1887

Chapter 20 : Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap20-2.gif

Abstract:

Investigation by wildlife biologists into the cause of the decline of amphibian populations has revealed that many factors (e.g., pollution, habitat loss, and invasive species) are likely to be involved. As basal fungi, Chytridiomycetes have presumably retained many of the characteristics of the last common ancestor with other Fungi millions of years ago. Chytridiomycosis is now considered to be an emerging infectious disease afflicting a wide range of frog species. Two goals of population genetic studies are to determine whether the disease has emerged due to recent introduction and to determine where the fungus came from and how has it been dispersed. First, a global sample of 35 isolates revealed only three variable nucleotides among nearly 6,000 surveyed positions. Second, direct sequencing of PCR-amplified gene regions demonstrated multiple sequence types per strain at 4 of the 10 loci examined. The investigation of emerging infectious fungal diseases of wildlife can help elucidate principles shared among all pathogenic fungi. As a model system, informs us about general principles of mycoses, such as invasive growth and evasion of host immunity. Chytridiomycosis has the added advantage that both host and parasite are amenable to experimentation. Quarantines are needed to protect wildlife resources and to prevent the spread of future zoonoses. Changes in the environment may trigger emerging infectious disease epidemics. Identification of asexual lineages can be facilitated by detecting fixed heterozygosity as in other parasitic protozoa and oomycetes.

Citation: James T, Vilgalys R. 2006. Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?, p 271-278. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch20

Key Concept Ranking

West nile virus
0.4638177
Multilocus Sequence Typing
0.4256251
Transmission Electron Microscopy
0.41886914
0.4638177
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Scanning electron micrograph of the digital skin of the frog infected with . Shown is the superficial layer of skin, displaying marked roughening and numerous cells containing sporangia. The arrow indicates discharge tubes of the sporangia from which zoospores are released. Bar, 10 μm. Reprinted from reference with permission.

Citation: James T, Vilgalys R. 2006. Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?, p 271-278. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Ultrastructural diagram of the zoospore of . ce, cytoplasmic extension; er, endoplasmic reticulum; G, Golgi apparatus; K, kinetosome; L, lipid globule; M, mitochondrion; mb, microbody; nfc, nonflagellated centriole; N, nucleus; P, prop; R, ribosomes; Va, vacuole. Reprinted from reference with permission.

Citation: James T, Vilgalys R. 2006. Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?, p 271-278. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815776.ch20
1. Anderson, T. J. C.,, B. Haubold,, J. T. Williams,, J. G. Estrada-Franco,, L. Richardson,, R. Mollinedo,, M. Bockarie,, J. Mokili,, S. Mharakurva,, N. French,, J. Whitworth,, I. D. Velez,, A. H. Brockman,, F. Nosten,, M. U. Ferreira, and, K. P. Day. 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol. 17:14671482.
2. Annis, S. L.,, F. P. Dastoor,, H. Ziel,, P. Daszak, and, J. E. Longcore. 2004. A DNA-based assay identifies Batrachochytrium dendrobatidis in amphibians. J. Wildl. Dis. 40:420428.
3. Barr, D. J. S. 1987. Isolation, culture and identification of Chytridiales, Spizellomycetales, and Hyphochytriales, p. 118120. In M. S. Fuller and, A. Jaworski (ed.), Zoosporic Fungi in Teaching and Research. Southeastern Publishing Corp., Athens, Ga.
4. Bell, B. D.,, S. Carver,, N. J. Mitchell, and, S. Pledger. 2004. The recent decline of a New Zealand endemic: how and why did populations of Archey’s frog Leiopelma archeyi crash over 1996–2001? Biol. Conserv. 120:189199.
5. Berbee, M. L., and, J. W. Taylor. 2001. Fungal molecular evolution: gene trees and geologic time, p. 229245. In D. J. McLaughlin,, E. G. McLaughlin, and, P. A. Lemke (ed.), The Mycota, vol. 7B. Systematics and Evolution. Springer-Verlag KG, Berlin, Germany.
6. Berger, L. 2001. Diseases in Australian Frogs. Ph.D. dissertation. James Cook University, Townsville, Australia.
7. Berger, L.,, R. Speare,, P. Daszak,, D. E. Green,, A. A. Cunningham,, C. L. Goggin,, R. Slocombe,, M. A. Ragan,, A. D. Hyatt,, K. R. McDonald,, H. B. Hines,, K. R. Lips,, G. Marantelli, and, H. Parkes. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. USA 95:90319036.
8. Berger, L.,, R. Speare, and, A. D. Hyatt. 1999. Chytrid fungi and amphibian declines: overview, implications and future directions, p. 2333. In A. Campbell (ed.), Declines and Disappearances of Australian Frogs. Declines Environment Australia, Canberra.
9. Blaustein, A. R., and, D. B. Wake. 1990. Declining amphibian populations: a global phenomenon. Trends Ecol. Evol. 5:203204.
10. Blaustein, A. R.,, J. M. Romansic,, J. M. Kiesecker, and, A. C. Hatch. 2003. Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers. Distrib. 9:123140.
11. Bosch, J.,, I. Martínez-Solano, and, M. García-París. 2001. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97:331337.
12. Boyle, D. G.,, D. B. Boyle,, V. Olsen,, J. A. Morgan, and, A. D. Hyatt. 2004. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60:141148.
13. Carey, C.,, N. Cohen, and, L. A. Rollins-Smith. 1999. Amphibian declines: an immunological perspective. Dev. Comp. Immunol. 23:459472.
14. Cavalier-Smith, T. 2001. What are fungi? p. 337. In D. J. McLaughlin,, E. G. McLaughlin, and, P. A. Lemke (ed.), The Mycota, vol. 7A. Systematics and Evolution. Springer-Verlag KG, Berlin, Germany.
15. Collins, J. P., and, A. Storfer. 2003. Global amphibian declines: sorting the hypotheses. Divers. Distrib. 9:8998.
16. Cowen, L. E.,, J. B. Anderson, and, L. M. Kohn. 2002. Evolution of drug resistance in Candida albicans. Annu. Rev. Microbiol. 56:139165.
17. Daszak, P.,, L. Berger,, A. A. Cunningham,, A. D. Hyatt,, D. E. Green, and, R. Speare. 1999. Emerging infectious diseases and amphibian population declines. Emerg. Infect. Dis. 5:735748.
18. Daszak, P.,, A. A. Cunningham, and, A. D. Hyatt. 2000. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443449.
19. Daszak, P.,, A. A. Cunningham, and, A. D. Hyatt. 2001. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78:103116.
20. Daszak, P.,, A. A. Cunningham, and, A. D. Hyatt. 2003. Infectious disease and amphibian population declines. Divers. Distrib. 9:141150.
21. Fuller, M. S. 1977. The zoospore, hallmark of the aquatic fungi. Mycologia 69:120.
22. Goodwin, S. B.,, B. A. Cohen, and, W. E. Fry. 1994. Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proc. Natl. Acad. Sci. USA 91:1159111595.
23. Goodwin, S. B. 1997. The population genetics of Phytophthora. Phytopathology 87:462473.
24. Hanselmann, R.,, A. Rodríguez,, M. Lampo,, L. Fajardo-Ramos,, A. A. Aguirre,, A. M. Kilpatrick,, J. P. Rodríguez, and, P. Daszak. 2004. Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biol. Conserv. 120:115119.
25. Houlahan, J. E.,, C. S. Findlay,, B. R. Schmidt,, A. H. Meyer, and, S. L. Kuzmin. 2000. Quantitative evidence for global amphibian population declines. Nature 404:752755.
26. Hull, C. M., and, J. Heitman. 2002. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 36:557615.
27. James, T. Y.,, D. Porter,, C. A. Leander,, R. Vilgalys, and, J. E. Longcore. 2000. Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Can. J. Bot. 78:336350.
28. Johnson, M. L., and, R. Speare. 2003. Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerg. Infect. Dis. 9:922925.
29. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:73297334.
30. Laurance, W. F.,, K. R. McDonald, and, R. Speare. 1996. Epidemic disease and the catastrophic decline of Australian rain forest frogs. Conserv. Biol. 10:406413.
31. Lips, K. R. 1998. Decline of a tropical montane amphibian fauna. Conserv. Biol. 12:106117.
32. Lips, K. R. 1999. Mass mortality and population declines of anurans at an upland site in western Panama. Conserv. Biol. 13:117125.
33. Liu, Y.,, M. Hodson, and, B. Hall. 2003. Heterozygosity in chytrids. Fungal Genet. Newsl. 50 (Suppl):459.
34. Longcore, J. E.,, A. P. Pessier, and, D. K. Nichols. 1999. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219227.
35. Mazzoni, R.,, A. A. Cunningham,, P. Daszak,, A. Apolo,, E. Perdomo, and, G. Speranza. 2003. Emerging pathogen of wild amphibians in frogs (Rana catesbeiana) farmed for international trade. Emerg. Infect. Dis. 9:995998.
36. Mor, A.,, K. Hani, and, P. Nicolas. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem. 269:3163531641.
37. Morehouse, E. A.,, T. Y. James,, A. R. D. Ganley,, R. Vilgalys,, L. Berger,, P. J. Murphy, and, J. E. Longcore. 2003. Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol. Ecol. 12:395403.
38. Morse, S. S. 1995. Factors in the emergence of infectious diseases. Emerg. Infect. Dis. 1:715.
39. Nichols, D. K.,, E. W. Lamirande,, A. P. Pessier, and, J. E. Longcore. 2001. Experimental transmission of cutaneous chytridiomycosis in dendrobatid frogs. J. Wildl. Dis. 37:111.
40. Paquin, B.,, M. J. Laforest,, L. Forget,, I. Roewer,, Z. Wang,, J. Longcore, and, B. F. Lang. 1997. The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr. Genet. 31:380395.
41. Parris, M. J., and, J. G. Beaudoin. 2004. Chytridiomycosis impacts predator-prey interactions in larval amphibian communities. Oecologia 140:626632.
42. Piotrowski, J. S.,, S. L. Annis, and, J. E. Longcore. 2004. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:915.
43. Pounds, J. A.,, M. P. L. Fogden, and, J. H. Campbell. 1999. Biological response to climate change on a tropical mountain. Nature 398:611615.
44. Powell, M. J. 1993. Looking at mycology with a Janus face: a glimpse at Chytridiomycetes active in the environment. Mycologia 85:120.
45. Reed, K. D.,, G. R. Ruth,, J. A. Meyer, and, S. K. Shukla. 2000. Chlamydia pneumoniae infection in a breeding colony of African clawed frogs (Xenopus tropicalis). Emerg. Infect. Dis. 6:196199.
46. Retallick, R. W. R.,, H. McCallum, and, R. Speare. 2004. Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol. 2:e351.
47. Richards, S. J.,, K. R. McDonald, and, R. A. Alford. 1993. Declines in populations of Australia’s endemic tropical forest frogs. Pac. Conserv. Biol. 1:6677.
48. Ristaino, J. B.,, C. T. Groves, and, G. R. Parra. 2001. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411:695697.
49. Rollins-Smith, L. A.,, L. K. Reinert,, V. Miera, and, J. M. Conlon. 2002. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochem. Biophys. Res. Commun. 297:361367.
50. Rollins-Smith, L. A.,, C. Carey,, J. M. Conlon,, L. K. Reinert,, J. K. Doersam,, T. Bergman,, J. Silberring,, H. Lankinen, and, D. Wade. 2003. Activities of temporin family peptides against the chytrid fungus (Batrachochytrium dendrobatidis) associated with global amphibian declines. Antimicrob. Agents Chemother. 47:11571160.
51. Stuart, S. N.,, J. S. Chanson,, N. A. Cox,, B. E. Young,, A. S. L. Rodrigues,, D. L. Fischman, and, R. W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306:17831786.
52. Taylor, T. N., and, E. L. Taylor. 1997. The distribution and interactions of some Paleozoic fungi. Rev. Palaeobot. Palynol. 95:8394.
53. Tibayrenc, M.,, F. Kjellberg, and, F. J. Ayala. 1990. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87:24142418.
54. Wake, D. B. 1991. Declining amphibian populations. Science 253:860.
55. Weitzman, I., and, R. C. Summerbell. 1995. The dermatophytes. Clin. Microbiol. Rev. 8:240259.
56. Woodhams, D. C.,, R. A. Alford, and, G. Marantelli. 2003. Emerging disease of amphibians cured by elevated body temperature. Dis. Aquat. Org. 55:6567.
57. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389395.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error