1887

Chapter 14 : The Light Organ Symbiosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Light Organ Symbiosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap14-2.gif

Abstract:

The light organ symbiosis between the bioluminescent bacterium and the Hawaiian bobtail squid has received increasing interest from researchers representing a range of disciplines, including microbiology, zoology, oceanography, immunology, and genetics. An improved understanding of the factors underlying the natural symbioses can help face problems such as the (re)emergence of diseases with environmental hosts, the effective application of probiotics, overreactions to commensal bacteria by the immune system, and the negative effects of broad-spectrum antibiotics. The light organ is also accessible to experimentally added solutes. Pores connect the outside environment with the site of infection in the light organ, so reagents can be added to cure an infection or monitor biochemical processes at the site of infection. One of the most intriguing colonization factors is bioluminescence. Long considered an energetic drag on cultured cells, luminescence is critical for full colonization of the light organ by . The observation that lipopolysaccharide (LPS) and peptidoglycan monomer (PGM) stimulate developmental processes in a mutualistic animal-bacteria association is notable for at least two reasons. First, the molecules are also recognized by the innate immune systems of animals and often trigger antimicrobial responses. This suggests conserved mechanisms for mutualist and pathogen detection by animals, with host responses being context dependent. Second, the particular PGM molecule shed by is identical to "cytotoxins" of pathogens and , revealing an interesting and unanticipated similarity between mutualistic and pathogenic bacteria-animal associations.

Citation: Stabb E. 2006. The Light Organ Symbiosis, p 204-218. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch14

Key Concept Ranking

Outer Membrane Proteins
0.47715196
Reactive Oxygen Species
0.40378174
0.47715196
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

. An adult female Hawaiian bobtail squid sits on coralline sand near eggs (indicated by white arrows) that she laid on a PVC halfpipe and on the side of her tank. While housed in a 50-liter tank at the University of Georgia, this female produced 1,616 juveniles over a 4.5-month span.

Citation: Stabb E. 2006. The Light Organ Symbiosis, p 204-218. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Proposed counterillumination behavior of . Based on light organ architecture, it is thought that an adult with bioluminescent symbiotic can obscure its silhouette with a controllable, ventrally directed luminescence, whereas an aposymbiotic (lacking symbionts) squid would cast a shadow.

Citation: Stabb E. 2006. The Light Organ Symbiosis, p 204-218. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815714.ch14
1. Aeckersberg, F.,, C. Lupp,, B. Feliciano, and, E. G. Ruby. 2001. Vibrio fischeri outer membrane protein OmpU plays a role in normal symbiotic colonization. J. Bacteriol. 183:65906597.
2. Anderson, R. C., and, J. A. Mather. 1996. Escape responses of Eu-prymna scolopes Berry, 1911 (Cephalopoda: Sepiolidae). J. Moll. Stud. 62:543545.
3. Boettcher, K. J.,, E. G. Ruby, and, M. J. McFall-Ngai. 1996. Bio-luminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179:6573.
4. Bourgois, J.-J.,, F. E. Sluse,, F. Baguet, and, J. Mallefet. 2001. Kinetics of light emission and oxygen consumption by bioluminescent bacteria. J. Bioenerg. Biomembr. 33:353363.
5. Boylan, M.,, C. Miyamoto,, L. Wall,, A. Grahm, and, E. Meighen. 1989. Lux C, D, and E genes of the Vibrio fischeri luminescence operon code for the reductase, transferase, and synthetase enzymes involved in aldehyde biosyntheses. Photochem. Photobiol. 49:681688.
6. Callahan, S. M., and, P. V. Dunlap. 2000. LuxR- and acyl-ho-moserine-lactone-controlled non-lux genes define a quorum sensing regulon in Vibrio fischeri. J. Bacteriol. 182:28112822.
7. Claes, M. F., and, P. V. Dunlap. 2000. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis. J. Exp. Biol. 286:280296.
8. Czyz, A.,, B. Wrobel, and, G. Wegrzyn. 2000. Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146:283288.
9. Czyz, A.,, K. Plata, and, G. Wegrzyn. 2003. Stimulation of DNA repair as an evolutionary drive for bacterial bioluminescence. Luminescence 18:140144.
10. Darveau, R. P.,, M. McFall-Ngai,, E. G. Ruby,, S. Miller, and, D. F. Mangan. 2003. Host tissues may actively respond to beneficial microbes. ASM News 69:186191.
11. Davidson, S. K.,, T. A. Koropatnick,, R. Kossmehl,, L. Sycuro, and, M. J. McFall-Ngai. 2004. No means “yes” in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell. Microbiol. 6:11391151.
12. DeLoney, C. R.,, T. M. Bartley, and, K. L. Visick. 2002. Role for phosphoglucomutase in Vibrio fischeri-Euprymna scolopes symbiosis. J. Bacteriol. 184:51215129.
13. DeLoney-Marino, C. R.,, A. J. Wolfe, and, K. L. Visick. 2003. Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl. Environ. Microbiol. 69:75277530.
14. Doino, J. A., and, M. J. McFall-Ngai. 1995. A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189:347355.
15. Doino, J., and, M. McFall-Ngai. 2000. Alterations in the proteome of the Euyprymna scolopes light organ in response to symbiotic Vibrio fischeri. Appl. Environ. Microbiol. 66:40914097.
16. Dunlap, P. V., and, S. M. Callahan. 1993. Characterization of a periplasmic 3′:5′-cyclic nucleotide phosphodiesterase gene, cpdP, from the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 175:46154624.
17. Dunn, A. K.,, M. O. Martin, and, E. V. Stabb. 2005. Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54:114134.
18. Engebrecht, J.,, K. Nealson, and, M. Silverman. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773781.
19. Feliciano, B. A. 2000. The identification and characterization of a Vibrio fischeri hemagglutination factor. M.S. thesis. University of Hawaii, Honolulu.
20. Fidopiastis, P. M.,, C. Miyamoto,, M. G. Jobling,, E. A. Meighen, and, E. G. Ruby. 2002. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 45:131143.
21. Fidopiastis, P. M.,, S. von Boletzky, and, E. G. Ruby. 1998. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180:5964.
22. Foster, J. S.,, M. A. Apicella, and, M. J. McFall-Ngai. 2000. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226:242254.
23. Foster, J. S., and, M. J. McFall-Ngai. 1998. Induction of apoptosis by cooperative bacteria in the morphogenesis of host epithelial tissues. Dev. Genes Evol. 208:295303.
24. Graf, J.,, P. V. Dunlap, and, E. G. Ruby. 1994. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176:69866991.
25. Graf, J., and, E. G. Ruby. 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl. Acad. Sci. USA 95:18181822.
26. Graf, J., and, E. G. Ruby. 2000. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Mol. Microbiol. 37:168179.
27. Hanlon, R. T.,, M. F. Claes,, S. E. Ashcraft, and, P. V. Dunlap. 1997. Laboratory culture of the sepiolid squid Euprymna scolopes: a model system for bacteria-animal symbiosis. Biol. Bull. 192:364374.
28. Harper, R. D., and, J. F. Case. 1999. Counterillumination and its antipredatory value in the plainfin midshipman fish Porichthys notatus. Mar. Biol. 134:529540.
29. Harvey, E. N. 1952. Bioluminescence. Academic Press, Inc., New York, N.Y.
30. Hastings, J. W., and, K. H. Nealson. 1977. Bacterial bioluminescence. Annu. Rev. Microbiol. 31:549595.
31. Hastings, J. W.,, W. H. Riley, and, J. Massa. 1965. The purification, properties, and chemiluminescent quantum yield of bacterial lu-ciferase. J. Biol. Chem. 240:14731481.
32. Jones, B. W., and, M. K. Nishiguchi. 2004. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144:11511155.
33. Kiers, E. T.,, R. A. Rousseau,, S. A. West, and, R. F. Denison. 2003. Host sanctions and the legume-rhizobium mutualism. Nature 425:7881.
34. Kimbell, J. R., and, M. J. McFall-Ngai. 2003. The squid-Vibrio symbioses: from demes to genes. Integr. Comp. Biol. 43:254260.
35. Kimbell, J. R., and, M. J. McFall-Ngai. 2004. Symbiont-induced changes in host actin during the onset of a beneficial animal-bacterial association. Appl. Environ. Microbiol. 70:14341441.
36. Klose, K. E. 2000. The suckling mouse model of cholera. Trends Microbiol. 8:189191.
37. Kondo, K.,, A. Takade, and, K. Amako. 1994. Morphology of the viable but nonculturable Vibrio cholerae as determined by the freeze fixation technique. FEMS Microbiol. Ecol. 123:179184.
38. Koropatnick, T. A.,, J. T. Engle,, M. A. Apicella,, E. V. Stabb,, W. E. Goldman, and, M. J. McFall-Ngai. 2004. Microbial factor-mediated development in a host-bacterial-mutualism. Science 306:11861188.
39. Lamarcq, L. H., and, M. J. McFall-Ngai. 1998. Induction of a gradual, reversible morphogenesis of its host’s epithelial brush border by Vibrio fischeri. Infect. Immun. 66:777785.
40. Lee, K.-H. 1994. Ecology of Vibrio fischeri, the light organ symbiont of the Hawaiian sepiolid squid Euprymna scolopes. Ph.D. thesis. University of Southern California, Los Angeles.
41. Lee, K.-H., and, E. G. Ruby. 1992. Detection of the light organ symbiont, Vibrio fischeri, in Hawaiian seawater using lux gene probes. Appl. Environ. Microbiol. 58:942947.
42. Lee, K.-H., and, E. G. Ruby. 1994a. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. J. Bacteriol. 176:19851991.
43. Lee, K.-H., and, E. G. Ruby. 1994b. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60:15651571.
44. Lee, K.-H., and, E. G. Ruby. 1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal water. Appl. Environ. Microbiol. 61:278283.
45. Lin, J. K., and, D. C. Hurng. 1985. Thermal conversion of trimethylamine-N-oxide to trimethylamine and dimethylamine in squids. Food Chem. Toxicol. 23:579583.
46. Lin, J. K., and, D. C. Hurng. 1989. Potential of ferrous sulphate and ascorbate on the microbial transformation of endogenous trimethylamine N-oxide to trimethylamine and dimethylamine in squid extracts. Food Chem. Toxicol. 27:613618.
47. Lupp, C., and, E. G. Ruby. 2004. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J. Bacteriol. 186:38733881.
48. Lupp, C.,, M. Urbanowski,, E. P. Greenberg, and, E. G. Ruby. 2003. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50:319331.
49. McCann, J.,, E. V. Stabb,, D. S. Millikan, and, E. G. Ruby. 2003. Population dynamics of Vibrio fischeri during infection of Eu-prymna scolopes. Appl. Environ. Microbiol. 69:59285934.
50. McFall-Ngai, M.,, C. Brennan,, V. Weis, and, L. Lamarcq. 1998. Mannose adhesin-glycan interactions in the Euprymna scolopes-Vibrio fischeri symbiosis, p. 272276. In Y. Le Gal and, H. O. Halvorson (ed.), New Developments in Marine Biotechnology. Plenum Press, New York, N.Y.
51. Meighen, E. A. 1994. Genetics of bacterial bioluminescence. Annu. Rev. Genet. 28:117139.
52. Millikan, D. S., and, E. G. Ruby. 2002. Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl. Environ. Microbiol. 68:25192528.
53. Millikan, D. S., and, E. G. Ruby. 2004. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186:43154325.
54. Montgomery, M., and, M. McFall-Ngai. 1994. Bacterial symbionts induce host organ morphogenesis during early post embryonic development of the squid Euprymna scolopes. Development 120:17191729.
55. Montgomery, M. K., and, M. J. McFall-Ngai. 1995. The inductive role of bacterial symbionts in the morphogenesis of a squid light organ. Am. Zool. 35:372380.
56. Moynihan, M. 1982. Notes on the behavior of Euprymna scolopes (Cephalopoda: Sepiolidae). Behavior 85:2541.
57. Nealson, K. H., and, J. W. Hastings. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43:496518.
58. Nishiguchi, M. K. 2000. Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl. Environ. Microbiol. 66:35503555.
59. Nishiguchi, M. K. 2002. Host-symbiont recognition in the environmentally transmitted sepiolid squid-Vibrio mutualism. Microb. Ecol. 44:1018.
60. Nishiguchi, M. K.,, J. E. Lopez, and, S. von Boletzky. 2004. Enlightenment of old ideas from new investigations: more questions regarding the evolution of bacteriogenic light organs in squids. Evol. Dev. 6:4149.
61. Nishiguchi, M. K.,, E. G. Ruby, and, M. J. McFall-Ngai. 1998. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid-Vibrio symbioses. Appl. Environ. Microbiol. 64:32093213.
62. Nyholm, S. V.,, B. Deplancke,, H. R. Gaskins,, M. A. Apicella, and, M. J. McFall-Ngai. 2002. Roles of Vibrio fischeri and nonsym-biotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68:51135122.
63. Nyholm, S. V., and, M. J. McFall-Ngai. 1998. Sampling the light organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont. Biol. Bull. 195:8997.
64. Nyholm, S. V., and, M. J. McFall-Ngai. 2003. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Eu-prymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69:39323937.
65. Nyholm, S. V., and, M. J. McFall-Ngai. 2004. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2:632642.
66. Nyholm, S. V.,, E. V. Stabb,, E. G. Ruby, and, M. J. McFall-Ngai. 2000. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl. Acad. Sci. USA 97:1023110235.
67. O’Shea, T. M.,, C. R. DeLoney-Marino,, S. Shibata,, S.-I. Aizawa,, A. J. Wolfe, and, K. L. Visick. 2005. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187:20582065.
68. Proctor, L. M., and, R. P. Gunsalus. 2000. Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri, and Photobacterium leiognathi with trimethylamine N-oxide, nitrate, and fumarate: ecological implications. Environ. Microbiol. 2:399406.
69. Robertson, J. D. 1965. Studies on the chemical composition of muscle tissue. III. The mantle muscle of Cephalopod molluscs. J. Exp. Biol. 42:153175.
70. Rocha, E. P. C., and, A. Danchin. 2002. Base composition might result from competition for metabolic resources. Trends Genet. 18:291294.
71. Ruby, E. G. 1996. Lessons from a cooperative bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 50:591624.
72. Ruby, E. G., and, L. M. Asato. 1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159:160167.
73. Ruby, E. G., and, K.-H. Lee. 1998. The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64:805812.
74. Ruby, E. G., and, M. J. McFall-Ngai. 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:14911494.
75. Ruby, E. G., and, K. H. Nealson. 1976. Symbiotic association of Photobacterium fischeri with the marine luminous fish Mono-centris japonica: a model of symbiosis based on bacterial studies. Biol. Bull. 151:574586.
76. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lohstroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler, and, E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102:30043009.
77. Shears, J. S. 1988. The use of a sand-coat in relation to feeding and diel activity in the sepiolid squid Euprymna scolopes. Malacolo-gia 29:121133.
78. Singley, C. T. 1983. Euprymna scolopes. In P. R. Boyle (ed.), Cephalopod Life Cycles. Academic Press, Inc., London, England.
79. Small, A. L., and, M. J. McFall-Ngai. 1999. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes. J. Cell. Biochem. 72:445457.
80. Stabb, E. V. 2005. Shedding light on the bioluminescence “paradox.” ASM News 71:223229.
81. Stabb, E. V.,, M. S. Butler, and, D. M. Adin. 2004. Correlation between osmolarity and luminescence of symbiotic Vibrio fischeri strain ES114. J. Bacteriol. 186:29062908.
82. Stabb, E. V., and, E. G. Ruby. 2003. Contribution of pilA to competitive colonization of Euprymna scolopes by Vibrio fischeri. Appl. Environ. Microbiol. 69:820826.
83. Timmins, G. S.,, S. K. Jackson, and, H. M. Swartz. 2001. The evolution of bioluminescent oxygen consumption as an ancient oxygen detoxification mechanism. J. Mol. Evol. 52:321332.
84. Tu, S.-C., and, H. I. X. Mager. 1995. Biochemistry of bacterial bioluminescence. Photochem. Photobiol. 62:615624.
85. Visick, K. L.,, J. Foster,, J. Doino,, M. McFall-Ngai, and, E. G. Ruby. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182:45784586.
86. Visick, K. L., and, E. G. Ruby. 1998. The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and approach to stationary phase. J. Bacteriol. 180:20872092.
87. Visick, K. L., and, M. J. McFall-Ngai. 2000. An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. J. Bacteriol. 182:17791787.
88. Visick, K. L., and, L. M. Skoufos. 2001. A two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183:835842.
89. Wei, S. L., and, R. E. Young. 1989. Development of symbiotic bacterial bioluminescence in a nearshore cephalopod, Euprymna scolopes. Mar. Biol. 103:541546.
90. Weis, V. M.,, A. L. Small, and, M. J. McFall-Ngai. 1996. A peroxi-dase related to the mammalian antimicrobial protein myeloper-oxidase in the Euprymna-Vibrio mutualism. Proc. Natl. Acad. Sci. USA 93:1368313688.
91. Whistler, C. A., and, E. G. Ruby. 2003. GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host. J. Bacteriol. 185:72027212.
92. Wolfe, A. J.,, D. S. Millikan,, J. M. Campbell, and, K. L. Visick. 2004. Vibrio fischeri sigma 54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70:25202524.
93. Yancey, P. H.,, M. E. Clark,, S. C. Hand,, R. D. Bowlus, and, G. N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science 217:12141222.
94. Young, G. M.,, D. H. Schmiel, and, V. L. Miller. 1999. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96:64566461.

Tables

Generic image for table
TABLE 1

Varied roles for peptidoglycan monomer

Citation: Stabb E. 2006. The Light Organ Symbiosis, p 204-218. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error