1887

Chapter 16 : Amoeba and Slime Mold: Hosts of Virulence Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Amoeba and Slime Mold: Hosts of Virulence Evolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap16-2.gif

Abstract:

This chapter summarizes the available information on amoeba-fungus interactions and speculates on the origins of fungal virulence for mammalian hosts. Other organisms such as slime molds have ameboid cells that behave like amoebae in movement and feeding. Amoebae and slime molds are grouped under the kingdom Protozoa. Various studies have reported specific types of interactions and responses when amoebae and fungi are brought into contact in the laboratory. Amoeba phagocytosis can be induced by arachidonic acid and prostaglandins, a phenomenon that may be highly relevant to fungus-amoeba interactions since many species of fungi produce arachidonic acid derivatives and prostaglandins. Although each of these observations was made under artificial laboratory conditions, they suggest certain specificity to amoeba-fungus interactions that buttresses the argument that these two types of organisms frequently interact in the environment. In the late 1990s, the author revisited the question of amoeba-fungus relationships and their potential impact in fungal virulence by analyzing the interaction of and . Encapsulated cells were able to grow in the presence of , whereas nonencapsulated cells were killed. However, the observations with amoebae, slime molds, and nematodes suggest that traits associated with virulence for mammals also play a role in promoting the survival of following interactions with environmental predators. Fungi that are under selection by amoeba predation, that grow at mammalian temperatures, that tolerate slightly alkaline pH, and that have suitable adhesions may be able to establish themselves in a mammalian host.

Citation: Casadevall A. 2006. Amoeba and Slime Mold: Hosts of Virulence Evolution, p 227-234. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Transmission electron micrograph of cells interacting with . (A and B) Two separate phagocytic events occurring 2 h after incubation of fungal cells with amoebae. (C and D) Yeast cells in a membrane-bound vacuole surrounding the fungal cell 2 h after infection of the amoeba suspension with fungal cells. (E) Two individual fungal cells in separate phagocytic compartments, indicating two independent phagocytic events. Magnification, ×15,000 (panels A, B, and E) and ×12,000 (panels C and D). Reprinted from reference with permission.

Citation: Casadevall A. 2006. Amoeba and Slime Mold: Hosts of Virulence Evolution, p 227-234. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Transmission electron micrographs of cells interacting with . (A) is being engulfed by the pseudopods of a cell after 2 h of incubation of fungal and amoeboid cells. (B) Two individual phagocytic events by one cell 2 h postinfection. In one event, the cells are in membrane-bound vacuoles. The second event shows a budding cell in a vacuole. Magnification, ×24,000 (panel A) and ×18,000 (panel B). Reprinted from reference with permission.

Citation: Casadevall A. 2006. Amoeba and Slime Mold: Hosts of Virulence Evolution, p 227-234. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815776.ch16
1. Allen, P. G., and, E. A. Dawidowicz. 1990. Phagocytosis in Acanthamoeba. I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J. Cell. Physiol. 145:508513.
2. Allen, P. G., and, E. A. Dawidowicz. 1990. Phagocytosis in Acanthamoeba. II. Soluble and insoluble mannose-rich ligands stimulate phosphoinositide metabolism. J. Cell. Physiol. 145:514521.
3. Bowers, B., and, T. E. Olszewski. 1983. Acanthamoeba discriminates internally between digestible and indigestible particles. J. Cell. Biol. 97:317322.
4. Bulmer, G. S., and, J. R. Tacker. 1975. Phagocytosis of Cryptococcus neoformans by alveolar macrophages. Infect. Immun. 11:7379.
5. Bunting, L. A.,, J. B. Neilson, and, G. S. Bulmer. 1979. Cryptococcus neoformans: gastronomic delight of a soil ameba. Sabouraudia 17:225232.
6. Casadevall, A. 2005. Fungal virulence, vertebrate endothermy, and dinosaur extinction: is there a connection? Fungal Genet. Biol. 42:21322142.
7. Casadevall, A.,, J. D. Nosanchuk, and, J. N. Steenbergen. 2003. ‘Ready-made’ virulence and ‘dual-use’ virulence factors in pathogenic enviromental fungi—the Cryptococcus neoformans paradigm. Curr. Opin. Microbiol. 112:11641175.
8. Casadevall, A., and, L. Pirofski. 2003. The damage-response framework of microbial pathogenesis. Nat. Microbiol. Rev. 1:1724.
9. Castellani, A. 1931. An amoeba growing in cultures of a yeast. J. Trop. Med. Hyg. 33:188191.
10. Castellani, A. 1955. Phagocytic and destructive action of Hartmanella castellanii (Amoeba castellanii) on pathogenic encapsulated yeast-like fungus Torulopsis neofor-mans (Cryptococcus neoformans). Ann. Inst. Pasteur 89:17.
11. Cirillo, J. D.,, S. L. Cirillo,, L. Yan,, L. E. Bermudez,, S. Falkow, and, L. S. Tompkins. 1999. Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect. Immun. 67:44274434.
12. Cirillo, J. D.,, S. Falkow,, L. S. Tompkins, and, L. E. Bermudez. 1997. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65:37593767.
13. Diamond, R. D., and, J. E. Bennett. 1973. Growth of Cryptococcus neoformans within human macrophages in vitro. Infect. Immun. 7:231236.
14. Elliot, S. L.,, S. Blanford, and, M. B. Thomas. 2002. Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc. R. Soc. Lond. Ser. B. 269:15991607.
15. Ettinger, M. R.,, S. R. Webb,, S. A. Harris,, S. P. McIninch,, C. Garman, and, B. L. Brown. 2003. Distribution of free-living amoebae in James River, Virginia, USA. Parasitol. Res. 89:615.
16. Feldmesser, M.,, Y. Kress,, P. Novikoff, and, A. Casadevall. 2000. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68:42254237.
17. Franzot, S. P.,, J. Mukherjee,, R. Cherniak,, L. Chen,, J. S. Hamdan, and, A. Casadevall. 1998. Microevolution of a standard strain of Cryptococcus neoformans resulting in differences in virulence and other phenotypes. Infect. Immun. 66:8997.
18. Fries, B. C.,, D. L. Goldman,, R. Cherniak,, R. Ju, and, A. Casadevall. 1999. Phenotypic switching in Cryptococcus neoformans strain 24067A associated with changes in virulence, polysaccharide structure, and cellular morphology. Infect. Immun. 67:60766083.
19. Goldman, D. L.,, H. Khine,, J. Abadi,, D. J. Lindenberg,, L. Pirofski,, R. Niang, and, A. Casadevall. 2001. Serologic evidence for Cryptococcus infection in early childhood. Pediatrics 107:E66.
20. Greub, G., and, D. Raoult. 2004. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17:413433.
21. Hawksworth, D. L. 2001. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol. Res. 105:14221432.
22. Kluger, M. J.,, W. Kozak,, C. A. Conn,, L. R. Leon, and, D. Soszynski. 1998. Role of fever in disease. Ann. N. Y. Acad. Sci. 856:224233.
23. Kwon-Chung, K. J., and, J. E. Bennett. 1992. Medical Mycology. Lea & Febiger, Philadelphia, Pa.
24. Leggiadro, R. J.,, G. S. Luedtke,, A. Convey,, L. Gibson, and, F. F. Barrett. 1991. Prevalence of histoplasmosis in a midsouthern population. South. Med. J. 84:13601361.
25. Malliaris, S. D.,, J. N. Steenbergen, and, A. Casadevall. 2004. Cryptococcus neoformans var. gattii can exploit Acanthamoeba castellanii for growth. Med. Mycol. 42:149158.
26. Mylonakis, E.,, F. M. Ausubel,, J. R. Perfect,, J. Heitman, and, S. B. Calderwood. 2002. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99:1567515680.
27. Napolitano, J. J. 1982. Isolation of amoebae from edible mushrooms. Appl. Environ. Microbiol. 44:255257.
28. Neilson, J. B.,, R. A. Fromtling, and, G. S. Bulmer. 1981. Pseudohyphal forms of Cryptococcus neoformans: decreased survival in vivo. Mycopathologia 73:5759.
29. Neilson, J. B.,, M. H. Ivey, and, G. S. Bulmer. 1978. Cryptococcus neoformans: pseudohyphal forms surviving culture with Acanthamoeba polyphaga. Infect. Immun. 20:262266.
30. Nero, L. C.,, M. G. Tarver, and, L. R. Hedrick. 1964. Growth of Acanthamoeba castellani with the yeast Torulopsis famata. J. Bacteriol. 87:220225.
31. Noverr, M. C.,, J. R. Erb-Downward, and, G. B. Huffnagle. 2003. Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin. Microbiol. Rev. 16:517533.
32. Noverr, M. C.,, G. B. Toews, and, G. B. Huffnagle. 2002. Production of prostaglandins and leukotrienes by pathogenic fungi. Infect. Immun. 70:400402.
33. Prusch, R. D.,, S. M. Goette, and, P. Haberman. 1989. Prostaglandins may play a signal-coupling role during phagocytosis in Amoeba proteus. Cell Tissue Res. 255:553557.
34. Rigothier, M. C.,, J. Maccario, and, P. Gayral. 1994. Inhibitory activity of Saccharomyces yeasts on the adhesion of Entamoeba histolytica trophozoites to human erythrocytes in vitro. Parasitol. Res. 80:1015.
35. Rivera, F.,, F. Medina,, P. Ramirez,, J. Alcocer,, G. Vilaclara, and, E. Robles. 1984. Pathogenic and free-living protozoa cultured from the nasopharyngeal and oral regions of dental patients. Environ. Res. 33:428440.
36. Robinson, B. S.,, S. S. Bamforth, and, P. J. Dobson. 2002. Density and diversity of protozoa in some arid Australian soils. J. Eukaryot. Microbiol. 49:449453.
37. Rodriguez-Zaragoza, S. 1994. Ecology of free-living amoebae. Crit. Rev. Microbiol. 20:225241.
38. Rodriguez-Zaragoza, S.,, F. Rivera,, P. Bonilla,, E. Ramirez,, E. Gallegos,, A. Calderon,, R. Ortiz, and, D. Hernandez. 1993. Amoebological study of the atmosphere of San Luis Potosi, SLP, Mexico. J. Expo. Anal. Environ. Epidemiol. 3(Suppl. 1):229241.
39. Ruiz, A.,, R. A. Fromtling, and, G. S. Bulmer. 1981. Distribution of Cryptococcus neoformans in a natural site. Infect. Immun. 31:560563.
40. Ruiz, A.,, J. B. Neilson, and, G. S. Bulmer. 1982. Control of Cryptococcus neoformans in nature by biotic factors. Sabouraudia 20:2129.
41. Sheehan, K. B.,, J. A. Fagg,, M. J. Ferris, and, J. M. Henson. 2003. PCR detection and analysis of the free-living amoeba Naegleria in hot springs in Yellowstone and Grand Teton National Parks. Appl. Environ. Microbiol. 69:59145918.
42. Steenbergen, J. N.,, J. D. Nosanchuk,, S. D. Malliaris, and, A. Casadevall. 2003. Cryptococcus neoformans virulence is enhanced after intracellular growth in the genetically malleable host Dictyostelium discoideum. Infect. Immun. 71:48624872.
43. Steenbergen, J. N.,, J. D. Nosanchuk,, S. D. Malliaris, and, A. Casadevall. 2004. Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with Acanthamoeba castellanii. Infect. Immun. 72:34783488.
44. Steenbergen, J. N.,, H. A. Shuman, and, A. Casadevall. 2001. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad. Sci. USA 98:1524515250.
45. Swanson, M. S., and, B. K. Hammer. 2000. Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu. Rev. Microbiol. 54:567613.
46. Thong, Y. H.,, A. Ferrante, and, C. Shepherd. 1978. Phagocytic behaviour towards baker’s yeast distinguishes pathogenic from non-pathogenic Naegleria. Trans. R. Soc. Trop. Med. Hyg. 72:207209.
47. Tucker, S. C., and, A. Casadevall. 2002. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl. Acad. Sci. USA 99:31653170.
48. Upadhyay, J. M. 1968. Growth and bacteriolytic activity of a soil amoeba, Hartmannella glebae. J. Bacteriol. 95:771774.
49. Winiecka-Krusnell, J., and, E. Linder. 2001. Bacterial infections of free-living amoebae. Res. Microbiol. 152:613619.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error