartlett. 1997. Cloning, sequencing and overexpression of the gene encoding malate dehydrogenase from the deep-sea bacterium Photobacterium species strain SS9. Biochim. Biophys. Acta 1350:4146.
196. Welch, T. J., and, D. H. Bartlett. 1998. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27:977985.
197. Welch, T. J.,, A. Farewell,, F. C. Neidhardt, and, D. H. Bartlett. 1993. Stress response in Escherichia coli induced by elevated hydrostatic pressure. J. Bacteriol. 175:71707177.
198. Wiegel, J. 1990. Temperature spans for growth: hypothesis and discussion. FEMS Microbiol. Rev. 75:155170.
199. Wintrode, P. L., and, F. H. Arnold. 2000. Temperature adaptation of enzymes: lessons from laboratory evolution. Adv. Protein Chem. 55:161225.
200. Wong, H.-C.,, C.-T. Shen,, C.-N. Chang,, Y.-S. Lee, and, J. D. Oliver. 2004. Biochemical and virulence characterization of viable but nonculturable cells of Vibrio parahaemolyticus. J. Food Prot. 67:24302435.
201. Xia, B.,, H. Ke, and, M. Inouye. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40:179188.
202. Xia, B.,, H. Ke,, U. Shinde, and, M. Inouye. 2003. The role of RbfA in 16 S rRNA processing and cell growth at low temperature in Escherichia coli. J. Mol. Biol. 332:575584.
203. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rueger,, D. De Kegel, and, N. Glansdorff. 2003a. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:533538.
204. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rueger,, D. De Kegel, and, N. Glansdorff. 2003b. Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:527532.
205. Xu, Y.,, Y. F. Zhang,, Z. Y. Liang,, M. Vandecasteele,, C. Legrain, and, N. Glansdorff. 1998. Aspartate carbamoyltransferase from a psychrophilic deep-sea bacterium, Vibrio strain 2693—properties of the enzyme, genetic organization and synthesis in Escherichia coli. Microbiology 144:14351441.
206. Yamamoto, S.,, K. Yamasaki,, K. Takashina,, T. Katsu, and, S. Shin-oda. 1989. Characterization of putrescine production in non-growing Vibrio-parahaemolyticus cells in response to external osmolality. Microbiol. Immunol. 33:1122.
207. Yamamoto, S.,, M. Yoshida,, H. Nakao,, M. Koyama,, Y. Hashimoto, and, S. Shinoda. 1986. Variations in cellular polyamine compositions and contents of Vibrio species during growth in media with various sodium chloride concentrations. Chem. Pharm. Bull. 34:30383042.
208. Yano, Y.,, A. Nakayama,, H. Saito, and, K. Ishihara. 1994. Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29:527528.
209. Yano, Y.,, A. Nakayama, and, K. Yoshida. 1997. Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. Microbiol. 63:25722577.
210. Yayanos, A. A. 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. USA 83:95429546.
211. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49:777805.
212. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808810.
213. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana trench. Proc. Natl. Acad. Sci. USA 78:52125215.
214. Yayanos, A. A., and, E. C. Pollard. 1969. A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys. J. 9:14641482.
215. Yoneta, M.,, T. Sahara,, K. Nitta, and, Y. Takada. 2004. Characterization of chimeric isocitrate dehydrogenases of a mesophilic nitrogen-fixing bacterium, Azotobacter vinelandii, and a psychrophilic bacterium, Colwellia maris. Curr. Microbiol. 48:383388.
216. Yumoto, I.,, K. Kawasaki,, H. Iwata,, H. Matsuyama, and, H. Okuyama. 1998. Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int. J. Syst. Bacteriol. 48:13571362.
217. ZoBell, C. E. 1970. Pressure Effects on Morphology and Life Processes of Bacteria. Academic Press, Inc., London, England.
218. ZoBell, C. E., and, A. B. Cobet. 1950. Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J. Bacteriol. 60:771781.
219. ZoBell, C. E., and, A. B. Cobet. 1962. Growth, reproduction and death rates of Escherichia coli at increased hydrostatic pressures. J. Bacteriol. 84:12281236.
220. ZoBell, C. E., and, A. B. Cobet. 1963. Filament formation by Escherichia coli at increased hydrostatic pressures. J. Bacteriol. 87:710719.


Generic image for table

Psychrotolerant or psychrophylic members of the

Citation: Bartlett D. 2006. Extremophilic , p 156-171. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch11
Generic image for table

Examples of enzymes from cold-adapted species that have been studied

Citation: Bartlett D. 2006. Extremophilic , p 156-171. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error