1887

Chapter 23 : : the Genetics of Pathogenesis and Environmental Persistence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

: the Genetics of Pathogenesis and Environmental Persistence, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap23-2.gif

Abstract:

Cholera is acquired through the consumption of contaminated water or food. After passing through the acid barrier of the stomach, the bacteria penetrate the mucous lining of the small intestine and adhere to intestinal epithelial cells to establish an infection. During colonization of the small intestine, the bacteria begin to express several key virulence factors, including cholera toxin (CT). The action of CT on intestinal epithelial cells is responsible for the massive diarrhea associated with cholera. Key to the ability of to cause disease is the virulence factors that it produces. Extensive research efforts involving innovative techniques have been directed at understanding the mechanisms involved in establishing a successful infection. The two most important virulence factors required for the ability of the organism to cause cholera are the CT and the toxin-coregulated pilus (TCP). The evolution of the pathogenic potential of has clearly occurred through the acquisition of several mobile genetic elements. A number of different genetic techniques have been utilized to identify genes important for virulence. Several in vivo transcriptome studies have also shed light on aspects of pathogenesis. Transcriptome profiling of isolated from human stools using microarray analysis has provided the closest understanding of gene expression relevant to the natural host. Considering the severe global impact of cholera, much effort has been directed at vaccine development.

Citation: Prouty M, Klose K. 2006. : the Genetics of Pathogenesis and Environmental Persistence, p 311-339. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch23

Key Concept Ranking

Infection and Immunity
0.56977737
Mobile Genetic Elements
0.5686479
Type II Secretion System
0.42354634
Upper Gastrointestinal Tract
0.41705027
Transcription Start Site
0.4111071
Type I Secretion System
0.4105541
0.56977737
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

LPS structure of O1 and O139 serogroups of . Reprinted from Reidl and Klose (2002) with permission of Elsevier Science B.V.

Citation: Prouty M, Klose K. 2006. : the Genetics of Pathogenesis and Environmental Persistence, p 311-339. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The regulatory cascade that controls virulence factor expression in Reprinted from with permission of Elsevier Science B. V.

Citation: Prouty M, Klose K. 2006. : the Genetics of Pathogenesis and Environmental Persistence, p 311-339. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815714.ch23
1. Abendroth, J.,, M. Bagdasarian,, M. Sandkvist, and, W. G. Hol. 2004a. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase super-family. J. Mol. Biol. 344:619633.
2. Abendroth, J.,, A. E. Rice,, K. McLuskey,, M. Bagdasarian, and, W. G. Hol. 2004b. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J. Mol. Biol. 338:585596.
3. Ali, A.,, J. A. Johnson,, A. A. Franco,, D. J. Metzger,, T. D. Connell,, J. G. Morris, Jr., and, S. Sozhamannan. 2000. Mutations in the extracellular protein secretion pathway genes (eps) interfere with rugose polysaccharide production in and motility of Vibrio cholerae. Infect. Immun. 68:19671974.
4. Andersen, C. 2003. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of gram-negative bacteria. Rev. Physiol. Biochem. Pharmacol. 147:122165.
5. Angelichio, M. J.,, J. Spector,, M. K. Waldor, and, A. Camilli. 1999. Vibrio cholerae intestinal population dynamics in the suckling mouse model of infection. Infect. Immun. 67:37333739.
6. Angelichio, M. J.,, D. S. Merrell, and, A. Camilli. 2004. Spatiotem-poral analysis of acid adaptation-mediated Vibrio cholerae hy-perinfectivity. Infect. Immun. 72:24052407.
7. Attridge, S. R.,, P. A. Manning,, J. Holmgren, and, G. Jonson. 1996. Relative significance of mannose-sensitive hemagglutinin and toxin-coregulated pili in colonization of infant mice by Vibrio cholerae El Tor. Infect. Immun. 64:33693373.
8. Ausmees, N.,, R. Mayer,, H. Weinhouse,, G. Volman,, D. Amikam,, M. Benziman, and, M. Lindberg. 2001. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol. Lett. 204:163167.
9. Barrett, T. J., and, P. A. Blake. 1981. Epidemiological usefulness of changes in hemolytic activity of Vibrio cholerae biotype El Tor during the seventh pandemic. J. Clin. Microbiol. 13:1261129.
10. Barua, D. 1992. History of Cholera. Plenum Medical Book Company, New York, N.Y.
11. Beaber, J. W.,, V. Burrus,, B. Hochhut, and, M. K. Waldor. 2002a. Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell. Mol. Life Sci. 59:20652070.
12. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2002b. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol. 184:42594269.
13. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:7274.
14. Beck, N. A.,, E. S. Krukonis, and, V. J. DiRita. 2004. TcpH influences virulence gene expression in Vibrio cholerae by inhibiting degradation of the transcription activator TcpP. J. Bacteriol. 186:83098316.
15. Behari, J.,, L. Stagon, and, S. B. Calderwood. 2001. pepA, a gene mediating pH regulation of virulence genes in Vibrio cholerae. J. Bacteriol. 183:178188.
16. Benitez, J. A.,, L. Garcia,, A. Silva,, H. Garcia,, R. Fando,, B. Cedre,, A. Perez,, J. Campos,, B. L. Rodriguez,, J. L. Perez,, T. Valmaseda,, O. Perez,, M. Ramirez,, T. Ledon,, M. D. Jidy,, M. Lastre,, L. Bravo, and, G. Sierra. 1999. Preliminary assessment of the safety and immunogenicity of a new CTXPhi-negative, hemag-glutinin/protease-defective El Tor strain as a cholera vaccine candidate. Infect. Immun. 67:539545.
17. Benz, R.,, E. Maier, and, T. Chakraborty. 1997. Purification of OmpU from Vibrio cholerae classical strain 569B: evidence for the formation of large cation-selective ion-permeable channels by OmpU. Microbiologia 13:321330.
18. Bina, J.,, J. Zhu,, M. Dziejman,, S. Faruque,, S. Calderwood, and, J. Mekalanos. 2003. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl. Acad. Sci. USA 100:28012806.
19. Biskri, L.,, M. Bouvier,, A. M. Guerout,, S. Boisnard, and, D. Mazel. 2005. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J. Bacteriol. 187:17401750.
20. Boardman, B. K., and, K. J. Satchell. 2004. Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly. J. Bacteriol. 186:81378143.
21. Boles, B. R.,, M. Thoendel, and, P. K. Singh. 2004. Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl. Acad. Sc. USA 101:1663016635.
22. Bomchil, N.,, P. Watnick, and, R. Kolter. 2003. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 185:13841390.
23. Booth, B. A.,, M. Boesman-Finkelstein, and, R. A. Finkelstein. 1984. Vibrio cholerae hemagglutinin/protease nicks cholera enterotoxin. Infect. Immun. 45:558560.
24. Boyd, E. F.,, A. J. Heilpern, and, M. K. Waldor. 2000. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae. J. Bacteriol. 182:55305538.
25. Boyd, E. F., and, M. K. Waldor. 1999. Alternative mechanism of cholera toxin acquisition by Vibrio cholerae: generalized trans-duction of CTXPhi by bacteriophage CP-T1. Infect. Immun. 67:58985905.
26. Boyd, E. F., and, M. K. Waldor. 2002. Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. Microbiology 148:16551666.
27. Burrus, V., and, M. K. Waldor. 2003. Control of SXT integration and excision. J. Bacteriol. 185:50455054.
28. Butler, S. M., and, A. Camilli. 2004. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101:50185023.
29. Camilli, A.,, D. T. Beattie, and, J. J. Mekalanos. 1994. Use of genetic recombination as a reporter of gene expression. Proc. Natl. Acad. Sci. USA 91:26342638.
30. Camilli, A., and, J. J. Mekalanos. 1995. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18:671683.
31. Carroll, P. A.,, K. T. Tashima,, M. B. Rogers,, V. J. DiRita, and, S. B. Calderwood. 1997. Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol. Microbiol. 25:10991111.
32. Casper-Lindley, C., and, F. H. Yildiz. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 186:15741578.
33. Chakrabarti, S. R.,, K. Chaudhuri,, K. Sen, and, J. Das. 1996. Porins of Vibrio cholerae: purification and characterization of OmpU. J. Bacteriol. 178:524530.
34. Champion, G. A.,, M. N. Neely,, M. A. Brennan, and, V. J. DiRita. 1997. A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Mol. Microbiol. 23:323331.
35. Chiang, S. L., and, J. J. Mekalanos. 2000. Construction of a Vibrio cholerae vaccine candidate using transposon delivery and FLP recombinase-mediated excision. Infect. Immun. 68:63916397.
36. Chiang, S. L., and, J. J. Mekalanos. 1999. rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect. Immun. 67:976980.
37. Chiang, S. L., and, J. J. Mekalanos. 1998. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27:797805.
38. Chiang, S. L.,, J. J. Mekalanos, and, D. W. Holden. 1999. In vivo genetic analysis of bacterial virulence. Annu. Rev. Microbiol. 53:129154.
39. Chiavelli, D. A.,, J. W. Marsh, and, R. K. Taylor. 2001. The man-nose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 67:32203225.
40. Clark, C. A.,, L. Purins,, P. Kaewrakon,, T. Focareta, and, P. A. Manning. 2000. The Vibrio cholerae O1 chromosomal integron. Microbiology 146:26052612.
41. Clemens, J. D.,, D. A. Sack,, J. R. Harris,, J. Chakraborty,, M. R. Khan,, S. Huda,, F. Ahmed,, J. Gomes,, M. R. Rao,, A. M. Svennerholm, et al. 1989. ABO blood groups and cholera: new observations on specificity of risk and modification of vaccine efficacy. J. Infect. Dis. 159:770773.
42. Clemens, J. D.,, D. A. Sack,, J. R. Harris,, J. Chakraborty,, M. R. Khan,, B. F. Stanton,, B. A. Kay,, M. U. Khan,, M. Yunus,, W. Atkinson, et al. 1986. Field trial of oral cholera vaccines in Bangladesh. Lancet ii:124127.
43. Coelho, A.,, J. R. Andrade,, A. C. Vicente, and, V. J. Dirita. 2000. Cytotoxic cell vacuolating activity from Vibrio cholerae he-molysin. Infect. Immun. 68:17001705.
44. Colwell, R., and, W. M. Spira. 1992. The ecology of Vibrio cholerae, p. 107127. In D. Barua and, W. B. Greennough III (ed.), Cholera. Plenum Press, New York, N.Y.
45. Colwell, R. R. 1996. Global climate and infectious disease: the cholera paradigm. Science 274:20252031.
46. Colwell, R. R.,, A. Huq,, M. S. Islam,, K. M. Aziz,, M. Yunus,, N. H. Khan,, A. Mahmud,, R. B. Sack,, G. B. Nair,, J. Chakraborty,, D. A. Sack, and, E. Russek-Cohen. 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl. Acad. Sci. USA 100:10511055.
47. Colwell, R. R.,, J. Kaper, and, S. W. Joseph. 1977. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394396.
48. Comstock, L. E.,, J. A. Johnson,, J. M. Michalski,, J. G. Morris, Jr., and, J. B. Kaper. 1996. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae O1. Mol. Microbiol. 19:815826.
49. Connell, T. D.,, D. J. Metzger,, J. Lynch, and, J. P. Folster. 1998. En-dochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of Vibrio cholerae. J. Bacteriol. 180:55915600.
50. Cook, W. L.,, K. Wachsmuth,, S. R. Johnson,, K. A. Birkness, and, A. R. Samadi. 1984. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1. Infect. Immun 45:222226.
51. Correa, N. E.,, C. M. Lauriano,, R. McGee, and, K. E. Klose. 2000. Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization. Mol. Microbiol. 35:743755.
52. Coster, T. S.,, K. P. Killeen,, M. K. Waldor,, D. T. Beattie,, D. R. Spriggs,, J. R. Kenner,, A. Trofa,, J. C. Sadoff,, J. J. Mekalanos, and, D. N. Taylor. 1995. Safety, immunogenicity, and efficacy of live attenuated Vibrio cholerae O139 vaccine prototype. Lancet 345:949952.
53. Cryz, S. J., Jr.,, J. Kaper,, C. Tacket,, J. Nataro, and, M. M. Levine. 1995. Vibrio cholerae CVD103-HgR live oral attenuated vaccine: construction, safety, immunogenicity, excretion and non-target effects. Dev. Biol. Stand. 84:237244.
54. Cryz, S. J., Jr.,, M. M. Levine,, J. B. Kaper,, E. Furer, and, B. Althaus. 1990. Randomized double-blind placebo controlled trial to evaluate the safety and immunogenicity of the live oral cholera vaccine strain CVD 103-HgR in Swiss adults. Vaccine 8:577580.
55. Davey, M. E., and, A. O’Toole G. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64:847867.
56. Davis, B. M.,, H. H. Kimsey,, A. V. Kane, and, M. K. Waldor. 2002. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 21:42404249.
57. Davis, B. M.,, E. H. Lawson,, M. Sandkvist,, A. Ali,, S. Sozhaman-nan, and, M. K. Waldor. 2000a. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi. Science 288:333335.
58. Davis, B. M.,, K. E. Moyer,, E. F. Boyd, and, M. K. Waldor. 2000b. CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J. Bacteriol. 182:69926998.
59. Davis, B. M., and, M. K. Waldor. 2000. CTXphi contains a hybrid genome derived from tandemly integrated elements. Proc. Natl. Acad. Sci. USA 97:85728577.
60. De, S. N., and, D. N. Chatterje. 1953. An experimental study of the mechanism of action of Vibriod cholerae on the intestinal mucous membrane. J. Pathol. Bacteriol. 66:559562.
61. de Jonge, H. R. 1991. Intracellular mechanisms regulating intestinal secretion, p. 107114. In T. M. Wadstrom,, P. H. Makela,, A. M. Svennerholm, and, H. Wolf-Waltz (ed.), Molecular Pathogenesis of Gastrointestinal Infections. Plenum Press, New York, N.Y.
62. Dickinson, B. L., and, W. I. Lencer. 2003. Transcytosis of bacterial toxins across mucosal barriers, p. 173186. In D. L. Burns,, J. T. Barbieri,, B. H. Iglewski, and, R. Rappouli (ed.), Bacterial Protein Toxins. ASM Press, Washington, D.C.
63. Ding, Y.,, B. M. Davis, and, M. K. Waldor. 2004. Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol. Microbiol. 53:345354.
64. DiRita, V. J., and, J. J. Mekalanos. 1991. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 64:2937.
65. DiRita, V. J.,, C. Parsot,, G. Jander, and, J. J. Mekalanos. 1991. Regulatory cascade controls virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 88:54035407.
66. Dutta, N. K., and, M. K. Habbu. 1955. Experimental cholera in infant rabbits: a method for chemotherapeutic investigation. Br. J. Pharmacol. 10:153159.
67. Dziejman, M.,, E. Balon,, D. Boyd,, C. M. Fraser,, J. F. Heidelberg, and, J. J. Mekalanos. 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99:15561561.
68. Epstein, P. 1993. Algal blooms in the spread and persistence of cholera. Biosystems 31:209221.
69. Everiss, K. D.,, K. J. Hughes, and, K. M. Peterson. 1994. The accessory colonization factor and toxin-coregulated pilus gene clusters are physically linked on the Vibrio cholerae 0395 chromosome. DNA Seq. 5:5155.
70. Faruque, S. M.,, M. J. Albert, and, J. J. Mekalanos. 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 62:13011314.
71. Faruque, S. M.,, N. Chowdhury,, M. Kamruzzaman,, M. Dziejman,, M. H. Rahman,, D. A. Sack,, G. B. Nair, and, J. J. Mekalanos. 2004. Genetic diversity and virulence potential of environmental Vibrio cholerae population in a choleraendemic area. Proc. Natl. Acad. Sci. USA 101:21232128.
72. Faruque, S. M.,, J. Zhu,, Asadulghani,, M. Kamruzzaman, and, J. J. Mekalanos. 2003. Examination of diverse toxin-coregulated pilus-positive Vibrio cholerae strains fails to demonstrate evidence for Vibrio pathogenicity island phage. Infect. Immun. 71:29932999.
73. Feeley, J. C. 1965. Classification of Vibrio cholerae (Vibrio comma), including El Tor vibrios, by infrasubspecific characteristics. J. Bacteriol. 89:665670.
74. Field, M.,, D. Fromm,, C. K. Wallace, and, W. B. Greenough. 1969. Stimulation of active chloride secretion in small intestine by cholera exotoxin. J. Clin. Invest. 48:24a.
75. Figueroa-Arredondo, P.,, J. E. Heuser,, N. S. Akopyants,, J. H. Morisaki,, S. Giono-Cerezo,, F. Enriquez-Rincon, and, D. E. Berg. 2001. Cell vacuolation caused by Vibrio cholerae hemolysin. Infect. Immun. 69:16131624.
76. Finkelstein, R. A. 1995. Why do we not yet have a suitable vaccine against cholera? Adv. Exp. Med. Biol. 371B:16331640.
77. Finkelstein, R. A.,, M. Boesman-Finkelstein,, Y. Chang, and, C. C. Hase. 1992. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect. Immun. 60:472478.
78. Finkelstein, R. A., and, J. J. LoSpalluto. 1969. Pathogenesis of experimental cholera: preparation and isolation of choleragen and choleragenoid. J. Exp. Med. 130:185202.
79. Finkelstein, R. A., and, S. Mukerjee. 1963. Hemagglutination: a rapid method for differentiating Vibrio cholerae and El Tor vibrios. Proc. Soc. Exp. Biol. Med. 112:355359.
80. Freeman, J. A., and, B. L. Bassler. 1999. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J. Bacteriol. 181:899906.
81. Freter, R., and, P. C. O’Brien. 1981a. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: chemotactic responses of Vibrio cholerae and description of motile nonchemotactic mutants. Infect. Immun. 34:215221.
82. Freter, R., and, P. C. O’Brien. 1981b. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect. Immun. 34:222233.
83. Freter, R.,, P. C. O’Brien, and, M. S. Macsai. 1979. Effect of chemotaxis on the interaction of cholera vibrios with intestinal mu-cosa. Am. J. Clin. Nutr. 32:128132.
84. Freter, R.,, P. C. O’Brien, and, M. S. Macsai. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect. Immun. 34:234240.
85. Fullner, K. J.,, J. C. Boucher,, M. A. Hanes,, G. K. Haines, 3rd,, B. M. Meehan,, C. Walchle,, P. J. Sansonetti, and, J. J. Mekalanos. 2002. The contribution of accessory toxins of Vibrio cholerae O1 El Tor to the proinflammatory response in a murine pulmonary cholera model. J. Exp. Med. 195:14551462.
86. Fullner, K. J.,, W. I. Lencer, and, J. J. Mekalanos. 2001. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect. Immun. 69:63106317.
87. Fullner, K. J., and, J. J. Mekalanos. 1999. Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect. Immun. 67:13931404.
88. Fullner, K. J., and, J. J. Mekalanos. 2000. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J. 19:53155323.
89. Garay, E.,, A. Arnau, and, C. Amaro. 1985. Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle. Appl. Environ. Microbiol. 50:426430.
90. Gardel, C. L., and, J. J. Mekalanos. 1996. Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect. Immun. 64:22462255.
91. Gardel, C. L., and, J. J. Mekalanos. 1994. Regulation of cholera toxin by temperature, pH, and osmolarity. Methods Enzymol. 235:517526.
92. Gill, D. M. 1976. The arrangement of subunits in cholera toxin. Biochemistry 15:12421248.
93. Gill, D. M., and, C. A. King. 1975. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J. Biol. Chem. 250:64246432.
94. Gill, D. M., and, R. S. Rappaport. 1979. Origin of the enzymatically active A1 fragment of cholera toxin. J. Infect. Dis. 139:674680.
95. Guidolin, A., and, P. A. Manning. 1985. Bacteriophage CP-T1 of Vibrio cholerae. Identification of the cell surface receptor. Eur. J. Biochem. 153:8994.
96. Guidolin, A.,, G. Morelli,, M. Kamke, and, P. A. Manning. 1984. Vibrio cholerae bacteriophage CP-T1: characterization of bacte-riophage DNA and restriction analysis. J. Virol. 51:163169.
97. Gupta, S., and, R. Chowdhury. 1997. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. Immun. 65:11311134.
98. Hall, R. M., and, H. W. Stokes. 1993. Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica 90:115132.
99. Hammer, B. K., and, B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50:101104.
100. Handfield, M.,, L. J. Brady,, A. Progulske-Fox, and, J. D. Hillman. 2000. IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol. 8:336339.
101. Hang, L.,, M. John,, M. Asaduzzaman,, E. A. Bridges,, C. Vander-spurt,, T. J. Kirn,, R. K. Taylor,, J. D. Hillman,, A. Progulske-Fox,, M. Handfield,, E. T. Ryan, and, S. B. Calderwood. 2003. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100:85088513.
102. Hasan, J. A.,, D. Bernstein,, A. Huq,, L. Loomis,, M. L. Tamplin, and, R. R. Colwell. 1994. Cholera DFA: an improved direct fluorescent monoclonal antibody staining kit for rapid detection and enumeration of Vibrio cholerae O1. FEMS Microbiol. Lett. 120:143148.
103. Hase, C. C.,, M. E. Bauer, and, R. A. Finkelstein. 1994. Genetic characterization of mannose-sensitive hemagglutinin (MSHA)-negative mutants of Vibrio cholerae derived by Tn5 mutagenesis. Gene 150:1725.
104. Hase, C. C., and, R. A. Finkelstein. 1991. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J. Bacteriol. 173:33113317.
105. Hase, C. C., and, R. A. Finkelstein. 1990. Comparison of the Vibrio cholerae hemagglutinin/protease and the Pseudomonas aeruginosa elastase. Infect. Immun. 58:40114015.
106. Hase, C. C., and, J. J. Mekalanos. 1998. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 95:730734.
107. Haugo, A. J., and, P. I. Watnick. 2002. Vibrio cholerae CytR is a repressor of biofilm development. Mol. Microbiol. 45:471483.
108. Hava, D. L., and, A. Camilli. 2001. Isolation and characterization of a temperature-sensitive generalized transducing bacterio-phage for Vibrio cholerae. J. Microbiol. Methods 46:217225.
109. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter, and, C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477483.
110. Heilpern, A. J., and, M. K. Waldor. 2000. CTXphi infection of Vibrio cholerae requires the tolQRA gene products. J. Bacteriol. 182:17391747.
111. Heilpern, A. J., and, M. K. Waldor. 2003. pIIICTX, a predicted CTX-phi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J. Bacteriol. 185:10371044.
112. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton, and, D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
113. Herrington, D. A.,, R. H. Hall,, G. Losonsky,, J. J. Mekalanos,, R. K. Taylor, and, M. M. Levine. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168:14871492.
114. Higa, N.,, Y. Honma,, M. J. Albert, and, M. Iwanaga. 1993. Characterization of Vibrio cholerae O139 synonym Bengal isolated from patients with cholera-like disease in Bangladesh. Microbiol. Immunol. 37:971974.
115. Higgins, D. E.,, E. Nazareno, and, V. J. DiRita. 1992. The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J. Bacteriol. 174:69746980.
116. Hirst, T. R., and, J. Holmgren. 1987a. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc. Natl. Acad. Sci. USA 84:74187422.
117. Hirst, T. R., and, J. Holmgren. 1987b. Transient entry of enterotoxin subunits into the periplasm occurs during their secretion from Vibrio cholerae. J. Bacteriol. 169:10371045.
118. Hochhut, B.,, Y. Lotfi,, D. Mazel,, S. M. Faruque,, R. Woodgate, and, M. K. Waldor. 2001. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45:29913000.
119. Hornick, R. B.,, S. I. Music,, R. Wenzel,, R. Cash,, J. P. Libonati,, M. J. Snyder, and, T. E. Woodward. 1971. The Broad Street pump revisited: response of volunteers to ingested cholera vibrios. Bull. N. Y. Acad. Med. 47:11811191.
120. Huber, K. E., and, M. K. Waldor. 2002. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417:656659.
121. Hung, D. T., and, J. J. Mekalanos. 2005. Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proc. Natl. Acad. Sci. USA 102:30283033. (First published 7 February 2005; 10.1073/pnas.0409559102.)
122. Huq, A.,, R. R. Colwell,, R. Rahman,, A. Ali,, M. A. Chowdhury,, S. Parveen,, D. A. Sack, and, E. Russek-Cohen. 1990. Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl. Environ. Microbiol. 56:23702373.
123. Ichinose, Y.,, K. Yamamoto,, N. Nakasone,, M. J. Tanabe,, T. Takeda,, T. Miwatani, and, M. Iwanaga. 1987. Enterotoxicity of El Tor-like hemolysin of non-O1 Vibrio cholerae. Infect. Immun. 55:10901093.
124. International Centre for Diarrhoeal Diseases Research. 1993. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Cholera Working Group, International Centre for Diarrhoeal Diseases Research, Bangladesh. Lancet 342:387390.
125. Iredell, J. R.,, U. H. Stroeher,, H. M. Ward, and, P. A. Manning. 1998. Lipopolysaccharide O-antigen expression and the effect of its absence on virulence in rfb mutants of Vibrio cholerae O1. FEMS Immunol. Med. Microbiol. 20:4554.
126. Islam, M. S.,, B. S. Drasar, and, R. B. Sack. 1993. The aquatic environment as a reservoir of Vibrio cholerae: a review. J. Diarrhoeal Dis. Res. 11:197206.
127. Islam, M. S.,, B. S. Drasar, and, R. B. Sack. 1994. The aquatic flora and fauna as reservoirs of Vibrio cholerae: a review. J. Diarrhoeal Dis. Res. 12:8796.
128. Iwanaga, M.,, K. Yamamoto,, N. Higa,, Y. Ichinose,, N. Nakasone, and, M. Tanabe. 1986. Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol. Immunol. 30:10751083.
129. Jobling, M. G., and, R. K. Holmes. 1997. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26:10231034.
130. Jodal, M., and, O. Lungren. 1986. Enterotoxin-induced fluid secretion and the enteric nervous system, p. 278. In J. Holmgren,, A. Lindberg, and, R. Molby (ed.), Development of Vaccines and Drugs against Diarrhea. 11th Nobel Conference, Stockholm, 1985. Studentlitteratur, Lund, Sweden.
131. Johnson, J. A.,, C. A. Salles,, P. Panigrahi,, M. J. Albert,, A. C. Wright,, R. J. Johnson, and, J. G. Morris, Jr. 1994. Vibrio cholerae O139 synonym bengal is closely related to Vibrio cholerae El Tor but has important differences. Infect. Immun. 62:21082110.
132. Jonson, G.,, J. Holmgren, and, A. M. Svennerholm. 1992. Analysis of expression of toxin-coregulated pili in classical and El Tor Vibrio cholerae O1 in vitro and in vivo. Infect. Immun. 60:42784284.
133. Jonson, G.,, M. Lebens, and, J. Holmgren. 1994. Cloning and sequencing of Vibrio cholerae mannose-sensitive haemagglutinin pilin gene: localization of mshA within a cluster of type 4 pilin genes. Mol. Microbiol. 13:109118.
134. Kaper, J. B., and, M. M. Levine. 1981. Cloned cholera enterotoxin genes in study and prevention of cholera. Lancet ii:11621163.
135. Kaper, J. B.,, H. Lockman,, M. M. Baldini, and, M. M. Levine. 1984. Recombinant nontoxinogenic Vibrio cholerae strains as attenuated cholera vaccine candidates. Nature 308:655658.
136. Kaper, J. B.,, J. G. Morris, Jr., and, M. M. Levine. 1995. Cholera. Clin. Microbiol. Rev. 8:4886.
137. Karaolis, D. K.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper, and, P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95:31343139.
138. Karaolis, D. K.,, S. Somara,, D. R. Maneval, Jr.,, J. A. Johnson, and, J. B. Kaper. 1999. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399:375379.
139. Kenne, L.,, B. Lindberg,, P. Unger,, B. Gustafsson, and, T. Holme. 1982. Structural studies of the Vibrio cholerae O-antigen. Carbohydr. Res. 100:341349.
140. Kenner, J. R.,, T. S. Coster,, D. N. Taylor,, A. F. Trofa,, M. Barrera-Oro,, T. Hyman,, J. M. Adams,, D. T. Beattie,, K. P. Killeen,, D. R. Spriggs, et al. 1995. Peru-15, an improved live attenuated oral vaccine candidate for Vibrio cholerae O1. J. Infect. Dis. 172:11261129.
141. Keyhani, N. O., and, S. Roseman. 1999. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta 1473:108122.
142. Kierek, K., and, P. I. Watnick. 2003a. Environmental determinants of Vibrio cholerae biofilm development. Appl. Environ. Microbiol. 69:50795088.
143. Kierek, K., and, P. I. Watnick. 2003b. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+−dependent biofilm development in sea water. Proc. Natl. Acad. Sci. USA 100:1435714362.
144. Kimsey, H. H., and, M. K. Waldor. 1998a. CTXf immunity: application in the development of cholera vaccines. Proc. Natl. Acad. Sci. USA 95:70357039.
145. Kimsey, H. H., and, M. K. Waldor. 1998b. Vibrio cholerae hemag-glutinin/protease inactivates CTXphi. Infect. Immun. 66:40254029.
146. Kimsey, H. H., and, M. K. Waldor. 2004. The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor-operator complexes. J. Biol. Chem. 279:26402647.
147. King, C. A., and, W. E. van Heyningen. 1973. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J. Infect. Dis. 127:639647.
148. Kirn, T. J.,, N. Bose, and, R. K. Taylor. 2003. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol. Microbiol. 49:8192.
149. Kirn, T. J.,, M. J. Lafferty,, C. M. Sandoe, and, R. K. Taylor. 2000. Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol. Microbiol. 35:896910.
150. Klose, K. E. 2000. The suckling mouse model of cholera. Trends Microbiol. 8:189191.
151. Klose, K. E., and, J. J. Mekalanos. 1998. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28:501520.
152. Klose, K. E.,, V. Novick, and, J. J. Mekalanos. 1998. Identification of multiple σ54−dependent transcriptional activators in Vibrio cholerae. J. Bacteriol. 180:52565259.
153. Knirel, Y. A.,, L. Paredes,, P. E. Jansson,, A. Weintraub,, G. Wid-malm, and, M. J. Albert. 1995. Structure of the capsular polysaccharide of Vibrio cholerae O139 synonym Bengal containing D-galactose 4,6-cyclophosphate. Eur. J. Biochem. 232:391396.
154. Knirel, Y. A.,, G. Widmalm,, S. N. Senchenkova,, P. E. Jansson, and, A. Weintraub. 1997. Structural studies on the short-chain lipopolysaccharide of Vibrio cholerae O139 Bengal. Eur. J. Biochem. 247:402410.
155. Koch, R. 1894. An address on cholera and its bacillus. Br. Med. J. 2:453459.
156. Kotloff, K. L.,, S. S. Wasserman,, S. O’Donnell,, G. A. Losonsky,, S. J. Cryz, and, M. M. Levine. 1992. Safety and immunogenicity in North Americans of a single dose of live oral cholera vaccine CVD 103-HgR: results of a randomized, placebo-controlled, double-blind crossover trial. Infect. Immun. 60:44304432.
157. Kovach, M. E.,, M. D. Shaffer, and, K. M. Peterson. 1996. A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiol. 142:21652174.
158. Kovacikova, G.,, W. Lin, and, K. Skorupski. 2004. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Mol. Microbiol. 53:129142.
159. Kovacikova, G., and, K. Skorupski. 2000. Differential activation of the tcpPH promoter by AphB determines biotype specificity of virulence gene expression in Vibrio cholerae. J. Bacteriol. 182:32283238.
160. Kovacikova, G., and, K. Skorupski. 2001. Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol. Microbiol. 41:393407.
161. Kovacikova, G., and, K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46:11351147.
162. Kovacikova, G., and, K. Skorupski. 1999. A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J. Bacteriol. 181:42504256.
163. Krukonis, E. S., and, V. J. DiRita. 2003. DNA binding and ToxR responsiveness by the wing domain of TcpP, an activator of virulence gene expression in Vibrio cholerae. Mol. Cell. 12:157165.
164. Krukonis, E. S.,, R. R. Yu, and, V. J. DiRita. 2000. The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol. Microbiol. 38:6784.
165. Lang, H., and, E. T. Palva. 1993. The ompS gene of Vibrio cholerae encodes a growth-phase-dependent maltoporin. Mol. Microbiol. 10:891901.
166. Lauriano, C. M.,, C. Ghosh,, N. E. Correa, and, K. E. Klose. 2004. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J. Bacteriol. 186:48644874.
167. Ledon, T.,, E. Valle,, T. Valmaseda,, B. Cedre,, J. Campos,, B. L. Rodriguez,, K. Marrero,, H. Garcia,, L. Garcia, and, R. Fando. 2003. Construction and characterisation of O139 cholera vaccine candidates. Vaccine 21:12821291.
168. Lee, C. A. 1999. Vibrio cholerae TCP: a trifunctional virulence factor? Trends Microbiol. 7:391392.
169. Lee, S. H.,, M. J. Angelichio,, J. J. Mekalanos, and, A. Camilli. 1998. Nucleotide sequence and spatiotemporal expression of the Vibrio cholerae vieSAB genes during infection. J. Bacteriol. 180:22982305.
170. Lee, S. H.,, S. M. Butler, and, A. Camilli. 2001. Selection for in vivo regulators of bacterial virulence. Proc. Natl. Acad. Sci. USA 98:68896894.
171. Lee, S. H.,, D. L. Hava,, M. K. Waldor, and, A. Camilli. 1999. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99:625634.
172. Lencer, W. I.,, C. Constable,, S. Moe,, M. G. Jobling,, H. M. Webb,, S. Ruston,, J. L. Madara,, T. R. Hirst, and, R. K. Holmes. 1995. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell Biol. 131:951962.
173. Lenz, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen, and, B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:6982.
174. Levine, M. M., and, J. B. Kaper. 1993. Live oral vaccines against cholera: an update. Vaccine 11:207212.
175. Levine, M. M.,, J. B. Kaper,, R. E. Black, and, M. L. Clements. 1983. New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol. Rev. 47:510550.
176. Levine, M. M.,, J. B. Kaper,, D. Herrington,, J. Ketley,, G. Losonsky,, C. O. Tacket,, B. Tall, and, S. Cryz. 1988a. Safety, immuno-genicity, and efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet ii:467470.
177. Levine, M. M.,, J. B. Kaper,, D. Herrington,, G. Losonsky,, J. G. Morris,, M. L. Clements,, R. E. Black,, B. Tall, and, R. Hall. 1988b. Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect. Immun. 56:161167.
178. Lilley, B. N., and, B. L. Bassler. 2000. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol. Microbiol. 36:940954.
179. Lin, W.,, K. J. Fullner,, R. Clayton,, J. A. Sexton,, M. B. Rogers,, K. E. Calia,, S. B. Calderwood,, C. Fraser, and, J. J. Mekalanos. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc. Natl. Acad. Sci. USA 96:10711076.
180. Lin, Z.,, K. Kumagai,, K. Baba,, J. J. Mekalanos, and, M. Nishibuchi. 1993. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J. Bacteriol. 175:38443855.
181. London, E., and, D. A. Brown. 2000. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/choles-terol membrane domains (rafts). Biochim. Biophys. Acta 1508:182195.
182. Mahan, M. J.,, J. M. Slauch, and, J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686688.
183. Mahan, M. J.,, J. W. Tobias,, J. M. Slauch,, P. C. Hanna,, R. J. Collier, and, J. J. Mekalanos. 1995. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc. Natl. Acad. Sci. USA 92:669673.
184. Majoul, I.,, K. Sohn,, F. T. Wieland,, R. Pepperkok,, M. Pizza,, J. Hillemann, and, H. D. Soling. 1998. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell. Biol. 143:601612.
185. Majoul, I. V.,, P. I. Bastiaens, and, H. D. Soling. 1996. Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J. Cell. Biol. 133:777789.
186. Marsh, J. W., and, R. K. Taylor. 1998. Identification of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation. Mol. Microbiol. 29:14811492.
187. Martinez-Hackert, E., and, A. M. Stock. 1997. Structural relationships in the OmpR family of winged-helix transcription factors. J. Mol. Biol. 269:301312.
188. Mazel, D.,, B. Dychinco,, V. A. Webb, and, J. Davies. 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280:605608.
189. Meibom, K. L.,, X. B. Li,, A. T. Nielsen,, C. Y. Wu,, S. Roseman, and, G. K. Schoolnik. 2004. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. Sci. USA 101:25242529.
190. Mekalanos, J. J. 1983. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35:253263.
191. Mekalanos, J. J.,, R. J. Collier, and, W. R. Romig. 1979. Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP-ribosyl transfer. J. Biol. Chem. 254:58495854.
192. Mekalanos, J. J.,, D. J. Swartz,, G. D. Pearson,, N. Harford,, F. Groyne, and, M. de Wilde. 1983. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306:551557.
193. Meng, S. Y., and, G. N. Bennett. 1992. Regulation of the Escherichia coli cad operon: location of a site required for acid induction. J. Bacteriol. 174:26702678.
194. Merrell, D. S.,, C. Bailey,, J. B. Kaper, and, A. Camilli. 2001. The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J. Bacteriol. 183:27462754.
195. Merrell, D. S.,, S. M. Butler,, F. Qadri,, N. A. Dolganov,, A. Alam,, M. B. Cohen,, S. B. Calderwood,, G. K. Schoolnik, and, A. Camilli. 2002a. Host-induced epidemic spread of the cholera bacterium. Nature 417:642645.
196. Merrell, D. S.,, D. L. Hava, and, A. Camilli. 2002b. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol. 43:14711491.
197. Merrell, D. S., and, A. Camilli. 1999. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 34:836849.
198. Miller, M. B.,, K. Skorupski,, D. H. Lenz,, R. K. Taylor, and, B. L. Bassler. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303314.
199. Miller, V. L., and, J. J. Mekalanos. 1985. Genetic analysis of the cholera toxin-positive regulatory gene toxR. J. Bacteriol. 163:580585.
200. Miller, V. L., and, J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170:25752583.
201. Miller, V. L., and, J. J. Mekalanos. 1984. Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc. Natl. Acad. Sci. USA 81:34713475.
202. Miller, V. L.,, R. K. Taylor, and, J. J. Mekalanos. 1987. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48:271279.
203. Mitra, R.,, P. Figueroa,, A. K. Mukhopadhyay,, T. Shimada,, Y. Takeda,, D. E. Berg, and, G. B. Nair. 2000. Cell vacuolation, a manifestation of the El Tor hemolysin of Vibrio cholerae. Infect. Immun. 68:19281933.
204. Murley, Y. M.,, J. Behari,, R. Griffin, and, S. B. Calderwood. 2000. Classical and El Tor biotypes of Vibrio cholerae differ in timing of transcription of tcpPH during growth in inducing conditions. Infect. Immun. 68:30103014.
205. Murley, Y. M.,, P. A. Carroll,, K. Skorupski,, R. K. Taylor, and, S. B. Calderwood. 1999. Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon. Infect. Immun. 67:51175123.
206. Nesper, J.,, A. Kraiss,, S. Schild,, J. Blass,, K. E. Klose,, J. Bockemuhl, and, J. Reidl. 2002a. Comparative and genetic analyses of the putative Vibrio cholerae lipopolysaccharide core oligosaccharide biosynthesis (wav) gene cluster. Infect. Immun. 70:24192433.
207. Nesper, J.,, S. Schild,, C. M. Lauriano,, A. Kraiss,, K. E. Klose, and, J. Reidl. 2002b. Role of Vibrio cholerae O139 surface polysac-charides in intestinal colonization. Infect. Immun. 70:59905996.
208. Nesper, J.,, C. M. Lauriano,, K. E. Klose,, D. Kapfhammer,, A. Kraiss, and, J. Reidl. 2001. Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccha-ride structure, colonization, and biofilm formation. Infect. Immun. 69:435445.
209. Nichols, B. J.,, A. K. Kenworthy,, R. S. Polishchuk,, R. Lodge,, T. H. Roberts,, K. Hirschberg,, R. D. Phair, and, J. Lippincott-Schwartz. 2001. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153:529541.
210. Nikaido, H. 1996. Outer membrane, p. 2947. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Maga-sanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Um-barger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
211. Nikaido, H. 1988. Structure and functions of the cell envelope of gram-negative bacteria. Rev. Infect. Dis. 10 (Suppl.) 2:S279S281.
212. Nikaido, H., and, M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:132.
213. Nusrin, S.,, G. Y. Khan,, N. A. Bhuiyan,, M. Ansaruzzaman,, M. A. Hossain,, A. Safa,, R. Khan,, S. M. Faruque,, D. A. Sack,, T. Ham-abata,, Y. Takeda, and, G. B. Nair. 2004. Diverse CTX phages among toxigenic Vibrio cholerae O1 and O139 strains isolated between 1994 and 2002 in an area where cholera is endemic in Bangladesh. J. Clin. Microbiol. 42:58545856.
214. Nye, M. B.,, J. D. Pfau,, K. Skorupski, and, R. K. Taylor. 2000. Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J. Bacteriol. 182:42954303.
215. Ogg, J. E.,, T. L. Timme, and, M. M. Alemohammad. 1981. General transduction in Vibrio cholerae. Infect. Immun. 31:737741.
216. Ogierman, M. A.,, S. Zabihi,, L. Mourtzios, and, P. A. Manning. 1993. Genetic organization and sequence of the promoter-distal region of the tcp gene cluster of Vibrio cholerae. Gene 126:5160.
217. O’Shea, Y. A., and, E. F. Boyd. 2002. Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol. Lett. 214:153157.
218. Osorio, C. G.,, J. A. Crawford,, J. Michalski,, H. Martinez-Wilson,, J. B. Kaper, and, A. Camilli. 2005. Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect. Immun. 73:972980.
219. Osorio, C. G.,, H. Martinez-Wilson, and, A. Camilli. 2004. The ompU paralogue vca1008 is required for virulence of Vibrio cholerae. J. Bacteriol. 186:51675171.
220. Osorio, C. R., and, K. E. Klose. 2000. A region of the transmembrane regulatory protein ToxR that tethers the transcriptional activation domain to the cytoplasmic membrane displays wide divergence among Vibrio species. J. Bacteriol. 182:526528.
221. Park, Y. K.,, B. Bearson,, S. H. Bang,, I. S. Bang, and, J. W. Foster. 1996. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol. Microbiol. 20:605611.
222. Pearson, G. D.,, V. J. DiRita,, M. B. Goldberg,, S. A. Boyko,, S. B. Calderwood, and, J. J. Mekalanos. 1990. New attenuated derivatives of Vibrio cholerae. Res. Microbiol. 141:893899.
223. Peterson, K. M., and, J. J. Mekalanos. 1988. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun. 56:28222829.
224. Pollitzer, R. 1959. Cholera. World Health Organization, Geneva, Switzerland.
225. Prouty, A. M.,, I. E. Brodsky,, J. Manos,, R. Belas,, S. Falkow, and, J. S. Gunn. 2004. Transcriptional regulation of Salmonella en-terica serovar Typhimurium genes by bile. FEMS Immunol. Med. Microbiol. 41:177185.
226. Prouty, A. M., and, J. S. Gunn. 2000. Salmonella enterica serovar typhimurium invasion is repressed in the presence of bile. Infect. Immun. 68:67636769.
227. Prouty, M. G.,, N. E. Correa, and, K. E. Klose. 2001. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39:15951609.
228. Provenzano, D., and, K. E. Klose. 2000. Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc. Natl. Acad. Sci. USA 97:1022010224.
229. Provenzano, D.,, C. M. Lauriano, and, K. E. Klose. 2001. Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J. Bacteriol. 183:36523662.
230. Provenzano, D.,, D. A. Schuhmacher,, J. L. Barker, and, K. E. Klose. 2000. The virulence regulatory protein ToxR mediates enhanced bile resistance in Vibrio cholerae and other pathogenic Vibrio species. Infect. Immun. 68:14911497.
231. Rader, A. E., and, J. R. Murphy. 1988. Nucleotide sequences and comparison of the hemolysin determinants of Vibrio cholerae El Tor RV79(Hly+) and RV79(Hly—) and classical 569B(Hly—). Infect. Immun. 56:14141419.
232. Ramamurthy, T.,, S. Garg,, R. Sharma,, S. K. Bhattacharya,, G. B. Nair,, T. Shimada,, T. Takeda,, T. Karasawa,, H. Kurazano,, A. Pal, et al. 1993. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341:703704.
233. Rashid, M. H.,, C. Rajanna,, A. Ali, and, D. K. Karaolis. 2003. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol. Lett. 227:113119.
234. Recchia, G. D., and, R. M. Hall. 1995. Gene cassettes: a new class of mobile element. Microbiology 141:30153027.
235. Recchia, G. D., and, R. M. Hall. 1997. Origins of the mobile gene cassettes found in integrons. Trends Microbiol, 5:389394.
236. Redmond, J. W. 1979. The structure of the O-antigenic side chain of the lipopolysaccharide of Vibrio cholerae 569B (Inaba). Biochim. Biophys. Acta 584:346352.
237. Reich, K. A., and, G. K. Schoolnik. 1994. The light organ symbiont Vibrio fischeri possesses a homolog of the Vibrio cholerae trans-membrane transcriptional activator ToxR. J. Bacteriol. 176:30853088.
238. Reidl, J., and, K. E. Klose. 2002. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol. Rev. 26:125139.
239. Richards, A. A.,, E. Stang,, R. Pepperkok, and, R. G. Parton. 2002. Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol. Biol. Cell 13:17501764.
240. Richardson, K. 1991. Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models. Infect. Immun. 59:27272736.
241. Richardson, K.,, J. Michalski, and, J. B. Kaper. 1986. Hemolysin production and cloning of two hemolysin determinants from classical Vibrio cholerae. Infect. Immun. 54:415420.
242. Richardson, S. H.,, J. C. Giles, and, K. S. Kruger. 1984. Sealed adult mice: new model for enterotoxin evaluation. Infect. Immun. 43:482486.
243. Robien, M. A.,, B. E. Krumm,, M. Sandkvist, and, W. G. Hoi. 2003. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol. 333:657674.
244. Rodriguez, B. L.,, A. Rojas,, J. Campos,, T. Ledon,, E. Valle,, W. Toledo, and, R. Fando. 2001. Differential interleukin-8 response of intestinal epithelial cell line to reactogenic and nonre-actogenic candidate vaccine strains of Vibrio cholerae. Infect. Immun. 69:613616.
245. Rosenberg, C. E. 1962. The Cholera Years, the United States in 1832, 1849, and 1866. University of Chicago Press, Chicago, Ill.
246. Rosenberg, E. Y.,, D. Bertenthal,, M. L. Nilles,, K. P. Bertrand, and, H. Nikaido. 2003. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol. Microbiol. 48:16091619.
247. Roszak, D. B.,, D. J. Grimes, and, R. R. Colwell. 1984. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30:334338.
248. Rowe-Magnus, D. A.,, A. M. Guerout,, P. Ploncard,, B. Dychinco,, J. Davies, and, D. Mazel. 2001. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. USA 98:652657.
249. Roy, C., and, S. Mukerjee. 1962. Variability in the haemolytic property of El Tor vibrios. Annu. Biochem. Exp. Med. 22:295296.
250. Rubin, E. J.,, W. Lin,, J. J. Mekalanos, and, M. K. Waldor. 1998. Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol. Microbiol. 28:12471254.
251. Ryan, E. T., and, S. B. Calderwood. 2000. Cholera vaccines. Clin. Infect. Dis. 31:561565.
252. Sack, D. A.,, R. B. Sack,, G. B. Nair, and, A. K. Siddique. 2004. Cholera. Lancet 363:223233.
253. Sack, D. A.,, C. O. Tacket,, M. B. Cohen,, R. B. Sack,, G. A. Loson-sky,, J. Shimko,, J. P. Nataro,, R. Edelman,, M. M. Levine,, R. A. Giannella,, G. Schiff, and, D. Lang. 1998. Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infect. Immun. 66:19681972.
254. Sack, R. B. 1992. Colonization and pathology, p. 189197. In D. Barua and, W. B. Greennough III (ed.), Cholera. Plenum Press, New York, N.Y.
255. Sack, R. B., and, C. C. Carpenter. 1969. Experimental canine cholera. I. Development of the model. J. Infect. Dis. 119:138149.
256. Saha, N., and, K. K. Banerjee. 1997. Carbohydrate-mediated regulation of interaction of Vibrio cholerae hemolysin with erythrocyte and phospholipid vesicle. J. Biol. Chem. 272:162167.
257. Sandkvist, M.,, L. O. Michel,, L. P. Hough,, V. M. Morales,, M. Bagdasarian,, M. Koomey, and, V. J. DiRita. 1997. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol. 179:69947003.
258. Sandvig, K., and, B. van Deurs. 2002. Membrane traffic exploited by protein toxins. Annu. Rev. Cell Dev. Biol. 18:124.
259. Sarkar, A.,, R. K. Nandy,, G. B. Nair, and, A. C. Ghose. 2