Chapter 13 : Dynamics of Populations and Their Role in Environmental Nutrient Cycling

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Dynamics of Populations and Their Role in Environmental Nutrient Cycling, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap13-2.gif


Molecular surveys of bacterioplankton communities in coastal regions and open oceans have yielded similar 16S rRNA sequences, although coastal sites can differ significantly from the open ocean with respect to primary production rates and terrestrial influence. While obligate “ultramicrobacteria” have been described from oligotrophic open ocean environments and hypothesized to substantially contribute to environmental nutrient cycling, the extent to which facultative “ultra-micro” cells contribute to microbial diversity and nutrient cycling in oligotrophic environments has not been addressed; this may reflect the limitation of DNA-based studies that are based on a collection of planktonic biomass on a 0.2-μm-pore-size filter. Association with larger host organisms may mediate the environmental dynamics of symbiotic or commensal populations. Chitinase activity may reflect one of the most important extracellular enzymatic processes in the marine environment. A facultatively anaerobic bacterium originally described as a denitrifying was recently classified as an alphaproteobacterium based upon DNA sequence data. Comparative genomic approaches between nonpathogens and pathogenic strains can help explain the unifying themes underlying bacterial-host interactions and mechanisms by which pathogenic interactions may emerge. Environmental genomic approaches to explore the metabolic diversity associated with phylogenetic clades can shed light on how widespread certain features, such as N fixation, bioluminescence, and cell signaling, are among the and whether vibrios are capable of as-yet- undiscovered metabolic transformations (e.g., denitrification, phototrophy, chemoautotropy). The dynamics and distribution of bacterioplanktonic populations are determined by adaptations to environmental gradients, including temperature, salinity, and nutrient concentration.

Citation: Thompson J, Polz M. 2006. Dynamics of Populations and Their Role in Environmental Nutrient Cycling, p 190-203. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch13

Key Concept Ranking

Dissimilatory Nitrate Reduction to Ammonia
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Idealized heterotrophic microbial loop whereby dissolved organic matter is recycled to inorganic nutrients available for primary production by the activities of heterotrophic bacteria and protists. Open arrowheads reflect the flow of organic carbon, and closed arrowheads reflect the flow of inorganic nutrients (N and P). Vibrios mediate biogeochemical cycling through activities such as organic matter uptake and release or competition for inorganic nutrients and by release of cellular materials as a by-product of grazing or viral lysis. (Contributions to nutrient cycling by au-totrophic cyanobacteria and protozoan uptake of high-molecular-weight dissolved organic matter [DOM] are not depicted.)

Citation: Thompson J, Polz M. 2006. Dynamics of Populations and Their Role in Environmental Nutrient Cycling, p 190-203. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Nitrogen cycles between oxidation states of —3 to +5. links in the marine environment are shown in gray. Genes encode proteins implicated in mediating nitrogen. Modified from .

Citation: Thompson J, Polz M. 2006. Dynamics of Populations and Their Role in Environmental Nutrient Cycling, p 190-203. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allen, A. E.,, M. G. Booth,, M. E. Frischer,, P. G. Verity,, J. P. Zehr, and, S. Zani. 2001. Diversity and detection of nitrate assimilation genes in marine bacteria. Appl. Environ. Microbiol. 67:53435348.
2. Allen, E. E.,, D. Facciotti, and, D. H. Bartlett. 1999. Monounsatu-rated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 65:17101720.
3. Ammerman, J. W., and, F. Azam. 1985. Bacterial 5′-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227:13381340.
4. Armada, S. P.,, R. Farto,, M. J. Perez, and, T. P. Nieto. 2003. Effect of temperature, salinity and nutrient content on the survival responses of Vibrio splendidus biotype I. Microbiology 149:369375.
5. Azam, F.,, T. Fenchel,, J. G. Field,, J. S. Gray,, L. A. Meyerreil, and, F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257263.
6. Bagwell, C. E.,, J. R. LaRocque,, G. W. Smith,, S. W. Poison,, M. J. Friez,, J. W. Longshore, and, C. R. Lovell. 2002. Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol. Ecol. 39:113119.
7. Barbieri, E.,, L. Falzano, and, C. Fiorentini. 1999. Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. and non-O1 Vibrio cholerae from estuarine waters along the Italian Adriatic Coast. Appl. Environ. Microbiol. 65:27482753.
8. Bartlett, D.,, M. Wright,, A. A. Yayanos, and, M. Silverman. 1989. Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342:572574.
9. Bassler, B. L.,, P. J. Gibbons,, C. Yu, and, S. Roseman. 1991a. Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii. J. Biol. Chem. 266:2426824275.
10. Bassler, B. L.,, C. Yu,, Y. C. Lee, and, S. Roseman. 1991b. Chitin utilization by marine-bacteria—degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J. Biol. Chem. 266:2427624286.
11. Beardsley, C.,, J. Pernthaler,, W. Wosniok, and, R. Amann. 2003. Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl. Environ. Microbiol. 69:26242630.
12. Bengis-Garber, C., and, D. J. Kushner. 1981. Purification and properties of 5′-nucleotidase from the membrane of Vibrio costicola, a moderately halophilic bacterium. J. Bacteriol. 146:2432.
13. Ben-Haim, Y.,, F. L. Thompson,, C. C. Thompson,, M. C. Cnock-aert,, B. Hoste,, J. Swings, and, E. Rosenberg. 2003. Vibrio coral-liilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. Syst. Evol. Microbiol. 53:309315.
14. Benitez, J. A.,, A. J. Silva, and, R. A. Finkelstein. 2001. Environmental signals controlling production of hemagglutinin/protease in Vibrio cholerae. Infect. Immun. 69:65496553.
15. Benitez-Nelson, C. R. 2000. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51:109135.
16. Bockemuhl, J.,, K. Roch,, B. Wohlers,, V. Aleksic,, S. Aleksic, and, R. Wokatsch. 1986. Seasonal distribution of facultatively en-teropathogenic vibrios (Vibrio cholerae, Vibrio mimicus, Vibrio parahaemolyticus) in the freshwater of the Elbe River at Hamburg. J. Appl. Bacteriol. 60:435442.
17. Bonin, P. 1996. Anaerobic nitrate reduction to ammonium in two strains isolated from a coastal marine sediment: a dissimilatory pathway. FEMS Microbiol. Ecol. 19:2738.
18. Boyd, E.,, K. Moyer, and, L. Shi. 2000. Infectious CTX phi, and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect. Immun. 68:15071513.
19. Boyd, E., and, M. Waldor. 1999. Alternative mechanism of cholera toxin acquisition by Vibrio cholerae: generalized transduction of CTX phi by bacteriophage CP-T1. Infect. Immun. 67:58985905.
20. Brown, M. M.,, M. J. Friez, and, C. R. Lovell. 2003. Expression of nifH genes by diazotrophic bacteria in the rhizosphere of short form Spartina alterniflora. FEMS Microbiol. Ecol. 43:411417.
21. Caldini, G.,, A. Neri, and, S. Cresti. 1997. High prevalence of Vibrio cholerae non-O1 carrying heat-stable-enterotoxin-encoding genes among Vibrio isolates from a temperate-climate river basin of central Italy. Appl. Environ. Microbiol. 63:29342939.
22. Callahan, S. M.,, N. W. Cornell, and, P. V. Dunlap. 1995. Purification and properties of periplasmic 3′:5′-cyclic nucleotide phos-phodiesterase. A novel zinc-containing enzyme from the marine symbiotic bacterium Vibrio fischeri. J. Biol. Chem. 270:1762717632.
23. Capone, D. G. 2000. The marine microbial nitrogen cycle, p. 455493. In D. L. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley-Liss, Inc., New York, N.Y.
24. Chen, C. Y.,, K. M. Wu,, Y. C. Chang,, C. H. Chang,, H. C. Tsai,, T. L. Liao,, Y. M. Liu,, H. J. Chen,, A. B. Shen,, J. C. Li,, T. L. Su,, C. P. Shao,, C. T. Lee,, L. I. Hor, and, S. F. Tsai. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13:25772587.
25. Cho, B. C., and, F. Azam. 1990. Biogeochemical significance of bacterial biomass in the oceans euphotic zone. Mar. Ecol. Prog. Ser. 63:253259.
26. Cho, B. C., and, F. Azam. 1988. Major role of bacteria in biogeochemical fluxes in the oceans interior. Nature 332:441443.
27. Chou, M.,, T. Matsunaga,, Y. Takada, and, N. Fukunaga. 1999. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1. Extremophiles 3:8995.
28. Chowdhury, M. A.,, S. Miyoshi,, H. Yamanaka, and, S. Shinoda. 1992. Ecology and distribution of toxigenic Vibrio cholerae in aquatic environments of a temperate region. Microbios 72:203213.
29. Colwell, R. R. 1996. Global climate and infectious disease: the cholera paradigm. Science 274:20252031.
30. Cottrell, M. T., and, D. L. Kirchman. 2004. Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat. Microb. Ecol. 34:139149.
31. Cottrell, M. T.,, D. N. Wood,, L. Yu, and, D. L. Kirchman. 2000. Selected chitinase genes in cultured and uncultured marine bacteria in the alpha- and gamma-subclasses of the proteobacteria. Appl. Environ. Microbiol. 66:11951201.
32. Coyer, J. A.,, A. Cabello-Pasini,, H. Swift, and, R. S. Alberte. 1996. N2 fixation in marine heterotrophic bacteria: dynamics of environmental and molecular regulation. Proc. Natl. Acad. Sci. USA 93:35753580.
33. DeLong, E. F.,, D. G. Franks, and, A. A. Yayanos. 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63:21052108.
34. Denner, E. B.,, D. Vybiral,, U. R. Fischer,, B. Velimirov, and, H. J. Busse. 2002. Vibrio calviensis sp. nov., a halophilic, facultatively oligotrophic 0.2 micron-filterable marine bacterium. Int. J. Syst. Evol. Microbiol. 52:549553.
35. Ducklow, H. W. 1983. Production and fate of bacteria in the oceans. Bioscience 33:494501.
36. Eilers, H.,, J. Pernthaler, and, R. Amann. 2000a. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl. Environ. Microbiol. 66:46344640.
37. Eilers, H.,, J. Pernthaler,, F. O. Glockner, and, R. Amann. 2000b. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66:30443051.
38. Farmer, J. J., and, F. W. Hickman-Brenner. 2001. The genera Vibrio and Photobacterium. In M. Dworkin et al. (ed.), The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.7. Springer-Verlag, New York, N.Y.
39. Faruque, S. M.,, I. B. Naser,, M. J. Islam,, A. S. Faruque,, A. N. Ghosh,, G. B. Nair,, D. A. Sack, and, J. J. Mekalanos. 2005. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc. Natl. Acad. Sci. USA 102:17021707.
40. Faury, N.,, D. Saulnier,, F. L. Thompson,, M. Gay,, J. Swings, and, F. L. Roux. 2004. Vibrio crassostreae sp. nov., isolated from the haemolymph of oysters (Crassostrea gigas). Int. J. Syst. Evol. Microbiol. 54:21372140.
41. Food and Drug Administration. 2000. Draft Risk Assessment on the Public Health Impact of Vibrio parahaemolyticus in Raw Molluscan Shellfish. Center for Food Safety and Applied Nutrition, Food and Drug Administration, Washington, D.C.
42. Flardh, K.,, P. S. Cohen, and, S. Kjelleberg. 1992. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 174:67806788.
43. Gil, A. I.,, V. R. Louis,, I. N. Rivera,, E. Lipp,, A. Huq,, C. F. Lanata,, D. N. Taylor,, E. Russek-Cohen,, N. Choopun,, R. B. Sack, and, R. R. Colwell. 2004. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ. Microbiol. 6:699706.
44. Giovannoni, S., and, M. Rappé. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes, p. 4784. In D. L. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley-Liss, Inc., New York, N.Y.
45. Gomez-Gil, B.,, F. L. Thompson,, C. C. Thompson, and, J. Swings. 2003. Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis. Int. J. Syst. Evol. Microbiol. 53:239243.
46. Gomez-Gil, B.,, L. Tron-Mayen,, A. Rogue,, J. F. Turnbull,, V. Inglis, and, A. L. Guerra-Flores. 1998. Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 163:19.
47. Gomez-Leon, J.,, L. Villamil,, M. L. Lemos,, B. Novoa, and, A. Figueras. 2005. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussa-tus) larvae associated with mass mortalities. Appl. Environ. Microbiol. 71:98104.
48. Gosink, K. K.,, R. Kobayashi,, I. Kawagishi, and, C. C. Hase. 2002. Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae. J. Bacteriol. 184:17671771.
49. Graf, J., and, E. G. Ruby. 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl. Acad. Sci. USA 95:18181822.
50. Grimes, D. J. 1991. Ecology of estuarine bacteria capable of causing human disease: a review. Estuaries 14:345360.
51. Guerinot, M. L., and, R. R. Colwell. 1985. Enumeration, isolation and characterization of N2-fixing bacteria from seawater. Appl. Environ. Microbiol. 50:350355.
52. Guerinot, M. L., and, D. G. Patriquin. 1981. The association of N2-fixing bacteria with sea urchins. Mar. Biol. 62:197207.
53. Guerinot, M. L.,, P. A. West,, J. V. Lee, and, R. R. Colwell. 1982. Vibrio diazotrophicus sp. nov., a marine nitrogen-fixing bacteria. Int. J. Syst. Bacteriol. 32:350357.
54. Hahn, M. W., and, M. G. Hofle. 1998. Grazing pressure by a bac-terivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures. Appl. Environ. Microbiol. 64:19101918.
55. Halpern, M.,, Y. B. Broza,, S. Mittler,, E. Arakawa, and, M. Broza. 2004. Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb. Ecol. 47:341349.
56. Hauksson, J. B.,, O. S. Andresson, and, B. Asgeirsson. 2000. Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enzyme Microb. Technol. 2:6673.
57. Haygood, M. G., and, D. L. Distel. 1993. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio. Nature 363:154156.
58. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter, and, C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477483.
59. Heidelberg, J. F.,, K. B. Heidelberg, and, R. R. Colwell. 2002a. Sea-sonality of Chesapeake Bay bacterioplankton species. Appl. Environ. Microbiol. 68:54885497.
60. Heidelberg, J. F.,, K. B. Heidelberg, and, R. R. Colwell. 2002b. Bacteria of the gamma-subclass Proteobacteria associated with zoo-plankton in Chesapeake Bay. Appl. Environ. Microbiol. 68:54985507.
61. Herbert, R. A. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev. 23:563590.
62. Hood, M. A.,, J. B. Guckert,, D. C. White, and, F. Deck. 1986. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52:788793.
63. Hoppe, H. 2003. Phosphatase activity in the sea. Hydrobiologia 493:187200.
64. Jackson, J. K.,, R. L. Murphree, and, M. L. Tamplin. 1997. Evidence that mortality from Vibrio vulnificus infection results from single strains among heterogeneous populations in shellfish. J. Clin. Microbiol. 35:20982101.
65. Jiang, S. C., and, W. Fu. 2001. Seasonal abundance and distribution of Vibrio cholerae in coastal waters quantified by a 16S-23S intergenic spacer probe. Microb. Ecol. 42:540548.
66. Jiang, X., and, T. J. Chai. 1996. Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62:13001305.
67. Kaneko, T., and, R. R. Colwell. 1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J. Bacteriol. 113:2432.
68. Kaneko, T., and, R. R. Colwell. 1978. Annual cycle of Vibrio parahaemolyticus in Chesapeake Bay. Microb. Ecol. 4:135155.
69. Karl, D.,, A. Michaels,, B. Bergman,, D. G. Capone,, E. J. Carpenter,, R. Letelier,, F. Lipschultz,, H. W. Paerl,, D. Sigman, and, L. J. Stal. 2002. Dinitrogen fixation in the world’s oceans. Biogeochemistry 57/58:4798.
70. Kaspar, C. W., and, M. L. Tamplin. 1993. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl. Environ. Microbiol. 59:24252429.
71. Kaznowski, A., and, K. Wlodarczak. 1991. Enzymatic characterization of Vibrionaceae strains isolated from environment and cold-blooded animals. Acta Microbiol. Pol. 40:7176.
72. Kirchman, D. L.,, B. Meon,, H. W. Ducklow,, C. A. Carlson,, D. A. Hansell, and, G. F. Steward. 2001. Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica. Deep Sea Res. Part II-Topical Studies in Oceanography 48:41794197.
73. Kramer, J. G., and, F. L. Singleton. 1992. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Appl. Environ. Microbiol. 58:201207.
74. La Rosa, T.,, S. Mirto,, A. Marino,, V. Alonzo,, T. L. Maugeri, and, A. Mazzola. 2001. Heterotrophic bacteria community and pollution indicators of mussel-farm impact in the Gulf of Gaeta (Tyrrhenian Sea). Mar. Environ. Res. 52:301321.
75. Larsen, M. H.,, N. Blackburn,, J. L. Larsen, and, J. E. Olsen. 2004. Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology 150:12831290.
76. Lee, K.-H., and, E. G. Ruby. 1994. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60:15651571.
77. Li, X., and, S. Roseman. 2004. The chitinolytic cascade in vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc. Natl. Acad. Sci. USA 101:627631.
78. Linton, J. D.,, D. E. F. Harrison, and, A. T. Bull. 1975. Molar growth yields, respiration and cytochrome patterns of Beneckea natriegens when grown at different medium dissolved-oxygen tensions. J. Gen. Microbiol. 90:237246.
79. Linton, J. D.,, D. E. Harrison, and, A. T. Bull. 1977. Molar growth yields, respiration and cytochrome profiles of Beneckea na-triegens when grown under carbon limitation in a chemostat. Arch. Microbiol. 115:135142.
80. Lobitz, B.,, L. Beck,, A. Huq,, B. Wood,, G. Fuchs,, A. S. G. Faruque, and, R. Colwell. 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. USA 97:14381443.
81. Long, R. A., and, F. Azam. 2001. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67:49754983.
82. Lovell, C. R.,, Y. M. Piceno,, J. M. Quattro, and, C. E. Bagwell. 2000. Molecular analysis of diazotroph diversity in the rhizo-sphere of the smooth cordgrass, Spartina alterniflora. Appl. En viron. Microbiol. 66:38143822.
83. Lunder, T.,, H. Sorum,, G. Holstad,, A. G. Steigerwalt,, P. Mo-winckel, and, D. J. Brenner. 2000. Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with “winter ulcer.” Int. J. Syst. Evol. Microbiol. 50(Pt. 2):427450.
84. Maeda, T.,, Y. Matsuo,, M. Furushita, and, T. Shiba. 2003. Seasonal dynamics in a coastal Vibrio community examined by a rapid clustering method based on 16S rDNA. Fish. Sci. 69:385394.
85. Makino, K.,, K. Oshima,, K. Kurokawa,, K. Yokoyama,, T. Uda,, K. Tagomori,, Y. Iijima,, M. Najima,, M. Nakano,, A. Yamashita,, Y. Kubota,, S. Kimura,, T. Yasunaga,, T. Honda,, H. Shinagawa,, M. Hattori, and, T. Iida. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743749.
86. Martinez, J., and, F. Azam. 1993. Periplasmic aminopeptidase and alkaline-phosphatase activities in a marine bacterium—implications for substrate processing in the sea. Mar. Ecol. Prog. Ser. 92:8997.
87. Martinez, J.,, D. C. Smith,, G. F. Steward, and, F. Azam. 1996. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10:223230.
88. Massana, R.,, C. Pedros-Alio,, E. O. Casamayor, and, J. M. Gasol. 2001. Changes in marine bacterioplankton phylogenetic compo sition during incubations designed to measure biogeochemically significant parameters. Limnol. Oceanogr. 46:11811188.
89. Meon, B., and, D. L. Kirchman. 2001. Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Mar. Chem. 75:185199.
90. Middelboe, M.,, L. Riemann,, G. F. Steward,, V. Hansen, and, O. Nybroe. 2003. Virus-induced transfer of organic carbon between marine bacteria in a model community. Aquat. Microb. Ecol. 33:110.
91. Motes, M. L.,, A. DePaola,, D. W. Cook,, J. E. Veazey,, J. C. Hun-sucker,, W. E. Garthright,, R. J. Blodgett, and, S. J. Chirtel. 1998. Influence of water temperature and salinity on Vibrio vulnificus in northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Appl. Environ. Microbiol. 64:14591465.
92. Mourino-Perez, R. R.,, A. Z. Worden, and, F. Azam. 2003. Growth of Vibrio cholerae O1 in red tide waters off California. Appl. Environ. Microbiol. 69:69236931.
93. Nemecek-Marshall, M.,, C. Wojciechowski,, W. P. Wagner, and, R. Fall. 1999. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism. J. Bacteriol. 181:74937499.
94. Nichols, D. S. 2003. Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol. Lett. 219:17.
95. Nishiguchi, M.,, E. Ruby, and, M. McFall-Ngai. 1998. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid-vibrio symbioses. Appl. Environ. Microbiol. 64:32093213.
96. Nogi, Y.,, N. Masui, and, C. Kato. 1998. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:17.
97. Olson, J. B.,, R. W. Litaker, and, H. W. Paerl. 1999. Ubiquity of heterotrophic diazotrophs in marine microbial mats. Aquat. Microb. Ecol. 19:2936.
98. Orndorff, S. A., and, R. R. Colwell. 1980. Distribution and identification of luminous bacteria from the Sargasso Sea. Appl. Environ. Microbiol. 39:983987.
99. Ovreas, L.,, D. Bourne,, R. A. Sandaa,, E. O. Casamayor,, S. Benlloch,, V. Goddard,, G. Smerdon,, M. Heldal, and, T. F. Thingstad. 2003. Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat. Microb. Ecol. 31:109121.
100. Pernthaler, A.,, J. Pernthaler,, H. Eilers, and, R. Amann. 2001. Growth patterns of two marine isolates: adaptations to substrate patchiness? Appl. Environ. Microbiol. 67:40774083.
101. Pinhassi, J., and, T. Berman. 2003. Differential growth response of colony-forming alpha-and gamma-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appl. Environ. Microbiol. 69:199211.
102. Proctor, L. M., and, R. P. Gunsalus. 2000. Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications. Environ. Microbiol. 2:399406.
103. Radjasa, O. K.,, H. Urakawa,, K. Kita-Tsukamoto, and, K. Ohwada. 2001. Characterization of psychrotrophic bacteria in the surface and deep-sea waters from the northwestern Pacific Ocean based on 16S ribosomal DNA analysis. Mar. Biotechnol. (NY) 3:454462.
104. Raguenes, G.,, R. Christen,, J. Guezennec,, P. Pignet, and, G. Barbier. 1997. Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Bacteriol. 47:989995.
105. Ramaiah, N.,, J. Ravel,, W. L. Straube,, R. T. Hill, and, R. R. Colwell. 2002. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state. J. Appl. Microbiol. 93:108116.
106. Randa, M. A.,, M. F. Polz, and, E. Lim. 2004. Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Appl. Environ. Microbiol. 70:54695476.
107. Reay, D. S.,, D. B. Nedwell,, J. Priddle, and, J. C. Ellis-Evans. 1999. Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Appl. Environ. Microbiol. 65:25772584.
108. Rehnstam, A.-S.,, S. Bäckman,, D. C. Smith,, F. Azam, and, Å. Hagström. 1993. Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiol. Ecol. 102:161166.
109. Riemann, L., and, F. Azam. 2002. Widespread N-acetyl-D-glu-cosamine uptake among pelagic marine bacteria and its ecological implications. Appl. Environ. Microbiol. 68:55545562.
110. Roy, N. K.,, R. K. Ghosh, and, J. Das. 1982. Repression of the alkaline phosphatase of Vibrio cholerae. J. Gen. Microbiol. 128:349353.
111. Ruby, E. G.,, E. P. Greenberg, and, J. W. Hastings. 1980. Planktonic marine luminous bacteria—species distribution in the water column. Appl. Environ. Microbiol. 39:302306.
112. Ruby, E. G., and, K. H. Lee. 1998. The Vibrio fischeri Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64:805812.
113. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lostroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler, and, E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102:30043009.
114. Sakai, Y.,, K. Toda,, Y. Mitani,, M. Tsuda,, S. Shinoda, and, T. Tsuchiya. 1987. Properties of the membrane-bound 5′-nu-cleotidase and utilization of extracellular ATP in Vibrio parahaemolyticus. J. Gen. Microbiol. 133:27512757.
115. Sarker, R. I.,, W. Ogawa,, M. Tsuda,, S. Tanaka, and, T. Tsuchiya. 1994. Characterization of a glucose transport system in Vibrio parahaemolyticus. J. Bacteriol. 176:73787382.
116. Sawabe, T.,, N. Setoguchi,, S. Inoue,, R. Tanaka,, M. Ootsubo,, M. Yoshimizu, and, Y. Ezura. 2003. Acetic acid production of Vibrio halioticoli from alginate: a possible role for establishment of abalone-V. halioticoli association. Aquaculture 219:671679.
117. Sherr, E. B., and, B. F. Sherr. 2002. Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81:293308.
118. Shieh, W. Y.,, Y. T. Lin, and, W. D. Jean. 2004. Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int. J. Syst. Evol. Microbiol. 54:23072312.
119. Simidu, U., and, K. Tsukamoto. 1985. Habitat segregation and biochemical activities of marine members of the family Vibrionaceae. Appl. Environ. Microbiol. 50:781790.
120. Suginta, W.,, P. A. W. Robertson,, B. Austin,, S. C. Fry, and, L. A. Fothergill-Gilmore. 2000. Chitinases from Vibrio: activity screening and purification of chiA from Vibrio carchariae. J. Appl. Microbiol. 89:7684.
121. Thompson, F. L.,, T. Iida, and, J. Swings. 2004. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 68:403431.
122. Thompson, J. R.,, L. A. Marcelino, and, M. F. Polz. 2005a. Diversity, sources, and detection of human bacterial pathogens in the marine environment, p. 2968. In R. Colwell and, S. Belkin (ed.), Oceans and Health: Pathogens in the Marine Environment. ASM Press, Washington, D.C.
123. Thompson, J. R.,, S. Pacocha,, C. Pharino,, V. Klepac-Ceraj,, D. E. Hunt,, J. Benoit,, R. Sarma-Rupavtarm,, D. L. Distel, and, M. F. Polz. 2005b. Genotypic diversity within a natural coastal bacte-rioplankton population. Science 307:13111313.
124. Thompson, J. R.,, M. A. Randa,, L. A. Marcelino,, A. Tomita,, E. L. Lim, and, M. F. Polz. 2004. Diversity and dynamics of a North Atlantic coastal vibrio community. Appl. Environ. Microbiol. 70:41034110.
125. Urakawa, H.,, K. Kita-Tsukamoto, and, K. Ohwada. 1999a. 16S rDNA restriction fragment length polymorphism analysis of psychrotrophic vibrios from Japanese coastal water. Can. J. Microbiol. 45:10011007.
126. Urakawa, H.,, K. Kita-Tsukamoto, and, K. Ohwada. 1999b. Restriction fragment length polymorphism analysis of psychrophilic and psychrotrophic Vibrio and Photobacterium from the northwestern Pacific Ocean and Otsuchi Bay, Japan. Can. J. Microbiol. 45:6776.
127. Urakawa, H.,, T. Yoshida,, M. Nishimura, and, K. Ohwada. 2000. Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environ. Microbiol. 2:542554.
128. Urdaci, M. C.,, L. J. Stal, and, M. Marchand. 1988. Occurrence of nitrogen fixation among Vibrio spp. Arch. Microbiol. 150:224229.
129. Waldor, M. K., and, J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:19101914.
130. WardRainey, N.,, F. A. Rainey, and, E. Stackebrandt. 1996. A study of the bacterial flora associated with Holothuria atra. J. Exp. Mar. Biol. Ecol. 203:1126.
131. Woolkalis, M. J., and, P. Baumann. 1981. Evolution of alkaline phosphatase in marine species of Vibrio. J. Bacteriol. 147:3645.
132. Worden, A. Z.,, M. Seidel,, S. Smriga,, A. Wick,, F. Malfatti,, D. Bartlett, and, F. Azam. 2006. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ. Microbiol. 8:2129.
133. Wright, A. C.,, R. T. Hill,, J. A. Johnson,, M. C. Roghman,, R. R. Colwell, and, J. G. Morris. 1996. Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl. Environ. Microbiol. 62:717724.
134. Yu, C.,, B. L. Bassler, and, S. Roseman. 1993. Chemotaxis of the marine bacterium Vibrio furnissii to sugars—a potential mechanism for initiating the chitin catabolic cascade. J. Biol. Chem. 268:94059409.
135. Zehr, J. P.,, M. T. Mellon, and, S. Zani. 1998. New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl. Environ. Microbiol. 64:34443450.
136. Zehr, J. P., and, B. B. Ward. 1995. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl. Environ. Microbiol. 61:25272532.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error