1887

Chapter 15 : The Mutual Partnership between and Abalones

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Mutual Partnership between and Abalones, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap15-2.gif

Abstract:

The abundance and diversity of and related species in the gut of abalones, and the possible mutual partnership of vibrios in the abalone gut microbial ecosystem, have now been clearly demonstrated. The major habitat of the abalones is the rocky shore with kelp forests >50 m depth. The major food source for the South African abalone is brown algae, i.e., . It is interesting that most of the nonflagellated vibrios are found in the gut of abalones. Species-specific detection methods are available for , , and . In situ PCR specific to an alginate lyase gene of was capable of discriminating between and related vibrios. The best system for settlement and growth involved use of trail mucus plus diatoms. This led to 97.3% settlement and 70% survival during the 4 weeks of the experiment. Finally, it was apparent that the abalone larvae normally grew up to 1.4 mm in length. Host abalones start ingesting seaweed, preferring brown algae, and this is accompanied by development of the host digestive system. It is reasoned that sustainable nutrient supplies for and/or other gut microbes lead to stable microbial ecosystem in the gut of abalones. The nonmotile vibrios could then be available for future entry into and colonization of the abalone gut. Volatile short-chained fatty acids (VSCFAs) are available to the host animal as fermentation products converted from energy-rich carbohydrates.

Citation: Sawabe T. 2006. The Mutual Partnership between and Abalones, p 219-230. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch15

Key Concept Ranking

Scanning Electron Microscope
0.47823134
16s rRNA Sequencing
0.4599794
Human Commensal Bacteria
0.42265937
Cell Wall Components
0.41574448
0.47823134
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Sectioned view of abalone. The bending stomach consists of the crop and stomach. Bar, 3 mm. The picture is reproduced from Bevelander (1988) with permission of the publisher.

Citation: Sawabe T. 2006. The Mutual Partnership between and Abalones, p 219-230. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Morphology of IAM14596. Negatively stained images of cells cultured in marine broth (A) and broth containing 0.5% (wt/vol) sodium alginate (B). (C) The DAPI (4′,6′-diamidino-2-phenylindole)-stained cells are attached to a seawater-derived alginate gel matrix; the scanning electron microscope image is also shown (D). Parts of panels A, B, and D are reproduced from Sawabe et al. (1998) with permission of the publisher.

Citation: Sawabe T. 2006. The Mutual Partnership between and Abalones, p 219-230. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The likely ecophysiology of in terms of the abalone life cycle.

Citation: Sawabe T. 2006. The Mutual Partnership between and Abalones, p 219-230. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Reconciled tree of –abalone symbiosis. Each phylogenetic tree was constructed by the maximum likelihood method based on and ITS genes for symbiotic and host, respectively. Maximum likelihood trees were compared with the TreeMap program ( ). The reconciled tree estimated cospeciation (closed circle), duplication (open square), and a sorting event (short branch plus sword mark).

Citation: Sawabe T. 2006. The Mutual Partnership between and Abalones, p 219-230. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815714.ch15
1. Ashen, J. B., and, L. J. Goff. 2000. Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Appl. Environ. Microbiol. 66:30243030.
2. Bäckhed, F.,, H. Ding,, T. Wang,, L. V. Hooper,, G. Y. Koh,, A. Nagy,, C. F. Semenkovich, and, J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101:1571815723.
3. Baumann, P., and, R. H. W. Schubert. 1984. Vibrionaceae, p. 516550. In N. R. Krieg and, J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 1. Lippincott Williams & Wilkins, Baltimore, Md.
4. Bevelander, G. 1988. Abalone, Gross and Fine Structure. Boxwood Press, Pacific Grove, Calif.
5. Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol. 36:323343.
6. Coleman, A. W., and, V. D. Vacquier. 2002. Exploring the phylo-genetic utility of ITS sequences for animals: a test case for abalone (haliotis). J. Mol. Evol. 54:246257.
7. Colwell, R. R., and, J. Liston. 1960. Microbiology of shellfish. Bacteriological study of the natural flora of Pacific oyster (Cras-sostrea gigas). Appl. Microbiol. 8:104109.
8. Colwell, R. R., and, J. Liston. 1962. The natural bacterial flora of certain marine invertebrate. J. Insect Pathol. 4:2333.
9. Colwell, R. R.,, J. Kaper, and, S. W. Joseph. 1977. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394396.
10. Colwell, R. R. 1984. Vibrios in the environment, p. 112. In R. R. Colwell (ed.), Vibrios in the Environment. John Wiley & Sons, New York, N.Y.
11. Dolan, M. F. 2001. Speciation of termite gut protests: the role of bacterial symbionts. Int. Microbiol. 4:203208.
12. Erasmus, J. H.,, P. A. Cook, and, V. E. Coyne. 1997. The role of bacteria in the digestion of seaweed by the abalone Haliotis mi-dae. Aquaculture 155:377386.
13. Falk, P. G.,, L. V. Hooper,, T. Midtvedt, and, J. I. Gordon. 1998. Creating and maintaining the gastrointestinal ecology: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62:11571170.
14. Farmer, J. J., III, and, F. W. Hickman-Brenner. 1999. The genera Vibrio and Photobacterium. In M. Dworkin et al. (ed.), The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.0. Springer-Verlag, New York, N.Y. http://link.springer-ny.com/link/service/books/10125/.
15. Fleming, A. E., and, P. W. Hone. 1996. Abalone aquaculture. Aquaculture 140:14.
16. Gacesa, P. 1988. Alginates. Carbohydr. Polymer 8:161182.
17. García-Carreño, F. L.,, M. A. Navarrete del Toro,, E. Serviere-Zaragoza. 2003. Digestive enzymes in juvenile green abalone, Haliotis fulgens, fed natural food. Comp. Biochem. Physiol. 134:143150.
18. Geiger, D. L., and, L. T. Groves. 1999. Review of fossil abalone (Gastropoda: Vetigastropoda: Haliotidae) with comparison to recent species. J. Paleont. 73:872885.
19. Gros, O.,, A. Darrasse,, P. Durand,, L. Frenkiel, and, M. Mouza. 1996. Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical Lucinid bivalve Codakia or-bicularis. Appl. Environ. Microbiol. 62:23242330.
20. Hafner, M. S., and, S. A. Nadler. 1988. Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332:258259.
21. Harris, J. M. 1993. The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb. Ecol. 25:195231.
22. Harris, J. O.,, C. M. Burke, and, G. B. Maguire. 1998. Characterization of the digestive tract of greenlip abalone, Haliotis laevigata Donovan. II. Microenvironment and bacterial flora. J. Shellfish Res. 17:989994.
23. Hayashi, K.,, J. Moriwaki,, T. Sawabe,, F. L. Thompson,, J. Swings,, N. Gudkovs,, R. Christen, and, Y. Ezura. 2003. Vibrio superstes sp. nov., isolated from the gut of Australian abalones Haliotis laevigata and Haliotis rubra. Int. J. Syst. Evol. Microbiol. 53:18131817.
24. Heyraud, A.,, R. Colin-Morel,, S. Girond,, C. Richard, and, B. Kloareg. 1996. HPLC analysis of saturated or unsaturated oligogu-luronates and oligomannuronates. Application to the determination of the action pattern of Haliotis tuberculata alginate lyase. Carbohydr. Res. 291:115126.
25. Hooper, L. V. 2004. Bacterial contributions to mammalian gut development. Trends Microbiol. 12:129134.
26. Hooper, L. V., and, J. I. Gordon. 2001. Commensal host-bacterial relationships in the gut. Science 292:11151118.
27. Hooper, L. V.,, T. Midtvedt, and, J. I. Gordon. 2002. How host-microbial interactions share the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22:283307.
28. Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press, Inc., New York, N.Y.
29. Ino, T. 1952. Biological studies on the propagation of the Japanese abalone (genus Haliotis). Bull. Tokai Reg. Fish Res. Lab. 5:1101.
30. Kaneko, T., and, R. R. Colwell. 1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J. Bacteriol. 113:2432.
31. Kaneko, T., and, R. R. Colwell. 1974. Distribution of Vibrio parahaemolyticus and related organisms in the Atlantic Ocean off South Carolina and Georgia. Appl. Microbiol. 28:10091017.
32. Kaneko, T., and, R. R. Colwell. 1975a. Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Appl. Microbiol. 29:296274.
33. Kaneko, T., and, R. R. Colwell. 1975b. Incidence of Vibrio parahaemolyticus in Chesapeake Bay. Appl. Microbiol. 30:251257.
34. Kloareg, B., and, R. S. Quatrano. 1988. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 26:259315.
35. Kohn, A. J. 1983. Feeding biology of gastropods, p. 163. In A. S. M. Saleuddin and, K. M. Wilbur (ed.), The Mollusca, vol. 5. Academic Press, Inc., New York, N.Y.
36. Lee, K.-H., and, E. G. Ruby. 1994. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60:15651571.
37. Lee, Y.-H., and, V. D. Vacquier. 1995. Evolution and systematics in Haliotidae (Mollusca: Gastropoda): inferences from DNA sequences of sperm lysine. Mar. Biol. 124:267278.
38. Leighton, D. L., and, R. A. Boolootian. 1963. Diet and growth in the black abalone Haliotis cracherodii. Ecology 44:227238.
39. MacFall-Ngai, M. J., and, E. G. Ruby. 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:14911494.
40. Millikan, D. S.,, H. Felbeck, and, J. L. Stein. 1999. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl. Environ. Microbiol. 65:31293133.
41. Nakada, H. I., and, P. C. Sweeny. 1967. Alginic acid degradation by eliminases from abalone hepatopancreas. J. Biol. Chem. 242:845851.
42. Nierman, W. C., and, C. M. Fraser. 2004. The power in comparisons. Trends Microbiol. 12:6263.
43. Nishiguchi, M. K.,, E. G. Ruby, and, M. J. McFall-Ngai. 1998. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid-Vibrio symbioses. Appl. Environ. Microbiol. 64:32093213.
44. Nyholm, S. V.,, E. V. Stabb,, E. G. Ruby, and, M. J. McFall-Ngai. 2000. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl. Acad. Sci. USA 97:1023110235.
45. Oakes, F. R., and, R. D. Ponte. 1996. The abalone market: opportunities for cultured abalone. Aquaculture 140:187195.
46. Ohkuma, M., and, T. Kudo. 1996. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes spera-tus. Appl. Environ. Microbiol. 62:461468.
47. Page, R. D. M. 1995. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10:155173.
48. Page, R. D. M., and, E. C. Holmes. 1998. Molecular Evolution. Blackwell Scientific Publications, Oxford, England.
49. Parkhill, J.,, M. Sebaihia,, A. Preston, et al. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Borde-tella parapertussis, and Bordetella bronchiseptica. Nat. Genet. 35:3240.
50. Peek, A. S.,, R. A. Feldman,, R. A. Lutz, and, R. C. Vruenhoex. 1998. Cospeciation of chemoautotrophic bacteria and deep sea clam. Proc. Natl. Acad. Sci. USA 95:99629966.
51. Ruby, E. G., and, K.-H. Lee. 1998. The Vibrio-fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64:805812.
52. Russell, J. B., and, J. L. Rychlik. 2001. Factors that alter rumen Microbial ecology. Science 292:11191122.
53. Sawabe, T.,, Y. Oda,, Y. Shiomi, and, Y. Ezura. 1995. Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb. Ecol. 30:192202.
54. Sawabe, T.,, I. Sugimura,, M. Ohtsuka,, K. Nakano,, K. Tajima,, Y. Ezura, and, R. Christen. 1998. Vibrio halioticoli sp. nov., a non-motile alginolytic marine bacterium isolated from the gut of abalone Haliotis discus hannai. Int. J. Syst. Bacteriol. 48:573580.
55. Sawabe, T.,, F. L. Thompson,, J. Heyrman,, M. Cnockaert,, K. Hayashi,, R. Tanaka,, M. Yoshimizu,, B. Hoste,, J. Swings, and, Y. Ezura. 2002. Fluorescent amplified fragment length polymorphism (FAFLP) and repetitive extragenic palindrome (rep)-PCR fingerprinting reveal host specific-genetic diversity of Vibrio halioticoli-like strains isolated from the gut of Japanese abalone. Appl. Environ. Microbiol. 68:41404144.
56. Sawabe, T.,, N. Setoguchi,, S. Inoue,, R. Tanaka,, M. Ootsubo,, M. Yoshimizu, and, Y. Ezura. 2003. Acetic acid production of Vibrio halioticoli from alginate: a possible role for establishment of abalone-Vibrio halioticoli association. Aquaculture 219:671679.
57. Sawabe, T.,, K. Hayashi,, J. Moriwaki,, F. L. Thompson,, J. Swings,, P. Potin,, R. Christen, and, Y. Ezura. 2004a. Vibrio gallicus sp. nov., isolated from the gut of French abalone Haliotis tubercu-lata. Int. J. Syst. Evol. Microbiol. 54:843846.
58. Sawabe, T.,, K. Hayashi,, J. Moriwaki,, Y. Fukui,, F. L. Thompson,, J. Swings, and, R. Christen. 2004b. Vibrio neonatus sp. nov. and Vibrio ezurae sp. nov. isolated from the gut of Japanese abalones. Syst. Appl. Microbiol. 27:527534.
59. Shimizu, E.,, T. Ojima, and, K. Nishita. 2003. cDNA cloning of an alginate lyase from abalone, Haliotis discus hannai. Carbohydr. Res. 338:28412852.
60. Stappenbeck, T. S.,, L. V. Hooper, and, J. I. Gordon. 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 99:1545115455.
61. Stewart, C. S., and, M. P. Bryant. 1988. The rumen bacteria, p. 2175. In P. N. Hodoson (ed.), The Rumen Microbial Ecosystem. Elsevier Applied Science, London, England.
62. Suau, A.,, R. Bonnet,, M. Sutren,, J.-J. Godon,, G. R. Gibson,, M. D. Collins, and, J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65:47994807.
63. Sugimura, I.,, T. Sawabe, and, Y. Ezura. 2000a. Cloning and sequence analysis of Vibrio halioticoli genes encoding three types of polyguluronate lyase. Mar. Biotechnol. 2:6573.
64. Sugimura, I.,, T. Sawabe, and, Y. Ezura. 2000b. In situ PCR visualization of Vibrio halioticoli using alginate lyase gene alyVG2. Mar. Biotechnol. 2:7479.
65. Takami, H.,, T. Kawamura, and, Y. Yamashita. 1997. Survival and growth rates of post-larval abalone Haliotis discus hannai fed conspecific trail mucus and/or benthic diatom Cocconeis scutel-lum var. parva. Aquaculture 152:129138.
66. Takami, H.,, T. Kawamura, and, Y. Yamashita. 1998. Development of polysaccharide degradation activity in postlarval abalone Haliotis discus hannai. J. Shellfish Res. 17:723727.
67. Tanaka, R.,, T. Sawabe,, K. Tajima,, J. Vandenberghe, and, Y. Ezura. 2001. Identification of Vibrio halioticoli using 16S rDNA PCR/ RFLP (restriction fragment length polymorphism) analysis. Fisheries Sci. 67:185187.
68. Tanaka, R.,, M. Ootsubo,, T. Sawabe,, K. Tajima,, J. Vandenberghe, and, Y. Ezura. 2002a. Identification of Vibrio halioticoli by colony hybridization with non-radioisotope labeled genomic DNA probe. Fisheries Sci. 68:227229.
69. Tanaka, R.,, T. Sawabe,, M. Yoshimizu, and, Y. Ezura. 2002b. Distribution of Vibrio halioticoli around an abalone farming center in Japan. Microb. Environ. 17:69.
70. Tanaka, R.,, I. Sugimura,, T. Sawabe,, M. Yoshimizu, and, Y. Ezura. 2003. Gut microflora of abalone Haliotis discuss hannai in cul ture change coincident with a change in diet. Fisheries Sci. 69:949956.
71. Tanaka, R.,, M. Ootsubo,, T. Sawabe,, Y. Ezura, and, K. Tajima. 2004. Biodiversity and in situ abundance of gut microflora of abalone (Haliotis discus hannai) determined by culture-independent techniques. Aquaculture 241:453463.
72. Thompson, F. L.,, T. Iida, and, J. Swings. 2004. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 68:403431.
73. Tsujino, I., and, T. Saito. 1961. Studies on alginase. Part II. A new unsaturated uronide isolated from alginase hydrolysate. Agric. Biol. Chem. 26:115118.
74. Tujino, I. 1962. A new unsaturated uronide isolated from alginase hydrolysate. Nature 192:970971.
75. Visick, K. L., and, M. J. McFall-Ngai. 2000. An exclusive contact: specificity in the Vibrio fischeri-Euprymna scolopes partnership. J. Bacteriol. 182:17791787.
76. Whitford, M. F.,, R. J. Foster,, C. E. Beard,, J. Gong, and, R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153163.
77. Xu, J.,, M. K. Bjursell,, J. Himord,, S. Deng,, L. K. Carmichael,, H. C. Chiang,, L. V. Hooper, and, J. I. Gordon. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:20742076.
78. Xu, J.,, H. C. Chiang,, M. K. Bjursell, and, J. I. Gordon. 2004. Message from a human gut symbiont: sensitivity is a prerequisite for sharing. Trends Microbiol. 12:2128.
79. Yumoto, I.,, H. Iwata,, T. Sawabe,, K. Ueno,, N. Ichise,, H. Matsuyama,, H. Okuyama, and, K. Kawasaki. 1999. Characterization of a facultative psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl. Environ. Microbiol. 65:6772.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error