Chapter 3 : Postgenomic Strategies for Genetic Analysis: Insight from and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Postgenomic Strategies for Genetic Analysis: Insight from and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap03-2.gif


This chapter discusses the choice of genes for study in the postgenomic era. One major limitation of using a host organism as a model for the heterologous expression of a gene of interest in another organism is differences in genetic coding between the two organisms. This problem, for example, exists when using as a host for genes, where the codon CUG specifies leucine in but serine in ; thus, proteins may be nonfunctional when translated in . The idea of considering several different screens is an extrapolation from the well-accepted idea that many different phenotypes contribute to the virulence of a pathogen. When an insertion mutant is found with a phenotype of interest, it is verified that the insertion itself is the cause of the phenotype by three approaches. First, multiple independent insertion mutant isolates are tested, all of which should have the same phenotype. Second, the insertion mutation is complemented with a clone of the complete ORF and flanking sequences, which should restore a wild-type phenotype. Third, engineered Δorf/orf Δ deletion strains are created with two successive transformations rather than an allelic recombination step; the deletion mutant is expected to have a phenotype similar to the initial insertion mutant. A study revealed two different kinds of phenotypic defects, thus suggesting that genetic analysis might contribute to dissection of a biofilm developmental pathway.

Citation: Nobile C, Mitchell A. 2006. Postgenomic Strategies for Genetic Analysis: Insight from and , p 35-44. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch3

Key Concept Ranking

Cell Wall Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Frequencies of mutants with severe growth defects under various selection conditions. Mutant growth properties ( ) are grouped by gene categories. Selection conditions and the severity of defects are as described in Table 1 . Gene categories include a representative random group (Chr7+Chr3), a group about which little is known (UKUK), the entire set of nonessential genes (All), and those with biochemically informative sequence motifs (TxnF+MbP+PrK+CWP). Abbreviations are described in Table 1 .

Citation: Nobile C, Mitchell A. 2006. Postgenomic Strategies for Genetic Analysis: Insight from and , p 35-44. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

(A) Properties of the cassette. is a functional gene flanked by nonfunctional Δ’ and Δ’ deletion alleles. The alleles are in direct repeat orientation and share 500 bp of homology, so they can undergo recombination. Recombination between the alleles yields a functional gene and excises (B) Double-disruption selection. Transformation of strain BWP17 with results in expression of and confers an Arg+ phenotype. If the insertion becomes homozygous through mitotic recombination or gene conversion, then a second recombination event within one cassette yields an Arg+ Ura+ segregant. These Arg+ Ura+ segregants are of two classes. One class carries a insertion allele and a insertion allele. We refer to these segregants as homozygotes. The other class carries three copies of the gene: a insertion allele, a insertion allele, and a wild-type allele. We refer to these segregants as allelic triplication derivatives. A trisomic genetic structure is diagrammed for simplicity, but their precise genetic structure has not been determined.

Citation: Nobile C, Mitchell A. 2006. Postgenomic Strategies for Genetic Analysis: Insight from and , p 35-44. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. (Reference deleted.)
2. Baillie, G. S., and, L. J. Douglas. 1999. Role of dimorphism in the development of Candida albicans biofilms. J. Med. Microbiol. 48:671679.
3. Berman, J., and, P. E. Sudbery. 2002. Candida albicans : a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3:918930.
4. (Reference deleted.)
5. Bruno, V. M., and, A. P. Mitchell. 2005. Regulation of azole drug susceptibility by Candida albicans protein kinase CK2. Mol. Microbiol. 56:559573.
6. Calderone, R. A., and, W. A. Fonzi. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9:327335.
7. Chandra, J.,, D. M. Kuhn,, P. K. Mukherjee,, L. L. Hoyer,, T. McCormick, and, M. A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183:53855394.
8. Chu, S.,, J. DeRisi,, M. Eisen,, J. Mulholland,, D. Botstein,, P. O. Brown, and, I. Herskowitz. 1998. The transcriptional program of sporulation in budding yeast. Science 282:699705.
9. Costerton, J. W.,, P. S. Stewart, and, E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
10. Davis, D. A.,, V. M. Bruno,, L. Loza,, S. G. Filler, and, A. P. Mitchell. 2002. Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162:15731581.
11. De Backer, M. D.,, P. T. Magee, and, J. Pla. 2000. Recent developments in molecular genetics of Candida albicans. Annu. Rev. Microbiol. 54:463498.
12. De Smet, K.,, I. Eberhardt,, R. Reekmans, and, R. Contreras. 2004. Bax-induced cell death in Candida albi-cans. Yeast 21:13251334.
13. Donlan, R. M., and, J. W. Costerton. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167193.
14. Dunyak, D. S.,, D. S. Everdeen,, J. G. Albanese, and, C. L. Quinn. 2002. Deletion of individual mRNA capping genes is unexpectedly not lethal to Candida albicans and results in modified mRNA cap structures. Eukaryot. Cell 1:10101020.
15. Enloe, B.,, A. Diamond, and, A. P. Mitchell. 2000. A single-transformation gene function test in diploid Candida albicans. J. Bacteriol. 182:57305736.
16. Garcia-Sanchez, S.,, S. Aubert,, I. Iraqui,, G. Janbon,, J. M. Ghigo, and, C. d’Enfert. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3:536545.
17. Giaever, G.,, A. M. Chu,, L. Ni,, C. Connelly,, L. Riles,, S. Veronneau,, S. Dow,, A. Lucau-Danila,, K. Anderson,, B. Andre,, A. P. Arkin,, A. Astromoff,, M. El-Bakkoury,, R. Bangham,, R. Benito,, S. Brachat,, S. Campanaro,, M. Curtiss,, K. Davis,, A. Deutschbauer,, K. D. Entian,, P. Flaherty,, F. Foury,, D. J. Garfinkel,, M. Gerstein,, D. Gotte,, U. Guldener,, J. H. Hegemann,, S. Hempel,, Z. Herman,, D. F. Jaramillo,, D. E. Kelly,, S. L. Kelly,, P. Kotter,, D. LaBonte,, D. C. Lamb,, N. Lan,, H. Liang,, H. Liao,, L. Liu,, C. Luo,, M. Lussier,, R. Mao,, P. Menard,, S. L. Ooi,, J. L. Revuelta,, C. J. Roberts,, M. Rose,, P. Ross-Macdonald,, B. Scherens,, G. Schimmack,, B. Shafer,, D. D. Shoemaker,, S. Sookhai-Mahadeo,, R. K. Storms,, J. N. Strathern,, G. Valle,, M. Voet,, G. Volckaert,, C. Y. Wang,, T. R. Ward,, J. Wilhelmy,, E. A. Winzeler,, Y. Yang,, G. Yen,, E. Youngman,, K. Yu,, H. Bussey,, J. D. Boeke,, M. Snyder,, P. Philippsen,, R. W. Davis, and, M. Johnston. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387391.
18. Hwang, L.,, D. Hocking-Murray,, A. K. Bahrami,, M. Andersson,, J. Rine, and, A. Sil. 2003. Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol. Biol. Cell 14:23142326.
19. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:73297334.
20. Kojic, E. M., and, R. O. Darouiche. 2004. Candida infections of medical devices. Clin. Microbiol. Rev. 17:255267.
21. Kottom, T. J.,, C. F. Thomas, Jr., and, A. H. Limper. 2001. Characterization of Pneumocystis carinii PHR1, a pH-regulated gene important for cell wall integrity. J. Bacteriol. 183:67406745.
22. Kuchin, S.,, V. K. Vyas, and, M. Carlson. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:39944000.
23. Li, F., and, S. P. Palecek. 2003. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot. Cell 2:12661273.
24. Li, M.,, S. J. Martin,, V. M. Bruno,, A. P. Mitchell, and, D. A. Davis. 2004. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot. Cell 3:741751.
25. Mukherjee, P. K.,, J. Chandra,, D. M. Kuhn, and, M. A. Ghannoum. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71:43334340.
26. Navarro-Garcia, F.,, M. Sanchez,, C. Nombela, and, J. Pla. 2001. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol. Rev. 25:245268.
27. Nobile, C. J.,, V. M. Bruno,, M. L. Richard,, D. A. Davis, and, A. P. Mitchell. 2003. Genetic control of chlamydo-spore formation in Candida albicans. Microbiology 149:36293637.
28. Nobile, C. J., and, A. P. Mitchell. 2005. Regulation of cell-surface genes and biofilm formation by the C. albi-cans transcription factor Bcr1p. Curr. Biol. 15:11501155.
29. Ogawa, N.,, J. DeRisi, and, P. O. Brown. 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell 11:43094321.
30. O’Toole, G.,, H. B. Kaplan, and, R. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:4979.
31. Protchenko, O.,, T. Ferea,, J. Rashford,, J. Tiedeman,, P. O. Brown,, D. Botstein, and, C. C. Philpott. 2001. Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J. Biol. Chem. 276:4924449250.
32. Ramage, G.,, S. Bachmann,, T. F. Patterson,, B. L. Wickes, and, J. L. Lopez-Ribot. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother. 49:973980.
33. Ramage, G.,, K. VandeWalle,, J. L. Lopez-Ribot, and, B. L. Wickes. 2002. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol. Lett. 214:95100.
34. Reynolds, T. B., and, G. R. Fink. 2001. Bakers’ yeast, a model for fungal biofilm formation. Science 291:878881.
35. Richard, M. L.,, C. J. Nobile,, V. M. Bruno, and, A. P. Mitchell. 2005. Candida albicans biofilm-defective mutants. Eukaryot. Cell 4:14931502.
36. Roemer, T.,, B. Jiang,, J. Davison,, T. Ketela,, K. Veillette,, A. Breton,, F. Tandia,, A. Linteau,, S. Sillaots,, C. Marta,, N. Martel,, S. Veronneau,, S. Lemieux,, S. Kauffman,, J. Becker,, R. Storms,, C. Boone, and, H. Bussey. 2003. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50:167181.
37. Schweizer, A.,, S. Rupp,, B. N. Taylor,, M. Rollinghoff, and, K. Schroppel. 2000. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 38:435445.
38. Smith, D. G.,, M. D. Garcia-Pedrajas,, S. E. Gold, and, M. H. Perlin. 2003. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol. Microbiol. 50:259275.
39. Song, J. L., and, T. C. White. 2003. RAM2: an essential gene in the prenylation pathway of Candida albicans. Microbiology 149:249259.
40. Spreghini, E.,, D. A. Davis,, R. Subaran,, M. Kim, and, A. P. Mitchell. 2003. Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell 2:746755.
41. (Reference deleted.)
42. Stanley, N. R., and, B. A. Lazazzera. 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 52:917924.
43. Sundstrom, P. 2002. Adhesion in Candida spp. Cell Microbiol. 4:461469.
44. Warenda, A. J., and, J. B. Konopka. 2002. Septin function in Candida albicans morphogenesis. Mol. Biol. Cell 13:27322746.
45. Wilson, R. B.,, D. Davis,, B. M. Enloe, and, A. P. Mitchell. 2000. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16:6570.
46. Wilson, R. B.,, D. Davis, and, A. P. Mitchell. 1999. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181:18681874.
47. Xu, W.,, F. J. Smith, Jr.,, R. Subaran, and, A. P. Mitchell. 2004. Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol. Biol. Cell 15:55285537.
48. Yun, C. W.,, T. Ferea,, J. Rashford,, O. Ardon,, P. O. Brown,, D. Botstein,, J. Kaplan, and, C. C. Philpott. 2000. Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J. Biol. Chem. 275:1070910715.


Generic image for table
Table 1.

Distribution of growth-defective mutants under various selection conditions

Citation: Nobile C, Mitchell A. 2006. Postgenomic Strategies for Genetic Analysis: Insight from and , p 35-44. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch3
Generic image for table
Table 2.

Effect of reduced selection stringency on mutant detection

Citation: Nobile C, Mitchell A. 2006. Postgenomic Strategies for Genetic Analysis: Insight from and , p 35-44. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error