1887

Chapter 10 : Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap10-2.gif

Abstract:

This chapter highlights both the generalities and the unique features of signaling pathways controlling interactions between fungal pathogens and mammalian hosts. Of the common fungal pathogens of humans, , , and have been the most extensively investigated. Although many different signal transduction cascades mediate responses of pathogens to their hosts, the most extensively investigated networks involve cAMP, MAPK, two-component histidine kinase (HK), pH pathways, and Ca/calmodulin signaling. The pathways can mediate different environmental conditions, such as temperature, stress, and presence of serum, within the different pathogens and induce different responses, including changes in cell morphology and expression of particular virulence factors. TLR2 and TLR4 appear to be the most important for the recognition of fungal pathogens. Both TLR2 and TLR4 play a role in the recognition of and , while , through its polysaccharide capsule consisting of glucuronoxylomannan, appears to be recognized uniquely by TLR4. The developing tools of knockout mice, genome sequences, cultured cell lines, and DNA microarrays have a profound impact on one's ability to define the interaction between mammalian host cells and fungal pathogens. The tools to address such questions are here or soon to arrive, the questions themselves are exciting and answerable, and the potential payoffs for understanding the signaling pathways in fungal pathogens are profound.

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10

Key Concept Ranking

Tumor Necrosis Factor alpha
0.44839472
Signalling Pathway
0.4189193
0.44839472
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Cell types and developmental stages of the fungal pathogens (A), (B), and (C).

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

cAMP signaling pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

cAMP signaling pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

cAMP signaling pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

MAPK pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

MAPK pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

MAPK and two-component signaling pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Two-component signaling pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

pH-regulatory pathways in

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Ca/calcineurin signaling pathways in and

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.
Figure 11.

Recognition and TLR signaling involved in host detection and response to fungal pathogens. Many mammalian cell surface molecules are involved in the identification of fungal pathogens. These include proteins such as TLR2 and TLR4, which are connected to intracellular signaling pathways, and a variety of recognition proteins that interact primarily with components of fungal surfaces. These recognition receptors can be highly specific; recent evidence has been provided that dectin-1 on the surface of macrophages can distinguish hyphal from yeast forms of The signaling pathways involve protein-protein interactions; TIR domains on the TLRs interact with homologous domains on the MyD88 molecule, which in turn associates with IRAK serine/threonine kinase family members through shared motifs called death domains. Activated IRAKs signal through TRAF6 to transcription regulators such as AP1 and NF-kB. The relative importance of the surface receptors differs depending on the specific host cell type and the fungal pathogen detected.

Citation: Whiteway M, Bachewich C. 2006. Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts, p 143-162. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815776.ch10
1. Alarco, A. M.,, A. Marcil,, J. Chen,, B. Suter,, D. Thomas, and, M. Whiteway. 2004. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J. Immunol. 172:56225628.
2. Alonso-Monge, R.,, F. Navarro-Garcia,, G. Molero,, R. Diez-Orejas,, M. Gustin,, J. Pla,, M. Sanchez, and, C. Nombela. 1999. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J. Bacteriol. 181:30583068.
3. Alonso-Monge, R.,, F. Navarro-Garcia,, E. Roman,, A. I. Negredo,, B. Eisman,, C. Nombela, and, J. Pla. 2003. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot. Cell 2:351361.
4. Alspaugh, J. A.,, L. M. Cavallo,, J. R. Perfect, and, J. Heitman. 2000. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neofor-mans. Mol. Microbiol. 36:352365.
5. Alspaugh, J. A.,, J. R. Perfect, and, J. Heitman. 1997. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev. 11:32063217.
6. Alspaugh, J. A.,, R. Pukkila-Worley,, T. Harashima,, L. M. Cavallo,, D. Funnell,, G. M. Cox,, J. R. Perfect,, J. W. Kronstad, and, J. Heitman. 2002. Adenylyl cyclase functions downstream of the Gα protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot. Cell 1:7584.
7. Apidianakis, Y.,, L. G. Rahme,, J. Heitman,, F. M. Ausubel,, S. B. Calderwood, and, E. Mylonakis. 2004. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot. Cell 3:413419.
8. Arana, D. M.,, C. Nombela,, R. Alonso-Monge, and, J. Pla. 2005. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology 151:10331049.
9. Ashman, R. B.,, A. Fulurija, and, J. M. Papadimitriou. 1998. A second Candida albicans resistance gene (Carg2) regulates tissue damage, but not fungal clearance, in sub-lethal murine systemic infection. Microb. Pathog. 25:349352.
10. Ashman, R. B.,, J. M. Papadimitriou,, A. Fulurija,, K. E. Drysdale,, C. S. Farah,, O. Naidoo, and, T. Gotjamanos. 2003. Role of complement C5 and T lymphocytes in pathogenesis of disseminated and mucosal candidiasis in susceptible DBA/2 mice. Microb. Pathog. 34:103113.
11. Bader, T.,, B. Bodendorfer,, K. Schroppel, and, J. Morschhauser. 2003. Calcineurin is essential for virulence in Candida albicans. Infect. Immun. 71:53445354.
12. Bahn, Y. S.,, J. K. Hicks,, S. S. Giles,, G. M. Cox, and, J. Heitman. 2004. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot. Cell 3:14761491.
13. Bahn, Y. S.,, K. Kojima,, G. M. Cox, and, J. Heitman. 2005. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neofor-mans. Mol. Biol. Cell 16:22852300.
14. Bahn, Y. S.,, J. Staab, and, P. Sundstrom. 2003. Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. Mol. Microbiol. 50:391409.
15. Bahn, Y. S., and, P. Sundstrom. 2001.CAP1, an adeny-late cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J. Bacteriol. 183:32113223.
16. Bellocchio, S.,, C. Montagnoli,, S. Bozza,, R. Gaziano,, G. Rossi,, S. S. Mambula,, A. Vecchi,, A. Mantovani,, S. M. Levitz, and, L. Romani. 2004. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172:30593069.
17. Bensen, E. S.,, S. J. Martin,, M. Li,, J. Berman, and, D. A. Davis. 2004. Transcriptional profiling in Candida albi-cans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol. 54:13351351.
18. Berman, J., and, P. E. Sudbery. 2002.Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3:918930.
19. Blankenship, J. R.,, F. L. Wormley,, M. K. Boyce,, W. A. Schell,, S. G. Filler,, J. R. Perfect, and, J. Heitman. 2003. Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot. Cell 2:422430.
20. Borges-Walmsley, M. I., and, A. R. Walmsley. 2000. cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol. 8:133141.
21. Braedel, S.,, M. Radsak,, H. Einsele,, J. P. Latge,, A. Michan,, J. Loeffler,, Z. Haddad,, U. Grigoleit,, H. Schild, and, H. Hebart. 2004. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br. J. Haematol. 125:392399.
22. Braun, B. R., and, A. D. Johnson. 1997. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105109.
23. Brown, G. D.,, J. Herre,, D. L. Williams,, J. A. Willment,, A. S. Marshall, and, S. Gordon. 2003. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197:11191124.
24. Calera, J. A., and, R. Calderone. 1999. Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 145:14311442.
25. Calera, J. A.,, G. H. Choi, and, R. A. Calderone. 1998. Identification of a putative histidine kinase two-component phosphorelay gene (CaHK1) in Candida albicans. Yeast 14:665674.
26. Calera, J. A.,, D. Herman, and, R. Calderone. 2000. Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast 16:10531059.
27. Calera, J. A.,, X. J. Zhao, and, R. Calderone. 2000. Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect. Immun. 68:518525.
28. Cassola, A.,, M. Parrot,, S. Silberstein,, B. B. Magee,, S. Passeron,, L. Giasson, and, M. L. Cantore. 2004. Candida albicans lacking the gene encoding the regulatory subunit of protein kinase A displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryot. Cell 3:190199.
29. Castilla, R.,, S. Passeron, and, M. L. Cantore. 1998. N-Acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Cell Signal. 10:713719.
30. Catlett, N. L.,, O. C. Yoder, and, B. G. Turgeon. 2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2:11511161.
31. Chattaway, F. W.,, P. R. Wheeler, and, J. O’Reilly. 1981. Involvement of adenosine 3’:5’-cyclic monophosphate in the germination of blastospores of Candida albicans. J. Gen. Microbiol. 123:233240.
32. Chauhan, N.,, D. Inglis,, E. Roman,, J. Pla,, D. Li,, J. A. Calera, and, R. Calderone. 2003. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot. Cell 2:10181024.
33. Cheng, S.,, C. J. Clancy,, M. A. Checkley,, M. Handfield,, J. D. Hillman,, A. Progulske-Fox,, A. S. Lewin,, P. L. Fidel, and, M. H. Nguyen. 2003. Identification of Candida albi-cans genes induced during thrush offers insight into pathogenesis. Mol. Microbiol. 48:12751288.
34. Clarke, D. L.,, G. L. Woodlee,, C. M. McClelland,, T. S. Seymour, and, B. L. Wickes. 2001. The Cryptococcus neoformans STE11 gene is similar to other fungal mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. Mol. Microbiol. 40:200213.
35. Clemons, K. V.,, T. K. Miller,, C. P. Selitrennikoff, and, D. A. Stevens. 2002. fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med. Mycol. 40:259262.
36. Cloutier, M.,, R. Castilla,, N. Bolduc,, A. Zelada,, P. Martineau,, M. Bouillon,, B. B. Magee,, S. Passeron,, L. Giasson, and, M. L. Cantore. 2003. The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet. Biol. 38:133141.
37. Cruz, M. C.,, D. S. Fox, and, J. Heitman. 2001. Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neofor-mans. EMBO J. 20:10201032.
38. Csank, C.,, C. Makris,, S. Meloche,, K. Schroppel,, M. Rollinghoff,, D. Dignard,, D. Y. Thomas, and, M. Whiteway. 1997. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol. Biol. Cell 8:25392551.
39. Csank, C.,, K. Schroppel,, E. Leberer,, D. Harcus,, O. Mohamed,, S. Meloche,, D. Y. Thomas, and, M. Whiteway. 1998. Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect. Immun. 66:27132721.
40. Davidson, R. C.,, C. B. Nichols,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2003. A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 49:469485.
41. Davis, D. 2003. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr. Genet. 44:17.
42. Davis, D.,, J. E. Edwards, Jr.,, A. P. Mitchell, and, A. S. Ibrahim. 2000. Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect. Immun. 68:59535959.
43. Davis, D.,, R. B. Wilson, and, A. P. Mitchell. 2000. RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol. Cell. Biol. 20:971978.
44. Davis, D. A.,, V. M. Bruno,, L. Loza,, S. G. Filler, and, A. P. Mitchell. 2002. Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162:15731581.
45. De Bernardis, F.,, F. A. Muhlschlegel,, A. Cassone, and, W. A. Fonzi. 1998. The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect. Immun. 66:33173325.
46. Diez-Orejas, R.,, G. Molero,, F. Navarro-Garcia,, J. Pla,, C. Nombela, and, M. Sanchez-Perez. 1997. Reduced virulence of Candida albicans MKC1 mutants: a role for mitogen-activated protein kinase in pathogenesis. Infect. Immun. 65:833837.
47. Du, C.,, R. Li,, S. Ma, and, D. Wang. 2002. Cloning of Aspergillus fumigatus histidine kinase gene fragment and its expression during invasive infection. Mycopathologia 153:510.
48. Edmond, M. B.,, S. E. Wallace,, D. K. McClish,, M. A. Pfaller,, R. N. Jones, and, R. P. Wenzel. 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29:239244.
49. Ernst, J. F. 2000. Transcription factors in Candida albicans—environmental control of morphogenesis. Microbiology. 146:17631774.
50. Ezekowitz, R. A.,, K. Sastry,, P. Bailly, and, A. Warner. 1990. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 172:17851794.
51. Feng, Q.,, E. Summers,, B. Guo, and, G. Fink. 1999. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181:63396346.
52. Fortwendel, J. R.,, J. C. Panepinto,, A. E. Seitz,, D. S. Askew, and, J. C. Rhodes. 2004. Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genet. Biol. 41:129139.
53. Fox, D. S.,, M. C. Cruz,, R. A. Sia,, H. Ke,, G. M. Cox,, M. E. Cardenas, and, J. Heitman. 2001. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol. Microbiol. 39:835849.
54. Fradin, C.,, M. Kretschmar,, T. Nichterlein,, C. Gaillardin,, C. d’Enfert, and, B. Hube. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47:15231543.
55. Fradin, C.,, D. Poulain, and, T. Jouault. 2000. β-1,2-Linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect. Immun. 68:43914398.
56. Gerson, S. L.,, G. H. Talbot,, S. Hurwitz,, B. L. Strom,, E. J. Lusk, and, P. A. Cassileth. 1984. Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann. Intern. Med. 100:345351.
57. Ghannoum, M. A.,, B. Spellberg,, S. M. Saporito-Irwin, and, W. A. Fonzi. 1995. Reduced virulence of Candida albicans PHR1 mutants. Infect. Immun. 63:45284530.
58. Harcus, D.,, A. Nantel,, A. Marcil,, T. Rigby, and, M. Whiteway. 2004. Transcription profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell 15:44904499.
59. Hicks, J. K.,, C. A. D’Souza,, G. M. Cox, and, J. Heitman. 2004. Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 3:1426.
60. Hoch, J. A. 2000. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3:165170.
61. Huang, Q.,, D. Liu,, P. Majewski,, L. C. Schulte,, J. M. Korn,, R. A. Young,, E. S. Lander, and, N. Hacohen. 2001. The plasticity of dendritic cell responses to pathogens and their components. Science 294:870875.
62. Ishibashi, K.,, N. N. Miura,, Y. Adachi,, N. Ogura,, H. Tamura,, S. Tanaka, and, N. Ohno. 2004. DNA array analysis of altered gene expression in human leukocytes stimulated with soluble and particulate forms of Candida cell wall beta-glucan. Int. Immunopharmacol. 4:387401.
63. Jain, P.,, I. Akula, and, T. Edlind. 2003. Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob. Agents Chemother. 47:31953201.
64. Jouault, T.,, S. Ibata-Ombetta,, O. Takeuchi,, P. A. Trinel,, P. Sacchetti,, P. Lefebvre,, S. Akira, and, D. Poulain. 2003. Candida albicans phospholipomannan is sensed through toll-like receptors. J. Infect. Dis. 188:165172.
65. Jung, W. H., and, L. I. Stateva. 2003. The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans. Microbiology 149:29612976.
66. Kraus, P. R.,, D. S. Fox,, G. M. Cox, and, J. Heitman. 2003. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48:13771387.
67. Kraus, P. R., and, J. Heitman. 2003. Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem. Biophys. Res. Commun. 311:11511157.
68. Kwon-Chung, K. J., and, J. C. Rhodes. 1986. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect. Immun. 51:218223.
69. Langfelder, K.,, B. Jahn,, H. Gehringer,, A. Schmidt,, G. Wanner, and, A. A. Brakhage. 1998. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med. Microbiol. Immunol. (Berlin) 187:7989.
70. Latge, J. P. 2001. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 9:382389.
71. Leberer, E.,, D. Harcus,, I. D. Broadbent,, K. L. Clark,, D. Dignard,, K. Ziegelbauer,, A. Schmidt,, N. A. Gow,, A. J. Brown, and, D. Y. Thomas. 1996. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93:1321713222.
72. Leberer, E.,, D. Harcus,, D. Dignard,, L. Johnson,, S. Ushinsky,, D. Y. Thomas, and, K. Schroppel. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 42:673687.
73. Lee, S. J.,, N. Y. Zheng,, M. Clavijo, and, M. C. Nussenzweig. 2003. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun. 71:437445.
74. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart, and, J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973983.
75. Lengeler, K. B.,, R. C. Davidson,, C. D’Souza,, T. Harashima,, W. C. Shen,, P. Wang,, X. Pan,, M. Waugh, and, J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64:746785.
76. Li, D.,, V. Gurkovska,, M. Sheridan,, R. Calderone, and, N. Chauhan. 2004. Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albi-cans using the heterologous lacZ reporter gene. Microbiology 150:33053313.
77. Liebmann, B.,, S. Gattung,, B. Jahn, and, A. A. Brakhage. 2003. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol. Genet. Genomics 269:420435.
78. Liebmann, B.,, M. Muller,, A. Braun, and, A. A. Brakhage. 2004. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect. Immun. 72:51935203.
79. Liu, H.,, J. Kohler, and, G. R. Fink. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:17231726.
80. Lo, H. J.,, J. R. Kohler,, B. DiDomenico,, D. Loebenberg,, A. Cacciapuoti, and, G. R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939949.
81. Lorenz, M. C.,, J. A. Bender, and, G. R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3:10761087.
82. Luberto, C.,, B. Martinez-Marino,, D. Taraskiewicz,, B. Bolanos,, P. Chitano,, D. L. Toffaletti,, G. M. Cox,, J. R. Perfect,, Y. A. Hannun,, E. Balish, and, M. Del Poeta. 2003. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Investig. 112:10801094.
83. Maidan, M. M.,, L. De Rop,, J. Serneels,, S. Exler,, S. Rupp,, H. Tournu,, J. M. Thevelein, and, P. Van Dijck. 2005. The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell 16:19711986.
84. Marcil, A.,, D. Harcus,, D. Y. Thomas, and, M. Whiteway. 2002. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment. Infect. Immun. 70:63196329.
85. Marodi, L.,, S. Schreiber,, D. C. Anderson,, R. P. MacDermott,, H. M. Korchak, and, R. B. Johnston, Jr. 1993. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J. Clin. Investig. 91:25962601.
86. Marr, K. A.,, S. A. Balajee,, T. R. Hawn,, A. Ozinsky,, U. Pham,, S. Akira,, A. Aderem, and, W. C. Liles. 2003. Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect. Immun. 71:52805286.
87. Matsumoto, K.,, I. Uno,, Y. Oshima, and, T. Ishikawa. 1982. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 79:23552359.
88. Miwa, T.,, Y. Takagi,, M. Shinozaki,, C. W. Yun,, W. A. Schell,, J. R. Perfect,, H. Kumagai, and, H. Tamaki. 2004. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot. Cell 3:919931.
89. Muhlschlegel, F. A., and, W. A. Fonzi. 1997. PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol. Cell. Biol. 17: 5960–5967.
90. Mullick, A.,, M. Elias,, P. Harakidas,, A. Marcil,, M. Whiteway,, B. Ge,, T. J. Hudson,, A. W. Caron,, L. Bourget,, S. Picard,, O. Jovcevski,, B. Massie, and, D. Y. Thomas. 2004. Gene expression in HL60 granulocytoids and human polymorphonuclear leukocytes exposed to Candida albicans. Infect. Immun. 72:414429.
91. Mullick, A.,, M. Elias,, S. Picard,, L. Bourget,, O. Jovcevski,, S. Gauthier,, A. Tuite,, P. Harakidas,, C. Bihun,, B. Massie, and, P. Gros. 2004. Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infect. Immun. 72:58685876.
92. Nagahashi, S.,, T. Mio,, N. Ono,, T. Yamada-Okabe,, M. Arisawa,, H. Bussey, and, H. Yamada-Okabe. 1998. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144:425432.
93. Navarro-Garcia, F.,, R. Alonso-Monge,, H. Rico,, J. Pla,, R. Sentandreu, and, C. Nombela. 1998. A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144:411424.
94. Netea, M. G.,, C. A. Van Der Graaf,, A. G. Vonk,, I. Verschueren,, J. W. Van Der Meer, and, B. J. Kullberg. 2002. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185:14831489.
95. Niimi, M. 1996. Dibutyryl cyclic AMP-enhanced germ tube formation in exponentially growing Candida albi-cans cells. Fungal Genet. Biol. 20:7983.
96. Odom, A.,, S. Muir,, E. Lim,, D. L. Toffaletti,, J. Perfect, and, J. Heitman. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16:25762589.
97. Onyewu, C.,, J. R. Blankenship,, M. Del Poeta, and, J. Heitman. 2003. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 47:956964.
98. Onyewu, C.,, F. L. Wormley, Jr.,, J. R. Perfect, and, J. Heitman. 2004. The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect. Immun. 72:73307333.
99. Posas, F.,, S. M. Wurgler-Murphy,, T. Maeda,, E. A. Witten,, T. C. Thai, and, H. Saito. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865875.
100. Poulain, D., and, T. Jouault. 2004. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr. Opin. Microbiol. 7:342349.
101. Ramon, A. M., and, W. A. Fonzi. 2003. Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot. Cell 2:718728.
102. Rhodes, J. C.,, B. G. Oliver,, D. S. Askew, and, T. W, Amlung. 2001. Identification of genes of Aspergillus fumigatus up-regulated during growth on endothelial cells. Med. Mycol. 39:253260.
103. Rhodes, J. C.,, L. S. Wicker, and, W. J. Urba. 1980. Genetic control of susceptibility to Cryptococcus neofor-mans in mice. Infect. Immun. 29:494499.
104. Rocha, C. R.,, K. Schroppel,, D. Harcus,, A. Marcil,, D. Dignard,, B. N. Taylor,, D. Y. Thomas,, M. Whiteway, and, E. Leberer. 2001. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol. Biol. Cell 12:36313643.
105. Roeder, A.,, C. J. Kirschning,, R. A. Rupec,, M. Schaller, and, H. C. Korting. 2004. Toll-like receptors and innate antifungal responses. Trends Microbiol. 12:4449.
106. Romani, L.,, F. Bistoni, and, P. Puccetti. 2002. Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol. 10:508514.
107. Rubin-Bejerano, I.,, I. Fraser,, P. Grisafi, and, G. R. Fink. 2003. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl. Acad. Sci. USA 100:1100711012.
108. Sabie, F. T., and, G. M. Gadd. 1992. Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3’:5’-cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans. Mycopathologia 119:147156.
109. Sanchez-Martinez, C., and, J. Perez-Martin. 2002. Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans. Eukaryot. Cell 1:865874.
110. Sanglard, D.,, F. Ischer,, O. Marchetti,, J. Entenza, and, J. Bille. 2003. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol. Microbiol. 48:959976.
111. Saporito-Irwin, S. M.,, C. E. Birse,, P. S. Sypherd, and, W. A. Fonzi. 1995. PHR1 , a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol. Cell. Biol. 15:601613.
112. Saville, S. P.,, A. L. Lazzell,, C. Monteagudo, and, J. L. Lopez-Ribot. 2003. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2:10531060.
113. Sentandreu, M.,, M. V. Elorza,, R. Sentandreu, and, W. A. Fonzi. 1998. Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. J. Bacteriol. 180:282289.
114. Serrano-Gomez, D.,, A. Dominguez-Soto,, J. Ancochea,, J. A. Jimenez-Heffernan,, J. A. Leal, and, A. L. Corbi. 2004. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J. Immunol. 173:56355643.
115. Shima, F.,, T. Okada,, M. Kido,, H. Sen,, Y. Tanaka,, M. Tamada,, C. D. Hu,, Y. Yamawaki-Kataoka,, K. Kariya, and, T. Kataoka. 2000. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation. Mol. Cell. Biol. 20:2633.
116. Shoham, S.,, C. Huang,, J. M. Chen,, D. T. Golenbock, and, S. M. Levitz. 2001. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166:46204626.
117. Singh, P.,, N. Chauhan,, A. Ghosh,, F. Dixon, and, R. Calderone. 2004. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect. Immun. 72:23902394.
118. Sonneborn, A.,, D. P. Bockmuhl,, M. Gerads,, K. Kurpanek,, D. Sanglard, and, J. F. Ernst. 2000. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol. Microbiol. 35:386396.
119. Syme, R. M.,, J. C. Spurrell,, E. K. Amankwah,, F. H. Green, and, C. H. Mody. 2002. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcγ receptor II for presentation to T lymphocytes. Infect. Immun. 70:59725981.
120. Tada, H.,, E. Nemoto,, H. Shimauchi,, T. Watanabe,, T. Mikami,, T. Matsumoto,, N. Ohno,, H. Tamura,, K. Shibata,, S. Akashi,, K. Miyake,, S. Sugawara, and, H. Takada. 2002. Saccharomyces cerevisiae - and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner. Microbiol. Immunol. 46:503512.
121. Takeda, K., and, S. Akira. 2004. TLR signaling pathways. Semin. Immunol. 16:39.
122. Thevelein, J. M., and, J. H. de Winde. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33:904918.
123. Toda, T.,, S. Cameron,, P. Sass,, M. Zoller, and, M. Wigler. 1987. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277287.
124. Toda, T.,, I. Uno,, T. Ishikawa,, S. Powers,, T. Kataoka,, D. Broek,, S. Cameron,, J. Broach,, K. Matsumoto, and, M. Wigler. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:2736.
125. Tripathi, G.,, C. Wiltshire,, S. Macaskill,, H. Tournu,, S. Budge, and, A. J. Brown. 2002. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J. 21:54485456.
126. Tuite, A.,, A. Mullick, and, P. Gros. 2004. Genetic analysis of innate immunity in resistance to Candida albicans. Genes. Immun. 5:576587.
127. Wang, P.,, C. B. Nichols,, K. B. Lengeler,, M. E. Cardenas,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2002. Mating-type-specific and nonspecific PAK kinases play shared and divergent roles in Cryptococcus neoformans. Eukaryot. Cell 1:257272.
128. Wang, P.,, J. R. Perfect, and, J. Heitman. 2000. The G-protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol. Cell. Biol. 20:352362.
129. Waugh, M. S.,, C. B. Nichols,, C. M. DeCesare,, G. M. Cox,, J. Heitman, and, J. A. Alspaugh. 2002. Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology 148:191201.
130. Whiteway, M. 2000. Transcriptional control of cell type and morphogenesis in Candida albicans. Curr. Opin. Microbiol. 3:582588.
131. Xu, J. R. 2000. Map kinases in fungal pathogens. Fungal Genet. Biol. 31:137152.
132. Xu, W.,, F. J. Smith, Jr.,, R. Subaran, and, A. P. Mitchell. 2004. Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol. Biol. Cell 15:55285537.
133. Xu, Y.,, X. Tao,, B. Shen,, T. Horng,, R. Medzhitov,, J. L. Manley, and, L. Tong. 2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408:111115.
134. Xue, T.,, C. K. Nguyen,, A. Romans, and, G. S. May. 2004. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot. Cell 3:557560.
135. Yamada-Okabe, T.,, T. Mio,, N. Ono,, Y. Kashima,, M. Matsui,, M. Arisawa, and, H. Yamada-Okabe. 1999. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J. Bacteriol. 181:72437247.
136. Yamamoto, Y.,, T. W. Klein, and, H. Friedman. 1997. Involvement of mannose receptor in cytokine inter-leukin-1β (IL-1β), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1β (MIP-1β), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect. Immun. 65:10771082.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error