1887

Chapter 11 : Function and Regulation of Adhesin Gene Families in and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Function and Regulation of Adhesin Gene Families in and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap11-2.gif

Abstract:

In fungi, the cell wall plays a primary role contributing to the structural integrity of the cell; in addition to this structural role, the cell wall is, by definition, the interface between the yeast and the environment. This chapter examines the overlapping and divergent function and regulation of some surface glycoprotein gene families in and its pathogenic cousins and . , , and encode a variety of glycosylphosphatidylinositol-linked cell wall proteins (GPI-CWPs) that play accessory roles, functioning primarily as adhesins, facilitating yeast-yeast interactions or yeast adherence to a variety of surfaces. Analysis of adhesin gene regulation in and in species has revealed significant overlap in the signals that induce transcription of these gene families as well as the mechanistic basis for that regulation. Analysis of gene transcription reveals unexpected complexity in chromatin regulation in yeast. While the epigenetic regulation of and expression appears similar and some key regulators (Sfl1) are shared, the requirement for chromatinmodifying proteins which underlie the silencing mechanism is quite different—Hda1 in the case of and Hst1-Hst2 and Sir3 in the case of . This complexity probably foreshadows similar complexity in the regulation of other fungal adhesin families.

Citation: CastaÑo I, De Las PeÑas A, Cormack B. 2006. Function and Regulation of Adhesin Gene Families in and , p 163-175. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch11

Key Concept Ranking

Mitogen-Activated Protein Kinase Pathway
0.4437697
0.4437697
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Domain structure of GPI-CWP adhesins. Four domains are shown, all required for function of the adhesins. SS indicates the signal sequence; GPI indicates the C-terminal sequence required for covalent attachment of the GPI anchor to the mature C terminus. The effector domain confers specificity of adherence. C-terminal to the effector domain, a region rich in Ser/Thr residues, which are glycosylated, acts as a spacer between the GPI anchor and the effector domain.

Citation: CastaÑo I, De Las PeÑas A, Cormack B. 2006. Function and Regulation of Adhesin Gene Families in and , p 163-175. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Chromosomal location of genes in . Distances from the beginning of the telomeric repeats are indicated. Thick bars represent regions of homology between the , and loci.

Citation: CastaÑo I, De Las PeÑas A, Cormack B. 2006. Function and Regulation of Adhesin Gene Families in and , p 163-175. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Chromosomal location of genes in strain BG2. Distances from the beginning of the telomeric repeats are indicated. Thick bars represent homology between different loci: the and loci are essentially identical to each other across 7.6 kb, including the ORFs and the indicated 5and’ and 3’ intergenic regions. The and loci are highly homologous for the ORFs, for the 2.4 kb between the genes and the telomere, as well as for at least 4 kb upstream of the gene.

Citation: CastaÑo I, De Las PeÑas A, Cormack B. 2006. Function and Regulation of Adhesin Gene Families in and , p 163-175. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Silencing of the to loci. For the to loci, the genomic organization is shown. Below each gene is the transcriptional status of each gene grown under normal laboratory conditions. The triangles represent gene insertions made at each locus; below each insertion is the distance of the translational start from the telomeric repeats; above each triangle is the status of the correponding gene insertion in a wild-type cell, as measured by the ability to grow on 5-FOA plates. “off” means that the corresponding strain was 5-FOA; “on” means that the corresponding strain was 5-FOA. For the insertion between and , “off / ” indicates that the strain yielded a small number of 5-FOA colonies.

Citation: CastaÑo I, De Las PeÑas A, Cormack B. 2006. Function and Regulation of Adhesin Gene Families in and , p 163-175. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815776.ch11
1. Ai, W.,, P. G. Bertram,, C. K. Tsang,, T. F. Chan, and, X. F. Zheng. 2002. Regulation of subtelomeric silencing during stress response. Mol. Cell 10:12951305.
2. Andrulis, E. D.,, A. M. Neiman,, D. C. Zappulla, and, R. Sternglanz. 1998. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394:592595.
3. Bedalov, A.,, M. Hirao,, J. Posakony,, M. Nelson, and, J. A. Simon. 2003. NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol. Cell. Biol. 23:70447054.
4. Bockmuhl, D. P., and, J. F. Ernst. 2001. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157:15231530.
5. Bone, J. R., and, S. Y. Roth. 2001. Recruitment of the yeast Tup1p-Ssn6p repressor is associated with localized decreases in histone acetylation. J. Biol. Chem. 276:18081813.
6. Brachmann, C. B.,, J. M. Sherman,, S. E. Devine,, E. E. Cameron,, L. Pillus, and, J. D. Boeke. 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9:28882902.
7. Braun, B. R., and, A. D. Johnson. 2000. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:5767.
8. Buck, S. W., and, D. Shore. 1995. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 9:370384.
9. Castano, I.,, S. J. Pan,, M. Zupancic,, C. Hennequin,, B. Dujon, and, B. P. Cormack. 2005. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol. Microbiol. 55:12461258.
10. Conlan, R. S., and, D. Tzamarias. 2001. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J. Mol. Biol. 309:10071015.
11. Cormack, B. P.,, N. Ghori, and, S. Falkow. 1999. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578582.
12. Davie, J. K.,, D. G. Edmondson,, C. B. Coco, and, S. Y. Dent. 2003. Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J. Biol. Chem. 278:5015850162.
13. de Groot, P. W.,, A. D. de Boer,, J. Cunningham,, H. L. Dekker,, L. de Jong,, K. J. Hellingwerf,, C. de Koster, and, F. M. Klis. 2004. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot. Cell 3:955965.
14. de Groot, P. W.,, K. J. Hellingwerf, and, F. M. Klis. 2003. Genome-wide identification of fungal GPI proteins. Yeast 20:781796.
15. De Las Penas, A.,, S. J. Pan,, I. Castano,, J. Alder,, R. Cregg, and, B. P. Cormack. 2003. Virulence-related surface glyco-proteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 17:22452258.
16. Domergue, R.,, I. Castano,, A. De Las Peñas,, M. Zupancic,, V. Lockatell,, J. R. Hebel,, D. Johnson, and, B. P. Cormack. 2005. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308:866870.
17. Fleming, A. B., and, S. Pennings. 2001. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J. 20:52195231.
18. Frieman, M. B.,, J. M. McCaffery, and, B. P. Cormack. 2002. Modular domain structure in the Candida glabrata adhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Mol. Microbiol. 46:479492.
19. Fu, Y.,, A. S. Ibrahim,, D. C. Sheppard,, Y. C. Chen,, S. W. French,, J. E. Cutler,, S. G. Filler, and, J. E. Edwards, r. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol. Microbiol. 44:6172.
20. Fu, Y.,, G. Rieg,, W. A. Fonzi,, P. H. Belanger,, J. E. Edwards, Jr., and, S. G. Filler. 1998. Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect. Immun. 66:17831786.
21. Gale, C. A.,, C. M. Bendel,, M. McClellan,, M. Hauser,, J. M. Becker,, J. Berman, and, M. K. Hostetter. 1998. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:13551358.
22. Gancedo, J. M. 2001. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25:107123.
23. Gaur, N. K., and, S. A. Klotz. 1997. Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect. Immun. 65:52895294.
24. Gotta, M.,, T. Laroche,, A. Formenton,, L. Maillet,, H. Scherthan, and, S. M. Gasser. 1996. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell. Biol. 134:13491363.
25. Green, S. R., and, A. D. Johnson. 2004. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Mol. Biol. Cell 15:41914202.
26. Gromoller, A., and, N. Lehming. 2000. Srb7p is a physical and physiological target of Tup1p. EMBO J. 19:68456852.
27. Guo, B.,, C. A. Styles,, Q. Feng, and, G. R. Fink. 2000. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. USA 97:1215812163.
28. Halme, A.,, S. Bumgarner,, C. Styles, and, G. R. Fink. 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405415.
29. Han, S. J.,, J. S. Lee,, J. S. Kang, and, Y. J. Kim. 2001. Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes. J. Biol. Chem. 276:3702037026.
30. Hardy, C. F.,, L. Sussel, and, D. Shore. 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6:801814.
31. Hoyer, L. L. 2001. The ALS gene family of Candida albi-cans. Trends Microbiol. 9:176180.
32. Hoyer, L. L.,, R. Fundyga,, J. E. Hecht,, J. C. Kapteyn,, F. M. Klis, and, J. Arnold. 2001. Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics 157:15551567.
33. Iraqui, I.,, S. Garcia-Sanchez,, S. Aubert,, F. Dromer,, J. M. Ghigo,, C. d’Enfert, and, G. Janbon. 2005. The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol. Microbiol. 55:12591271.
34. Jue, C. K., and, P. N. Lipke. 2002. Role of Fig2p in agglutination in Saccharomyces cerevisiae. Eukaryot. Cell 1:843845.
35. Kadosh, D., and, A. D. Johnson. 2005. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 16:29032912.
36. Kapteyn, J. C.,, L. L. Hoyer,, J. E. Hecht,, W. H. Muller,, A. Andel,, A. J. Verkleij,, M. Makarow,, H. Van Den Ende, and, F. M. Klis. 2000. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol. Microbiol. 35:601611.
37. Kapteyn, J. C.,, R. C. Montijn,, G. J. Dijkgraaf,, H. Van den Ende, and, F. M. Klis. 1995. Covalent association of β-1,3-glucan with β-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J. Bacteriol. 177:37883792.
38. Kapteyn, J. C.,, H. Van Den Ende, and, F. M. Klis. 1999. The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys. Acta 1426:373383.
39. Kauffman, C. A.,, J. A. Vazquez,, J. D. Sobel,, H. A. Gallis,, D. S. McKinsey,, A. W. Karchmer,, A. M. Sugar,, P. K. Sharkey,, G. J. Wise,, R. Mangi,, A. Mosher,, J. Y. Lee,, W. E. Dismukes, and The National Institute for Allergy and Infectious Diseases (NIAID) Mycoses Study Group. 2000. Prospective multicenter surveillance study of funguria in hospitalized patients. Clin. Infect. Dis. 30:1418.
40. Keleher, C. A.,, M. J. Redd,, J. Schultz,, M. Carlson, and, A. D. Johnson. 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709719.
41. Kellis, M.,, N. Patterson,, M. Endrizzi,, B. Birren, and, E. S. Lander. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241254.
42. Klis, F. M.,, L. H. Caro,, J. H. Vossen,, J. C. Kapteyn,, A. F. Ram,, R. C. Montijn,, M. A. Van Berkel, and, H. Van den Ende. 1997. Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem. Soc. Trans. 25:856860.
43. Klotz, S. A.,, N. K. Gaur,, D. F. Lake,, V. Chan,, J. Rauceo, and, P. N. Lipke. 2004. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect. Immun. 72:20292034.
44. Kobayashi, O.,, N. Hayashi,, R. Kuroki, and, H. Sone. 1998. Region of FLO1 proteins responsible for sugar recognition. J. Bacteriol. 180:65036510.
45. Kobayashi, O.,, H. Yoshimoto, and, H. Sone. 1999. Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae. Curr. Genet. 36:256261.
46. Kollar, R.,, B. B. Reinhold,, E. Petrakova,, H. J. Yeh,, G. Ashwell,, J. Drgonova,, J. C. Kapteyn,, F. M. Klis, and, E. Cabib. 1997. Architecture of the yeast cell wall. β(1→6)-Glucan interconnects mannoprotein, β(1→)3-glucan, and chitin. J. Biol. Chem. 272:1776217775.
47. Kuchin, S., and, M. Carlson. 1998. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol. Cell. Biol. 18:11631171.
48. Lafontaine, I.,, G. Fischer,, E. Talla, and, B. Dujon. 2004. Gene relics in the genome of the yeast Saccharomyces cerevisiae. Gene 335:117.
49. Lambrechts, M. G.,, F. F. Bauer,, J. Marmur, and, I. S. Pretorius. 1996. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc. Natl. Acad. Sci. USA 93:84198424.
50. Landry, J.,, A. Sutton,, S. T. Tafrov,, R. C. Heller,, J. Stebbins,, L. Pillus, and, R. Sternglanz. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97:58075811.
51. Leng, P.,, P. R. Lee,, H. Wu, and, A. J. Brown. 2001. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183:40904093.
52. Li, F., and, S. P. Palecek. 2003. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot. Cell 2:12661273.
53. Lipke, P. N., and, C. Hull-Pillsbury. 1984. Flocculation of Saccharomyces cerevisiae tup1 mutants. J. Bacteriol. 159:797799.
54. Lipke, P. N., and, J. Kurjan. 1992. Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56:180194.
55. Lipke, P. N., and, R. Ovalle. 1998. Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180:37353740.
56. Lipke, P. N.,, D. Wojciechowicz, and, J. Kurjan. 1989. AGα1 is the structural gene for the Saccharomyces cerevisiae α-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating. Mol. Cell. Biol. 9:31553165.
57. Liu, H.,, C. A. Styles, and, G. R. Fink. 1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144:967978.
58. Lo, W. S., and, A. M. Dranginis. 1996. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J. Bacteriol. 178:71447151.
59. Lo, W. S., and, A. M. Dranginis. 1998. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol. Biol. Cell 9:161171.
60. Loza, L.,, Y. Fu,, A. S. Ibrahim,, D. C. Sheppard,, S. G. Filler, and, J. E. Edwards, Jr. 2004. Functional analysis of the Candida albicans ALS1 gene product. Yeast 21:473482.
61. Mao, Y.,, Z. Zhang, and, B. Wong. 2003. Use of green fluorescent protein fusions to analyse the N- and C-terminal signal peptides of GPI-anchored cell wall proteins in Candida albicans. Mol. Microbiol. 50:16171628.
62. Mishra, K., and, D. Shore. 1999. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr. Biol. 9:11231126.
63. Pan, X., and, J. Heitman. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:48744887.
64. Pan, X., and, J. Heitman. 2002. Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol. Cell. Biol. 22:39813993.
65. Panozzo, C.,, M. Nawara,, C. Suski,, R. Kucharczyka,, M. Skoneczny,, A. M. Becam,, J. Rytka, and, C. J. Herbert. 2002. Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett. 517:97102.
66. Papamichos-Chronakis, M.,, R. S. Conlan,, N. Gounalaki,, T. Copf, and, D. Tzamarias. 2000. Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme. J. Biol. Chem. 275:83978403.
67. Pryde, F. E., and, E. J. Louis. 1999. Limitations of silencing at native yeast telomeres. EMBO J. 18:25382550.
68. Reynolds, T. B., and, G. R. Fink. 2001. Bakers’ yeast, a model for fungal biofilm formation. Science 291:878881.
69. Robertson, L. S., and, G. R. Fink. 1998. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc. Natl. Acad. Sci. USA 95:1378313787.
70. Roy, A.,, C. F. Lu,, D. L. Marykwas,, P. N. Lipke, and, J. Kurjan. 1991. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein α-agglutinin. Mol. Cell. Biol. 11:41964206.
71. Rupp, S.,, E. Summers,, H. J. Lo,, H. Madhani, and, G. Fink. 1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18:12571269.
72. Rusche, L. N.,, A. L. Kirchmaier, and, J. Rine. 2003. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72:481516.
73. Sandmeier, J. J.,, I. Celic,, J. D. Boeke, and, J. S. Smith. 2002. Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD+ salvage pathway. Genetics 160:877889.
74. Sheppard, D. C.,, M. R. Yeaman,, W. H. Welch,, Q. T. Phan,, Y. Fu,, A. S. Ibrahim,, S. G. Filler,, M. Zhang,, A. J. Waring, and, J. E. Edwards, Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279:3048030489.
75. Singleton, D. R.,, J. Masuoka, and, K. C. Hazen. 2001. Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J. Bacteriol. 183:35823588.
76. Smith, C. D.,, D. L. Smith,, J. L. DeRisi, and, E. H. Blackburn. 2003. Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol. Biol. Cell 14:556570.
77. Smith, J. S.,, C. B. Brachmann,, I. Celic,, M. A. Kenna,, S. Muhammad,, V. J. Starai,, J. L. Avalos,, J. C. Escalante-Semerena,, C. Grubmeyer,, C. Wolberger, and, J. D. Boeke. 2000. A phylogenetically conserved NAD+ -dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA 97:66586663.
78. Smith, R. L., and, A. D. Johnson. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem. Sci. 25:325330.
79. Sobel, J. D.,, C. A. Kauffman,, D. McKinsey,, M. Zervos,, J. A. Vazquez,, A. W. Karchmer,, J. Lee,, C. Thomas,, H. Panzer,, W. E. Dismukes, and The National Institute of Allergy and Infectious Diseases (NIAID) Mycoses Study Group. 2000. Candiduria: a randomized, double-blind study of treatment with fluconazole and placebo. Clin. Infect. Dis. 30:1924.
80. Sonneborn, A.,, D. P. Bockmuhl,, M. Gerads,, K. Kurpanek,, D. Sanglard, and, J. F. Ernst. 2000. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albi-cans. Mol. Microbiol. 35:386396.
81. Staab, J. F.,, S. D. Bradway,, P. L. Fidel, and, P. Sundstrom. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:15351538.
82. Stone, E. M., and, L. Pillus. 1996. Activation of an MAP kinase cascade leads to Sir3p hyperphosphorylation and strengthens transcriptional silencing. J. Cell. Biol. 135:571583.
83. Sundstrom, P. 2002. Adhesion in Candida spp. Cell. Microbiol. 4:461469.
84. Tanny, J. C., and, D. Moazed. 2001. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: evidence for acetyl transfer from substrate to an NAD breakdown product. Proc. Natl. Acad. Sci. USA 98:415420.
85. Teunissen, A. W., and, H. Y. Steensma. 1995. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:10011013.
86. Teunissen, A. W.,, J. A. van den Berg, and, H. Y. Steensma. 1995. Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae. Yeast 11:435446.
87. Tsukamoto, Y.,, J. Kato, and, H. Ikeda. 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388:900903.
88. Verstrepen, K. J.,, G. Derdelinckx,, H. Verachtert, and, F. R. Delvaux. 2003. Yeast flocculation: what brewers should know. Appl. Microbiol. Biotechnol. 61:197205.
89. Verstrepen, K. J.,, T. B. Reynolds, and, G. R. Fink. 2004. Origins of variation in the fungal cell surface. Natl. Rev. Microbiol. 2:533540.
90. Watson, A. D.,, D. G. Edmondson,, J. R. Bone,, Y. Mukai,, Y. Yu,, W. Du,, D. J. Stillman, and, S. Y. Roth. 2000. Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev. 14:27372744.
91. Weig, M.,, L. Jansch,, U. Gross,, C. G. De Koster,, F. M. Klis, and, P. W. De Groot. 2004. Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150:31293144.
92. Wojciechowicz, D.,, C. F. Lu,, J. Kurjan, and, P. N. Lipke. 1993. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein α-agglutinin, a member of the immunoglobulin superfamily. Mol. Cell. Biol. 13:25542563.
93. Wotton, D., and, D. Shore. 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11:748760.
94. Wu, J.,, N. Suka,, M. Carlson, and, M. Grunstein. 2001. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7:117126.
95. Zaman, Z.,, A. Z. Ansari,, S. S. Koh,, R. Young, and, M. Ptashne. 2001. Interaction of a transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role in repression. Proc. Natl. Acad. Sci. USA 98:25502554.
96. Zhang, M.,, D. Bennett, and, S. E. Erdman. 2002. Maintenance of mating cell integrity requires the adhesin Fig2p. Eukaryot. Cell 1:811822.
97. Zhang, Z., and, J. C. Reese. 2004. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J. Biol. Chem. 279:3924039250.

Tables

Generic image for table
Table 1.

GPI-CWP with roles in adherence

Citation: CastaÑo I, De Las PeÑas A, Cormack B. 2006. Function and Regulation of Adhesin Gene Families in and , p 163-175. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch11
Generic image for table
Table 2.

Transcriptional regulators of , and genes

Citation: CastaÑo I, De Las PeÑas A, Cormack B. 2006. Function and Regulation of Adhesin Gene Families in and , p 163-175. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error