Chapter 7 : The Mating-Type Locus and Mating of and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Mating-Type Locus and Mating of and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap07-2.gif


In 1999, Hull and Johnson identified the emerging genome database a mating-type-like (MTL) locus. The configuration of this putative mating-type locus contrasted markedly with those of . Lachke and coworkers considered the possibility that rather than mating in the body, might mate outside on the body surface. In this chapter, the mating systems of and have been compared to that of . Since the last of these has been so intensely studied over the past three decades and thus provides a contextual framework for interpreting the first two. Incorporation of both the white-opaque switching program and the filamentation program into the mating process may be due at least in part to the intimate relationship has developed with its host. In contrast to , the configuration and structure of mating-type genes and loci are highly similar to those of . One must wonder, for both and , why complex mating systems are maintained, given the predominantly clonal population structure of both. Why devote so many genes, especially in , to such a rare event? The answer is that it may be that mating and associated recombination, although rare, is essential for the continued survival of the species. Secondly, it may be that the mating process has become integral to pathogenesis.

Citation: Soll D. 2006. The Mating-Type Locus and Mating of and , p 89-112. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch7

Key Concept Ranking

Gene Expression and Regulation
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

A comparison of mating-type loci of , and For each species, the configuration of loci in the genome and the structure of genes in each locus are presented. The gray boxes within genes represent introns. Hatched regions represent identical protein sequences. Genes bordering the mating-type loci are presented. Arrows represent the directions of open reading frames. A putative diploid of is presented in panel D, although /α strains have not been identified in nature. Note that the and sequences of and , respectively, are not related to of . The information for was obtained from references and . The information for is from references , and .

Citation: Soll D. 2006. The Mating-Type Locus and Mating of and , p 89-112. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

A comparison of mating-type expression and the general steps in the mating process between (A, B) and (C, D).

Citation: Soll D. 2006. The Mating-Type Locus and Mating of and , p 89-112. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Cell biology of mating. In each panel, a model of the cellular stage is presented at the top, a scanning electron micrograph of the stage is presented in the middle, and a diagram of the nuclear event is presented at the bottom. In conjugation bridges, a thin white line represents the point of tube fusion.

Citation: Soll D. 2006. The Mating-Type Locus and Mating of and , p 89-112. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Both similarities and dissimilarities exist between (left-hand diagrams) and (right-hand diagrams) in the roles played by mating-type genes in the regulation of mating. The dashed ellipsoids highlight differences between the two species. See reference for details.

Citation: Soll D. 2006. The Mating-Type Locus and Mating of and , p 89-112. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Transcription-profiling studies indicate that while a majority of genes associated with the mating process are regulated similarly by pheromone in and , a minority of genes are regulated dissimilarly. (A) A model incorporating the transcription profiling data from references , and . Vertical arrows indicate up-regulation demonstrated by the three studies. Boxed genes represent dissimilar regulation between and . (B) Comparison of the combined profiling data for with that of Roberts et al. ( ) for Boxed genes represent dissimilar regulation between and

Citation: Soll D. 2006. The Mating-Type Locus and Mating of and , p 89-112. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Skin facilitates the mating of (A) formation of a conjugation tube by along skin of a newborn mouse. (B) Fusion between a / and an α/α cell on skin. (C) Lower-magnification image reveals high frequency fusion of / and α/α cells on skin. (D) Fusion between a / and a α/α cell on skin. Arrows point to fusions. t, long conjugation tube. Scale bars, 2μm.

Citation: Soll D. 2006. The Mating-Type Locus and Mating of and , p 89-112. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anderson, J. B.,, C. Wickens,, M. Khan,, L. E. Cowen,, N. Federspiel,, T. Jones, and, L. M. Kohn. 2001. Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J. Bacteriol. 183:865872.
2. Anderson, J. M.,, R. Mihalik, and, D. R. Soll. 1990. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J. Bacteriol. 172:224235.
3. Anderson, J. M., and, D. R. Soll. 1987. Unique pheno-type of opaque cells in the white-opaque transition of Candida albicans. J. Bacteriol. 169:55795588.
4. Aramayo, R., and, R. L. Metzenberg. 1996. Meiotic transvection in fungi. Cell 86:103113.
5. Astell, C. R.,, L. Ahlstrom-Jonasson,, M. Smith,, K. Tatchell,, K. A. Nasmyth, and, B. D. Hall. 1981. The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell 27:1523.
6. Astrom, S. U.,, A. Kegel,, J. O. Sjostrand, and, J. Rine. 2000. Kluyveromyces lactis Sir2p regulates cation sensitivity and maintains a specialized chromatin structure at the cryptic alpha-locus. Genetics 156:8191.
7. Balan, I.,, A. M. Alarco, and, M. Raymond. 1997. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J. Bacteriol. 179:72107218.
8. Barns, S. M.,, D. J. Lane,, M. L. Sogin,, C. Bibeau, and, W. G. Weisburg. 1991. Evolutionary relationships among pathogenic Candida species and relatives. J. Bacteriol. 173:22502255.
9. Bedell, G., and, D. R. Soll. 1979. The effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and zinc-sensitive pathways for mycelium formation. Infect. Immun. 26:348354.
10. Bennett, R. J., and, A. D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:25052515.
11. Bennett, R. J.,, M. A. Uhl,, M. G. Miller, and, A. D. Johnson. 2003. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell. Biol. 23:81898201.
12. Bennett, R. J.,, M. G. Miller,, P. R. Chua,, M. E. Maxon, and, A. D. Johnson. 2005. Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol. Microbiol. 55:10461059.
13. Blignaut, E.,, C. Pujol,, S. Lockhart,, S. Joly, and, D. R. Soll. 2002. Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive individuals reveals a new clade in South Africa. J. Clin. Microbiol. 40:826836.
14. Boerlin, P.,, F. Boerlin-Petzold,, C. Durussel,, M. Ado,, J.-L. Pagani,, J.-P. Chave, and, J. Bille. 1995. Cluster of oral atypical Candida albicans isolates in a group of human immunodeficiency virus-positive drug users. J. Clin. Microbiol. 33:11291135.
15. Brockert, P. J.,, S. A. Lachke,, T. Srikantha,, C. Pujol,, R. Galask, and, D. R. Soll. 2003. Phenotypic switching and mating-type switching of Candida glabrata at sites of colonization. Infect. Immun. 12:71097118.
16. Bucking-Throm, E.,, W. Duntze,, L. H. Hartwell, and, T. R. Manney. 1973. Reversible arrest of haploid yeast cells in the initiation of DNA synthesis by a diffusible sex factor. Exp. Cell Res. 76:99110.
17. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gaillardin, and, K. H. Wolfe. 2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl. Acad. Sci. USA 101:16321637.
18. Cai, J.,, I. N. Roberts, and, M. D. Collins. 1996. Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. In t. J. Syst. Bacteriol. 46:542549.
19. Campbell, D. A. 1973. Kinetics of the mating-specific aggregation in Saccharomyces cerevisiae. J. Bacteriol. 116:323330.
20. Chen, J.,, J. Chen,, S. Lane, and, H. Liu. 2002. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol. Microbiol. 46:13351344.
21. Chenevert, J. 1994. Cell polarization directed by extracellular cues in yeast. Mol. Biol. Cell 5:11691175.
22. Clemons, K. V.,, P. Park,, J. H. McCusker,, M. J. McCullough,, R. W. Davis, and, D. A. Stevens. 1997. Application of DNA typing methods and genetic analysis to epidemiology and taxonomy of Saccharomyces isolates. J. Clin. Microbiol. 35:18221828.
23. Coppin, E.,, R. Debuchy,, S. Arnaise, and, M. Picard. 1997. Mating-types and sexual development in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 61:411428.
24. Cross, F.,, L. H. Hartwell,, C. Jackson, and, J. B. Konopka. 1988. Conjugation in Saccharomyces cerevisiae. Annu. Rev. Cell Biol. 4:429457.
25. Csank, C., and, K. Haynes. 2000. Candida glabrata displays pseudohyphal growth. FEMS Microbiol. Lett. 189:115120.
26. Daniels, K. J.,, S. R. Lockhart,, P. Sundstrum, and, D. R. Soll. 2003. During Candida albicans mating, the adhesin Hwp1 and the first daughter bud localize to the a/a portion of the conjugation bridge. Mol. Biol. Cell 14:49204930.
27. Debuchy, R.,, S. Arnaise and, G. Lecellier. 1993. The mat–allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol. Gen. Genet. 241:667673.
28. de Meeus, T.,, F. Renaud,, E. Mouveroux,, J. Reynes,, G. Galeazzi,, M. Mallie and, J. M. Bastide. 2002. Genetic structure of Candida glabrata populations in AIDS and non-AIDS patients. J. Clin. Microbiol. 40:21062109.
29. Dodgson, A. R.,, C. Pujol,, D. W. Denning,, D. R. Soll, and, A. J. Fox. 2003. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J. Clin. Microbiol. 41:57095717.
30. Dodgson, A. R.,, C. Pujol,, M. A. Pfaller,, D. W. Denning, and, D. R. Soll. 2005. Evidence for recombination in Candida glabrata. Fungal Genet. 42:233243.
31. Erdman, S.,, L. Lin,, M. Malczynski, and, M. Snyder. 1998. Pheromone-regulated genes required for yeast mating differentiation. J. Cell Biol. 140:461483.
32. Ferreira, A. V.,, S. Saupe, and, N. L. Glass. 1996. Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. Mol. Gen. Genet. 250:767774.
33. Fidel, P. L.,, J. A. Vazquez, and, J. D. Sobel. 1999. Candida glabrata: review of epidemiology, pathogenesis and clinical disease with comparison to C. albicans. Clin. Microbiol. Rev. 12:8096.
34. Goutte, C., and, A. D. Johnson. 1994. Recognition of a DNA operator by a dimer composed of two different homeodomain proteins. EMBO J. 13:14341442.
35. Gräser, Y.,, M. Volovsek,, J. Arrington,, G. Schönian,, W. Presber,, T. G. Mitchell and, R. Vilgalys. 1996. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93:1247312477.
36. Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32:561599.
37. Harashima, S.,, A. M. Miller,, K. Tanaka,, K.-I. Kusumoto,, K.-I. Tanaka,, Y. Mukai,, K. Nasmyth, and, Y. Oshima. 1989. Mating-type control in Saccharomyces cerevisiae: isolation and characterization of mutants defective in repression by aα2. Mol. Cell. Biol. 9:45234530.
38. Hazen, K. C. 1995. New and emerging yeast pathogens. Clin. Microbiol. Rev. 8:462478.
39. Heid, P.,, E. Voss, and, D. R. Soll. 2002. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo. Dev. Biol. 245:329347.
40. Herskowitz, I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol. Rev. 52:536553.
41. Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187197.
42. Herskowitz, I., and, R. E. Jensen. 1991. Putting the HO gene to work: practical uses for mating-type switching. Methods Enzymol. 194:132146.
43. Herskowitz, I.,, J. Rine, and, J. N. Strathern. 1992. Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, p. 583–656. In E. W. Jones,, J. R. Pringle, and, J. R. Broach (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
44. Hube, B.,, M. Monod,, D. Schofield,, A. Brown, and, N. Gow. 1994. Expression of seven members of the gene family encoding aspartyl proteinases in Candida albi-cans. Mol. Microbiol. 14:8799.
45. Hull, C. M., and, A. D. Johnson. 1999. Identification of a mating-type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:12711275.
46. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307310.
47. Janbon, G.,, F. Sherman, and, E. Rustcheko. 1999. Appearance and properties of L-sorbose-utilizing mutants of Candida albicans obtained on a selective plate. Genetics 153:653664.
48. Joly, S.,, C. Pujol, and, D. R. Soll. 2002. Micro-evolutionary changes and chromosomal translocations are more frequent at RPS loci in Candida dubliniensis than in Candida albicans. Infect. Genet. Evol. 2:1937.
49. Keleher, C. A.,, S. Passmore, and, A. D. Johnson. 1989. Yeast repressor alpha2 binds to its operator with yeast protein Mcm1. Mol. Cell. Biol. 9:52285230.
50. Kurihara, L. J.,, B. G. Stewart,, A. E. Gammie, and, M. D. Rose. 1996. Kar4p, a karyogamy-specific component of the yeast pheromone response pathway. Mol. Cell. Biol. 16:39904002.
51. Kurtzman, D. P., and, C. J. Roberts. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (265) ribosomal DNA partial sequences. Antoine Leeuwnhoek 73:331371.
52. Kvaal, C.,, S. A. Lachke,, T. Srikantha,, K. Daniels,, J. McCoy, and, D. R. Soll. 1999. Misexpression of the opaque phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun. 67:66526662.
53. Kvaal, C. A.,, T. Srikantha, and, D. R. Soll. 1997. Misexpression of the white phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect. Immun. 65:44684475.
54. Lachke, S. A.,, S. Joly,, K. Daniels, and, D. R. Soll. 2002. Phenotypic switching and filamentation in Candida glabrata. Microbiology 148:26612674.
55. Lachke, S. A.,, S. R. Lockhart,, K. J. Daniels, and, D. R. Soll. 2003. Skin facilitates Candida albicans mating. Infect. Immun. 71:49704976.
56. Lachke, S. A.,, T. Srikantha,, L. Tsai,, K. Daniels, and, D. R. Soll. 2000. Phenotypic switching in Candida glabrata involves phase-specific regulation of the metal-lotheionein gene MT-II and the newly discovered hemolysin gene HLP. Infect. Immun. 68:884895.
57. Lan, C. Y.,, G. Newport,, L. A. Murillo,, T. Jones,, S. Scherer,, R. W. Davis, and, N. Agabian. 2002. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA 99:1490714912.
58. Leberer, E.,, D. Dignard,, D. Harcus,, L. Hougan,, M. Whiteway, and, D. Y. Thomas. 1993. Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Far1. Mol. Gen. Genet. 241:241254.
59. Leberer, E.,, D. Harcus,, I. D. Broadbent,, K. L. Clark,, D. Dignard,, K. Ziegelbauer,, A. Schmidt,, N. A., R. Gow,, A. J. P. Brown, and, D. Y. Thomas. 1996. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93:1321713222.
60. Lee, K. L.,, H. R. Buckley, and, C. C. Campbell. 1975. An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148153.
61. Legrand, M.,, P. Lephart,, A. Forsche,, F.-M. C. Mueller,, T. Walsh,, P. T. Magee, and, B. B. Magee. 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52:14511462.
62. Leibowitz, M. J., and, R. B. Wickner. 1976. A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 73:20612065.
63. Lockhart, S. R.,, C. Pujol,, K. Daniels,, M. Miller,, A. Johnson, and, D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating-type. Genetics 162:737745.
64. Lockhart, S. R.,, K. J. Daniels,, R. Zhao,, D. Wessels, and, D. R. Soll. 2003. Cell biology of mating in Candida albi-cans. Eukaryot. Cell 2:4961.
65. Lockhart, S. R.,, R. Zhao,, K. J. Daniels, and, D. R. Soll. 2003. α-Pheromone-induced shmooing and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot. Cell 2:847855.
66. Lockhart, S. R.,, S. Joly,, C. Pujol,, J. Sobel,, M. Pfaller, and, D. R. Soll. 1997. Development and verification of fingerprinting probes for Candida glabrata. Microbiology 143:37333746.
67. Lockhart, S. R.,, W. Wu,, J. Radke, and, D. R. Soll. 2005. Increased virulence and competitive advantage of a/α over a/a or α/α offspring conserves the mating system of Candida albicans. Genetics 169:18831890.
68. Lockhart, S. R.,, S. Joly,, K. Vargas,, J. Swails-Wenger,, L. Enger, and, D. R. Soll. 1999. Natural defenses against Candida colonization breakdown in the oral cavities of the elderly. J. Dent. Res. 78:857868.
69. MacKay, V., and, T. R. Manney. 1974. Mutations affixing sexual conjugation in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of non-mating mutants. Genetics 76:255271.
70. Magee, B. B., and, P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289:310313.
71. Magee, B. B.,, M. Legrand,, A. M. Alarco,, M. Raymond, and, P. T. Magee. 2002. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol. Microbiol. 46:13451351.
72. Magee, P. T., and, B. B. Magee. 2004. Through a glass opaquely: the biological significance of mating in Candida albicans. Curr. Opin. Microbiol. 7:661665.
73. Marsh, L.,, A. M. Neiman, and, I. Herskowitz. 1991. Signal transduction during pheromone response in yeast. Annu. Rev. Cell Biol. 7:699728.
74. Maynard Smith, J.,, N. H. Smith,, M. O’Rourke, and, B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:43844388.
75. McCullough, M.,, B. Ross, and, P. Reade. 1995. Characterization of genetically distinct subgroup of Candida albicans strains isolated from oral cavities of patients infected with human immunodeficiency virus. J. Clin. Microbiol. 33:696700.
76. McCusker, J. H.,, K. V. Clemons,, D. A. Stevens, and, R. W. Davis. 1994. Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136:12611269.
77. McGrath, J. P., and, A. Varshavsky. 1989. The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340:400404.
78. McGuire, I. C.,, R. E. Marra,, B. G. Turgeon, and, M. G. Milgroom. 2001. Analysis of mating-type genes in the chestnut blight fungus, Cryphonectria parasitica. Fungal Genet. Biol. 34:131144.
79. Meluh, P. B., and, M. D. Rose. 1990. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60:10291041.
80. Miller, M. G., and, A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293302.
81. Mongelard, F.,, M. Labrador,, E. M. Baxter,, T. I. Gerasimova, and, V. G. Corces. 2002. Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila. Genetics 160:14811487.
82. Morrow, B.,, T. Srikantha, and, D. R. Soll. 1992. Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol. Cell. Biol. 12:29973005.
83. Morrow, B.,, T. Srikantha,, J. Anderson, and, D. R. Soll. 1993. Coordinate regulation of two opaque-specific genes during white-opaque switching in Candida albi-cans. Infect. Immun. 61:18231828.
84. Mortimer, R. K.,, P. Romano,, G. Suzzi, and, M. Polsinelli. 1994. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10:15431552.
85. Nasmyth, K. 1983. Molecular analysis of a cell lineage. Nature 302:670676.
86. Odds, F. C. 1988. Candida and Candidosis, 2nd ed. Bailliere Tindall, London, United Kingdom.
87. Odds, F.,, J. Schmidt, and, D. R. Soll. 1990. Epidemiology of Candida infections in AIDS. p. 67–74. In H. V. Bossche (ed.), Mycoses in AIDS Patients. Plenum Press, New York, N.Y.
88. Oh, S.-H.,, G. Cheng,, J. Nuessen,, R. Jajko,, K. Yeater,, X. Zhao,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673681.
89. Panwar, S. L.,, M. Legrand,, D. Dignard,, M. Whiteway, and, P. T. Magee. 2003. MFα1, the gene encoding the α mating pheromone of Candida albicans. Eukaryot. Cell 2:13501360.
90. Pendrak, M. L.,, S. S. Yan, and, D. D. Roberts. 2004. Hemoglobin regulates expression of an activator of mating-type locus α genes in Candida albicans. Eukaryot. Cell. 3:764775.
91. Pfaller, M. A.,, R. N. Jones,, S. A. Messer,, M. B. Edmond,, R. P. Wenzel, and, S. P. Group. 1998. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn. Microbiol. Infect. Dis. 30:121129.
92. Praekelt, U. M., and, P. A. Meacock. 1990. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol. Gen. Genet. 223:97106.
93. Pujol, C.,, A. R. Dodgson, and, D. R. Soll. 2005. Population genetics of ascomycetes pathogenic to humans and animals. In J.-P. Xu (ed.), Evolutionary Genetics of Fungi, in press. Horizon Scientific Press, Norwich, United Kingdom.
94. Pujol, C.,, J. Reynes,, F. Renaud,, M. Raymond,, M. Tibayrenc,, F. J. Ayala,, F. Janbon,, M. Mallie, and, J. M. Bastide. 1993. The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immuno-deficiency virus-positive patients. Proc. Natl. Acad. Sci. USA 90:94569459.
95. Pujol, C.,, K. J. Daniels,, T. Srikantha,, S. R. Lockhart,, J. Geiger, and, D. R. Soll. 2004. The two closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3:10151027.
96. Pujol, C.,, M. Pfaller, and, D. R. Soll. 2002. Ca3 fingerprinting of C. albicans bloodstream isolates from the United States, Canada, South America and Europe reveals a European clade. J. Clin. Microbiol. 40:27292740.
97. Pujol, C.,, S. A. Messer,, M. A. Pfaller, and, D. R. Soll. 2003. Drug resistance is not directly affected by mating-type locus zygosity in Candida albicans. Antimicrob. Agents Chemother. 47:12071212.
98. Pujol, C.,, S. Joly,, S. R. Lockhart,, S. Noel,, M. Tibayrenc, and, D. R. Soll. 1997. Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting Candida albicans. J. Clin. Microbiol. 35:23482358.
99. Raymond, M.,, D. Dignard,, A. M. Alarco,, N. Mainville,, B. B. Magee, and, D. Y. Thomas. 1998. A Ste6p/P-glycoprotein homologue from the asexual yeast Candida albicans transports the a-factor mating pheromone in Saccharomyces cerevisiae. Mol. Microbiol. 27:587598.
100. Rikkerink, E. H.,, B. B. Magee, and, P. T. Magee. 1988. Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J. Bacteriol. 170:895899.
101. Roberts, C. J.,, B. Nelson,, M. J. Marton,, R. Stoughton,, M. R. Meyer,, H. A. Bennett,, Y. D. He,, H. Dai,, W. L. Walker,, T. R. Hughes,, M. Tyers,, C. Boone, and, S. H. Friend. 2000. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873880.
102. Rose, M. D. 1991. Nuclear fusion in yeast. Annu. Rev. Microbiol. 45:539567.
103. Rustad, T. R.,, D. A. Stevens,, M. A. Pfaller, and, T. C. White. 2002. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 148:10611072.
104. Sadhu, D.,, D. Hoekstra,, M. J. McEachern,, S. I. Reed, and, J. B. Hicks. 1992. A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-α2 repressor. Mol. Cell. Biol. 12:19771985.
105. Segall, J. E. 1993. Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl. Acad. Sci. USA 190:83328336.
106. Sena, E. P.,, D. N. Radin, and, S. Fogel. 1973. Synchronous mating in yeast. Proc. Natl. Acad. Sci. USA 70:13731377.
107. Slutsky, B.,, M. Staebell,, J. Anderson,, L. Risen,, M. Pfaller, and, D. R. Soll. 1987. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169:189197.
108. Sohn, K.,, C. Urban,, H. Brunner, and, S. Rupp. 2003. EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol. Microbiol. 47:89102.
109. Soll, D. R., and, C. Pujol. 2003. DNA fingerprinting Candida albicans clades. FEMS Immunol. Med. Microbiol. 39:17.
110. Soll, D. R. 1992. High frequency switching in Candida albicans. Clin. Microbiol. Rev. 5:183203.
111. Soll, D. R. 2003. Candida albicans , p. 165–201. In A. Craig and, A. Scherf (ed.), Antigenic Variation. Academic Press, Ltd., London, United Kingdom.
112. Srikantha, T., and, D. R. Soll. 1993. A white-specific gene in the white-opaque switching system of Candida albicans. Gene 131:5360.
113. Srikantha, T.,, L. K. Tsai,, A. Klar, and, D. R. Soll. 2002. The histone deacetylase genes HDA1 and RPD3 play distinct roles in the regulation of high frequency phenotypic switching in Candida albicans. J. Bacteriol. 183:46144625.
114. Srikantha, T.,, L. Tsai,, K. Daniels, and, D. R. Soll. 2000. EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J. Bacteriol. 182:15801591.
115. Srikantha, T.,, L. Tsai,, K. Daniels,, L. Enger,, K. Highley, and, D. R. Soll. 1998. The two-component hybrid kinase regulator CaNIK1 of Candida albicans. Microbiology 144:27152729.
116. Srikantha, T.,, S. A. Lachke, and, D. R. Soll. 2003. Three mating-type-like loci in Candida glabrata. Eukaryot. Cell 2:328340.
117. Staab, J. F.,, S. D. Bradway,, P. L. Fidel, and, P. Sundstrum. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:15351538.
118. Staab, J.,, C. A. Ferrer, and, P. Sundstrum. 1996. Developmental expression of a tandemly repeated proline- and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J. Biol. Chem. 27:62986305.
119. Staben, C., and, C. Yanofsky. 1990. Neurospora crassa a mating-type region. Proc. Natl. Acad. Sci. USA 87:49174921.
120. Steingrimsson, E.,, H. Arnheiter,, J. H. Hallsson,, M. L. Lamoreux,, N. G. Copeland, and, N. A. Jenkins. 2003. Interallelic complementation at the mouse Mitf locus. Genetics 163:267276.
121. Stone, R. L.,, V. Matarese,, B. B. Magee,, P. T. Magee, and, D. A. Bernlohr. 1990. Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids. Gene 96:171176.
122. Sudbery, P.,, N. Gow, and, J. Berman. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12:317324.
123. Sullivan, D. J.,, T. Westerneng,, K. Haynes,, D. Bennett, and, D. Coleman. 1995. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141:15071521.
124. Sullivan, D.,, D. Bennett,, M. Henman,, P. Harwood,, S. Flint,, F. Mulcahy,, D. Shanley, and, D. Coleman. 1993. Oligonucleotide fingerprinting of isolates of Candida species other than C. albicans and of atypical Candida species from immunodeficiency virus-positive and AIDS patients. J. Clin. Microbiol. 31:21242133.
125. Suzuki, T.,, S. Nishibayashi,, T. Kuroiwa,, T. Kanbe, and, K. Tanaka. 1982. Variance of ploidy in Candida albicans. J. Bacteriol. 152:893896.
126. Tatchell, K.,, K. A. Nasmyth,, B. D. Hall,, C. Astell, and, M. Smith. 1981. In vitro mutation analysis of the mating-type locus in yeast. Cell 27:2535.
127. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389399.
128. Tzung, K. W.,, R. M. Williams,, S. Scherer,, N. Federspiel,, T. Jones,, N. Hansen,, V. Bivolarevic,, L. Huizar,, C. Komp,, R. Surzycki,, R. Tamse,, R. W. Davis, and, N. Agabian. 2001. Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. USA 98:32493253.
129. Ueno, R.,, N. Urano, and, S. Kimura. 2002. Effect of temperature and cell density on ethanol fermentation by a thermotolerant aquatic yeast strain isolated from a hot spring environment. Fish. Sci. 68:571578.
130. Ueno, R.,, N. Urano, and, S. Kimura. 2001. Characterization of thermotolerant, fermentative yeasts from hot spring drainage. Fish. Sci. 67:138145.
131. Wessels, D.,, E. Voss,, N. Von Bergen,, R. Burns,, J. Stites, and, D. R. Soll. 1998. A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells. Cell Motil. Cytoskel. 41:225246.
132. White, T. C.,, H. Miyasaki, and, N. Agabian. 1993. Three distinct secreted aspartyl proteinases in Candida albi-cans. J. Bacteriol. 175:61266135.
133. Wilkinson, L. E., and, J. R. Pringle. 1974. Transient G1 arrest of S. cerevisiae cells of mating-type alpha by a factor produced by cells of mating-type a. Exp. Cell Res. 89:175187.
134. Wong, S.,, M. A. Fares,, W. Zimmermann,, G. Butler, and, K. H. Wolfe. 2003. Evidence from comparative genomics for a complete sexual cycle in the ‘asexual’ pathogenic yeast Candida glabrata. Genome Biol. 4:R10.
135. Wu, W.,, C. Pujol,, S. R. Lockhart, and, D. R. Soll. Mechanisms of mating-type homozygosis in C. albicans. Genetics, in press.
136. Wu, X.,, C. Wu, and, J. E. Haber. 1997. Rules of donor preference in Saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147:399407.
137. Xu, J.,, T. G. Mitchell, and, R. Vilgalys. 1999. PCR-restriction fragment length polymorphism (RFLP) analyses reveal both extensive clonality and local genetic differences in Candida albicans. Mol. Ecol. 8:5973.
138. Zhao, R.,, K. J. Daniels,, S. R. Lockhart,, K. M. Yeater,, L. L. Hoyer, and, D. R. Soll. 2005. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Euk. Cell 4:11751190.
139. Zhao, R.,, S. Lockhart, and, D. R. Soll. 2002. The role of Tup1 in switching, phase maintenance and phase-specific gene expression in Candida albicans. Eukaryot. Cell 1:353365.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error