1887

Chapter 26 : Virulence Mechanisms of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Virulence Mechanisms of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap26-2.gif

Abstract:

This chapter examines the various mechanisms utilized by to survive within the hostile environment of the host. Much of the discussion which follows in this chapter is dependent on the understanding of the events that occur during conidiogenesis and stages of parasitic cell development of within the mammalian host. The authors have reported that extracts of arthroconidia can inhibit in vitro production of superoxide anion by rat alveolar macrophages. Not surprisingly, BLASTx searches of the translated genomic database of have identified homologs of reported fungal Cu/Zn superoxide dismutases (SODs), catalases , glutathione peroxidases, and thioredoxin peroxidases. They have cloned the ARG gene of and determined that its level of expression during the infection cycle within murine lung tissue is constitutive. The chapter presents evidence that is well equipped with mechanisms to withstand an attack by the sophisticated innate and acquired immune defense systems of the mammalian host. The final section of the chapter examines the impact of a biased Th2 pathway of the immune response to infection on macrophage function. This discussion of virulence mechanisms of is intended to stimulate research, since the majority of factors described are in need of further investigation.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26

Key Concept Ranking

Infection and Immunity
0.5155186
Tumor Necrosis Factor alpha
0.43282592
Transforming Growth Factor beta
0.40962416
0.5155186
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

The saprobic and parasitic cycles of

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Morphological features of arthroconidia and spherule initials. (A) Thin section of arthroconidium. The outer conidial wall (OCW) contains hydrophobins which appear as fascicles of rodlets (inset) at the cell surface. ICW, inner conidial wall; Mt, mitochondrion; N, nucleus. Bar, 1μm (inset, 20 nm). (B and C) Arthroconidia grown on plate culture containing glucose-salts medium (126) supplemented with L-DOPA (1 mM) were reacted with either a monoclonal antibody raised against melanin (6D2) (B) or a control monoclonal antibody raised against glucuronoxylomannan (2D10) (C), both provided by J. Nosanchuk. The cells were subsequently exposed to fluorescein isothiocyanate-conjugated goat anti-mouse Ig. Bar in panel B represents 2μm. (D) Mithramycin-stained spherule initials (germinated arthroconidia) grown at 37°C in the presence of murine tracheal explants. Bar, 4μm. (E) Thin section of spherule initial, grown as described in panel D, revealing an early stage in differentiation of the lipid-rich spherule outer wall (SOW) layer. Remnants of the outer conidial wall (OCW) are visible. Bar, 2μm. (F) Mithramycin-stained, multinucleate spherule which had nearly completed its isotropic growth phase. Note the presence of a large, central vacuole. Bar, 10μm.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Spherule segmentation and early stage of endospore differentiation. (A to C) Thin sections of spherules which show early stages of segmentation wall formation. Pm, plasma membrane; Sph. wall, spherule wall. Bar, 1μm. (D) Thin section of segmented spherule showing compartments formed by growth and fusion of invaginated segmentation wall (Seg. wall). Note the residual cytoplasm trapped between vacuolar membrane and compartments. Bar, 5μm. (E) Thin section of spherule at early stage of endosporulation. Note that the vacuolar membrane has ruptured, spheroidal endospores (End.) have been released from compartments, and the segmentation wall has partially disappeared. Arrow indicates cytoplasmic debris. Bar, 4μm.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Digestion of the segmentation wall is essential for endospore maturation. (A) Thin section of endospores contained within the maternal spherule. Note the fragments of digested segmentation wall (Seg. wall). EW, endospore wall. Bar, 1μm. (B and C) Light micrographs of endosporulating spherules (B) and sterile spherules (C) derived from cultures of the wild-type (parental) strain of and the ∆cts2/∆cts3 mutant strain, respectively. Bar, 20μm. (D) Survival plot of BALB/c mice challenged intranasally with arthroconidia derived from the parental strain (C735) or arthroconidia isolated from the single or double chitinase gene knockout strains. Mice were challenged separately with 50 arthroconidia of the parental, ∆cts2, and ∆cts3 strains and with 200 conidia of the ∆cts2/∆cts3 strain.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Endospore release and host response. (A) Hemotoxylin-eosin-stained paraffin section through a terminal bronchiole of a mouse lung infected with (C735 strain), showing an abundance of neutrophils (PMNs) which have surrounded and entered a ruptured spherule. Bar, 20μm. (B) Periodic acid-Schiff-stained paraffin section of mature, ruptured spherules in an infected murine lung. Bar, 20μm.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Sensitivity of cell types to nitric oxide exposure. Arthroconidia, spherule initials (germinated arthroconidia after 48 h of incubation in glucose-salts medium), and segmented/endosporulating spherules (from 144-h parasitic-phase cultures) were isolated, washed in PBS, and transferred to 96-well plates (10 cells in 100 μl of PBS per well), to which different amounts of SIN-1 were added as indicated. The 96-well plates were sealed and incubated in the absence of light at 37°C for 3 or 6 h. Control cells were incubated in PBS alone. Serial dilutions of the cell suspensions were plated onto GYE medium to determine number of viable fungal cells, which were recorded as CFU. The data are presented as percentage of growth inhibition, which was calculated on the basis of the formula [1 — (CFU of SIN-1-exposed cells ÷ CFU of control cell suspension)] × 100%.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

down-regulates TNF-α production by macrophages. (A) Thin-layer chromatographic separation of SOW polar lipids using chloroform-acetic acid-methanol-water (150:50:10:4.4) as the solvent. (B) Arthroconidia (Arth.) and/or spherule initials (Sph.In) (as described in the legend to Fig. 6 ) were harvested, washed in PBS, and coincubated with a macrophage cell line (RAW 2647, American Type Culture Collection, Manassas, Va.) (1:1 ratio) for 4 h in Dulbecco modified Eagle medium as reported ( ). The supernatants were isolated, and the TNF-α was quantified by ELISA using an OptEIA mouse TNF-α detection kit (PharMingen, San Diego, Calif.). In a separate experiment, macrophages were exposed to cytochalasin D (2.5μg/ml of 1% dimethyl sulfoxide [final concentration]; Biosource, Camarillo, Calif.) for 2 h prior to incubation with fungal cells in order to inhibit phagocytosis. Also, in a separate experiment, spherule initials were extracted with chloroform-methanol (2:1; high-performance liquid chomatography grade) (chlor:meth extract) for 30 min at 4°C as reported previously ( ), the extract supernatant was collected by centrifugation, and the lipid layer was aspirated, dried in an N stream, and resuspended in petroleum ether (PE). No protein could be detected in this extract by SDS-PAGE. Aliquots of the resolubilized extract were tested for their effect on TNF-α production by macrophages as described in the text. The extracted, intact spherule initials were also tested for their influence on TNF-α production. (C) Quantitative real-time PCR analysis of expression in vitro during stages of parasitic cell development. Relative amounts of transcript produced by spherule initials (Sph. In.) and endosporulating spherules (End. Sph.) were compared to that of segmented spherules (Seg. Sph.), which was assigned an arbitrary value of 1.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

SOWgp is an immunodominant, parasitic cell surface antigen. (A) Structure of the SOWgp antigen (Silveira isolate). (B) Bacterialy expressed, full-length recombinant SOWgp protein (mature protein [MP]) and fragments of SOWgp (83-residue N-terminal fragment [N-t], 179-residue repeat fragment [Rpt.], and 67-residue C-terminal fragment [C-t]) were separated by SDS-PAGE and tested in an immunoblot assay for reactivity with antiserum from a patient with confirmed coccidioidomycosis. The lower-molecular-mass band in the lane containing the C-t fragment is an peptide contaminant. (C) Results of ELISA showing reactivity of the recombinant repeat fragment (Rpt.) of SOWgp with control human sera and sera from patients with confirmed coccidioidal infection. The concentration of the recombinant repeat protein bound to wells of the microtiter plate was 10 ng/well. Goat anti-human IgG (H + L) conjugated to peroxiclase was used for detection of adsorbed antibody. Antibody titers were determined as reported previously ( ).

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Mep1 digestion of SOWgp permits endospores to evade host detection. A phase contrast micrograph (A) and a matching immunofluorescence light micrograph (B) of a spherule which has released its endospores are shown. The cells in panel B were incubated with antibody raised against purified, native SOWgp. Note the absence of fluorescent antibody reactivity with the surface of endospores, contrasting with the high avidity of antibody for the walls of the ruptured and nonruptured spherules. Bar, 40μm.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Host exposure to SOWgp contributes to Th2-biased immune response to infection. (A) C57BL/6 mice were challenged by the intranasal route with 35 viable arthroconidia of (C735 strain) and euthanized 30 days later. Total splenocytes were pooled from three infected animals, and T cells were isolated as reported previously ( ). The T cells were transferred to RPMI plus 10% FBS, stimulated with two different concentrations of purified native SOWgp, and incubated for 48 h. Control cells were incubated in medium alone. The super-natants were tested for the concentration of selected cytokines as reported previously ( ). (B) Normal C57BL/6 mice ( ) or B-cell knockout mice (-6) were challenged as in panel A, their T cells were isolated and stimulated with the recombinant repeat fragment of SOWgp (rSOWgp rpt.) (10μg/ml), and the concentrations of selected cytokines were determined as above. (C) Results of ELISA with mouse sera obtained from -infected animals immunized with the rSOWgp repeat fragment (1μg/dose; twice) versus nonimmunized controls. Mice were challenged intranasally 4 weeks after immunization, and their antibody titers against the recombinant repeat protein were determined as reported previously ( ).

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Macrophage engulfment of the SOW/SOWgp complex stimulates production of Th2-type cytokines. (A) Thin section of presegmented spherule showing the surface layer of SOW plus SOWgp (stained with lipophilic osmium tetroxide). Fragments of this stained layer have been shed and engulfed by phagocytes. Bar, 4μm. (B) Groups of BALB/c mice were challenged separately by the intranasal route with an equal number of viable arthroconidia (approximately 80) derived from either the parental strain (C735) or the ∆sowgp mutant strain. BAL fluid samples were collected at various times post-challenge, and the concentration of selected cytokines at each time point was determined by ELISA as reported previously ( ). BAL fluid samples from three mice per time point were examined.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Summary of metabolic events which occur in murine macrophages in response to Th2-type cytokine stimulation. A shift in balance between arginase I and iNOS activity in the direction of the former results in depletion of arginine and reduction in NO production but increased synthesis of ornithine and urea. Fungal uptake of urea and the concomitant increase in intracellular and extracellular urease activity results in high concentrations of NH/NH secreted by the pathogen at sites of infection.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

An elevated level of host arginase I production compromises the host response to coccidioidal infection. (A) Quantitative real-time PCR of murine arginase I () expression in the lungs of C57BL/6 mice at 7 days after intranasal infection with 80 arthroconidia isolated from either the parental (P) or mutant (∆sowgp) strain of , compared to expression of the constitutive murine glyceraldehyde-3-phosphate dehydrogenase () gene. Control mice were challenged with PBS alone. The data are presented as the mean values from analyses of three mice for each group. The value indicates a significant difference between the two groups of infected C57BL/6 mice. (B) BAL fluid samples collected from C57BL/6 mice at 7 days after intranasal infection with 80 arthroconidia from either the parental (P) or mutant (∆sowgp) strain were separated by SDS-PAGE and immunoblotted using anti-arginase I (α-Arg I) monoclonal antibody (1:500; BD Biosciences PharMingen, Franklin Lakes, N.J.). (C) Quantitative real-time PCR of murine iNOS gene expression in the lungs of mice infected with either the parental (P) or mutant (∆sowgp) strain of . Infection conditions were the same as in the experiment in panel A. (D) BALB/c mice treated with an inhibitor of arginase I activity (nor-LOHA; Alexis, San Diego, Calif.) prior to and after intranasal challenge with a lethal inoculum of (80 arthroconidia) showed a significant increase in percent survival compared to untreated mice. Noninfected control mice were treated with nor-LOHA alone. Administration of nor-LOHA was via the intraperitoneal route, beginning 1 h prior to infection (6 mg/kg of body weight in 100μl of PBS; lipopolysaccharide free), followed by intraperitoneal administration of the same amount of nor-LOHA once per day for 45 days post-challenge.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

(A) Summary of putative virulence factors expressed by arthroconidia, spherule initials, and endospores of during their interaction with host phagocytes. (B) Summary of putative virulence factors expressed by mature spherules and endosporulating spherules of during their extracellular association with the host. ArgI, host arginase I; FA, fatty acids; Mϕ, macrophage; PGs, prostaglandins; Plb, phospholipase B; Mep1, secreted metalloproteinase; PMN, polymorphonuclear neutrophil.

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815776.ch26
1. Aguirre, K. M., and, G. W. Gibson. 2000. Differing requirement for inducible nitric oxide synthase activity in clearance of primary and secondary Cryptococcus neoformans infection. Med. Mycol. 38:343353.
2. Allendoerfer, R., and, G. S. Deepe, Jr. 2000. Regulation of infection with Histoplasma capsulatum by TNFR1 and -2. J. Immunol. 165:26572664.
3. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
4. Ampel, N. M. 2004. Combating opportunistic infections: coccidioidomycosis. Expert Opin. Pharmacother. 5:255261.
5. Ampel, N. M. 1999. Delayed-type hypersensitivity, in vitro T-cell responsiveness and risk of active coccidioidomycosis among HIV-infected patients living in the coccidioidal endemic area. Med. Mycol. 37:245250.
6. Ampel, N. M.,, G. C. Bejarano, and, J. N. Galgiani. 1992. Killing of Coccidioides immitis by human peripheral blood mononuclear cells. Infect. Immun. 60:42004204.
7. Ampel, N. M.,, D. G. Mosley,, B. England,, P. D. Vertz,, K. Komatsu, and, R. A. Hajjeh. 1998. Coccidioidomycosis in Arizona: increase in incidence from 1990 to 1995. Clin. Infect. Dis. 27:15281530.
8. Arruda, C.,, R. C. Valente-Ferreira,, A. Pina,, S. S. Kashino,, R. A. Fazioli,, C. A. C. Vaz,, M. Franco,, A. C. Keller, and, V. L. G. Calich. 2004. Dual role of interleukin-4 (IL-4) in pulmonary paracoccidioidomycosis: endogenous IL-4 can induce protection or exacerbation of disease depending on the host genetic pattern. Infect. Immun. 72:39323940.
9. Bakouche, Q.,, F. David, and, D. Gerlier. 1987. Impairment of immunogenicity by antigen presentation in liposomes made from dimyristoylphosphatidylethanolamine linked to the secretion of prostaglandins by macrophages. Eur. J. Immunol. 17:18391842.
10. Beaman, L. 1987. Fungicidal activation of murine macrophages by recombinant gamma interferon. Infect. Immun. 55:29512955.
11. Beckman, J. S.,, T. W. Beckman,, J. Chen,, P. A. Marshall, and, B. A. Freeman. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:16201624.
12. Bermudez, L. E., and, L. S. Young. 1988. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. J. Immunol. 140:30063013.
13. Bernander, R.,, T. Stokke, and, E. Boye. 1998. Flow cytometry of bacterial cells: comparison between different flow cytometers and different DNA stains. Cytometry 31:2936.
14. Betz, M., and, B. S. Fox. 1991. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146:108113.
15. Blair, J. E.,, D. D. Douglas, and, D. C. Mulligan. 2003. Early results of targeted prophylaxis for coccidioidomycosis in patients undergoing orthotopic liver transplantation within an endemic area. Trans. Infect. Dis. 5:38.
16. Bocca, L.,, S. Valenti,, C. M. Cuttica,, R. Spaziante,, G. Giordano, and, M. Giusti. 2000. Nitric oxide biphasically modulates GH secretion in cultured cells of GH-secreting human pituitary adenomas. Min. Endocrin. 25:5559.
17. Bronte, V.,, P. Serafini,, C. De Santo,, I. Marigo,, V. Tosello,, A. Mazzoni,, D. M. Segal,, C. Staib,, M. Lowel,, G. Sutter,, M. Colombo, and, P. Zanovello. 2003. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170:270278.
18. Brummer, E., and, D. A. Stevens. 1995. Antifungal mechanisms of activated murine bronchoalveolar or peritoneal macrophages for Histoplasma capsulatum. Clin. Exp. Immunol. 102:6567.
19. Burall, L. S.,, J. M. Harro,, X. Li,, C. V. Lockatell,, S. D. Himpsl,, J. R. Hebel,, D. E. Johnson, and, H. L. T. Mobley. 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72:29222938.
20. Camargo, Z. P.,, C. P. Taborda,, E. G. Rodrigues, and, L. R. Travassos. 1991. The use of cell-free antigens of Paracoccidioides brasiliensis in serological tests. J. Med. Vet. Mycol. 29:3138.
21. Carmel-Harel, O., and, G. Storz. 2000. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54:439461.
22. Centers for Disease Control and Prevention. 2001. Coccidioidomycosis in workers at an archeologic site— Dinosaur National Monument, Utah, June–July 2001. Morb. Mortal. Wkly. Rep. 50:10051008.
23. Centers for Disease Control and Prevention. 1996. Coccidioidomycosis—Arizona, 1990–1995. Morb. Mortal. Wkly. Rep. 45:10691073.
24. Charlton, V.,, K. Ramsdell, and, S. Sehring. 1999. Intrauterine transmission of coccidioidomycosis. Pediatr. Infect. Dis. J. 18:561563.
25. Chaturvedi, V.,, R. Ramani,, S. Gromadzki,, B. Rodeghier,, H. G. Chang, and, D. L. Morse. 2000. Coccidioidomycosis in New York State. Emerg. Infect. Dis. 6:2529.
26. Chtanova, T.,, R. A. Kemp,, A. P. Sutherland,, F. Ronchese, and, C. R. Mackay. 2001. Gene microarrays reveal extensive differential gene expression in both CD4+ and CD8+ type 1 and type 2 T cells. J. Immunol. 167:30573063.
27. Cole, G. T. 1997. Ammonia production by Coccidioides immitis and its possible significance to the host-fungus interplay, p. 247–263. In H. Vanden Bossche,, D. A. Stevens, and, F. C. Odds (ed.), Host-Fungus Interplay: Proceedings of the 5th Symposium on Topics in Mycology. Plenum Press, New York, N.Y.
28. Cole, G. T. 1993. Coccidioides immitis: resistance to host defense mechanisms. Clin. Adv. Treat. Fungal Infect. 4:15, 11, 12.
29. Cole, G. T. 2003. Fungal pathogenesis, p. 20–45. In E. Anaissie,, M. R. McGinnis, and, M. A. Pfaller (ed.), Clinical Mycology. Churchill Livingstone, Inc., New York, N.Y.
30. Cole, G. T.,, C. -Y. Hung, and, N. Delgado. 2002. Parasitic phase-specific gene expression in Coccidioides. ASM News 68:603611.
31. Cole, G. T., and, T. N. Kirkland. 1991. Conidia of Coccidioides immitis: their significance in disease initiation, p. 403–443. In G. T. Cole and, H. C. Hoch (ed.), The Fungal Spore and Disease Initiation in Plants and Animals. Plenum Press, New York, N.Y.
32. Cole, G. T.,, T. N. Kirkland,, M. Franco,, S. Zhu,, L. Yuan,, S. H. Sun, and, V. M. Hearn. 1988. Immunoreactivity of a surface wall fraction produced by spherules of Coccidioides immitis. Infect. Immun. 56:26952701.
33. Cole, G. T.,, T. N. Kirkland, and, S. H. Sun. 1987. An immunoreactive, water-soluble conidial wall fraction of Coccidioides immitis. Infect. Immun. 55:657667.
34. Cole, G. T., and, E. J. Pishko. 1995. Possible roles of wall hydrolases in the morphogenesis of Coccidioides immitis. Can. J. Bot. 73(Suppl. 1):S1132S1141.
35. Cole, G. T.,, L. M. Pope,, M. Huppert,, S. H. Sun, and, P. Starr. 1983. Ultrastructure and composition of conidial wall fractions of Coccidioides immitis. Exp. Mycol. 7:297318.
36. Cole, G. T., and, R. A. Samson. 1984. The conidia, p. 66–103. In Y. Al-Doory and J. Domson (ed.), Mould Allergy. Lea & Febiger, Philadelphia. Pa.
37. Cole, G. T.,, K. R. Seshan,, M. Franco,, E. Bukownik,, S. H. Sun, and, V. M. Hearn. 1988. Isolation and morphology of an immunoreactive outer wall fraction produced by spherules of Coccidioides immitis. Infect. Immun. 56:26862694.
38. Cole, G. T., and, S. H. Sun. 1985. Arthroconidium-spherule-endospore transformation in Coccidioides immitis, p. 281–333. In P. Szaniszlo (ed.), Dimorphism. Plenum Press, New York, N.Y.
39. Cole, G. T.,, J. -M. Xue,, C. N. Okeke,, E. J. Tarcha,, V. Basrur,, R. A. Schaller,, R. A. Herr,, J. -J. Yu, and, C. -Y. Hung. 2004. A vaccine against coccidioidomycosis is justified and attainable. Med. Mycol. 42:189216.
40. Cook, E. R.,, C. A. Woodhouse,, C. M. Eakin,, D. M. Meko, and, D. W. Stahle. 2004. Long-term aridity changes in the Western United States. Science 306:10151018.
41. Cox, G. M.,, J. Mukherjee,, G. T. Cole,, A. Casadevall, and, J. R. Perfect. 2000. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 68:443448.
42. Cox, R. A. 1983. Cell-mediated immunity, p. 61–98. In D. H. Howard (ed.), Fungi Pathogenic for Humans and Animals, part B. Pathogenicity and Detection, vol. 3. Marcel Dekker, Inc., New York, N.Y.
43. Cox, R. A.,, B. S. Baker, and, D. A. Stevens. 1982. Specificity of immunoglobulin E in coccidioidomycosis and correlation with disease involvement. Infect. Immun. 37:609616.
44. Cox, R. A.,, T. S. Harrison,, H. C. McDade,, C. Taborda,, G. Heinrich,, A. Casadevall, and, J. R. Perfect. 2003. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71:173180.
45. Cox, R. A., and, D. M. Magee. 2004. Coccidioidomycosis: host response and vaccine development. Clin. Microbiol. Rev. 17:804839.
46. Cox, R. A., and, D. M. Magee. 1995. Production of tumor necrosis factor alpha, interleukin-1 alpha, and interleukin-6 during murine coccidioidomycosis. Infect. Immun. 63:41784180.
47. Cox, R. A., and, D. M. Magee. 1998. Protective immunity in coccidioidomycosis. Res. Immunol. 149:417428; discussion, 506517.
48. Cox, R. A.,, J. R. Vivas,, A. Gross,, G. Lecara,, E. Miller, and, E. Brummer. 1976. In vivo and in vitro cell-mediated responses in coccidioidomycosis. I. Immunologic responses of persons with primary, asymptomatic infections. Am. Rev. Respir. Dis. 114:937943.
49. Crowther, J. E.,, V. K. Kutala,, P. Kuppusamy,, J. S. Ferguson,, A. A. Beharka,, J. L. Zweier,, F. X. McCormack, and, L. S. Schlesinger. 2004. Pulmonary surfactant protein A inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. J. Immunol. 172:68666874.
50. Crum, N. F.,, E. R. Lederman,, B. R. Hale,, M. L. Lim, and, M. R. Wallace. 2003. A cluster of disseminated coccidioidomycosis cases at a US military hospital. Mil. Med. 168:460464.
51. Crum, N. F.,, E. R. Lederman,, C. M. Stafford,, J. S. Parrish, and, M. R. Wallace. 2004. Coccidioidomycosis: a descriptive survey of a reemerging disease. Clinical characteristics and current controversies. Medicine 83:149175.
52. de Almeida, S. R.,, J. Z. de Moraes,, Z. P. de Camargo,, J. L. Gesztesi,, M. Mariano, and, J. D. Lopes. 1998. Pattern of immune response to GP43 from Paracoccidioides brasiliensis in susceptible and resistant mice is influenced by antigen-presenting cells. Cell. Immunol. 190:6876.
53. de Bernard, M.,, A. Cappon,, G. Del Giudice,, R. Rappuoli, and, C. Montecucco. 2004. The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori. Int. J. Med. Microbiol. 293:589597.
54. Deepe, G. S. 1996. Histoplasma capsulatum: darling of the river valleys. ASM News 63:599.
55. de Jesus-Berrios, M.,, L. Liu,, J. C. Nussbaum,, G. M. Cox,, J. S. Stamler, and, J. Heitman. 2003. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13:19631968.
56. Delgado, N.,, J. Xue,, J. -J. Yu,, C. -Y. Hung, and, G. T. Cole. 2003. A recombinant beta-1,3-glucanosyltransferase homolog of Coccidioides posadasii protects mice against coccidioidomycosis. Infect. Immun. 71:30103019.
57. Deresinski, S. 2003. Coccidioides immitis as a potential bioweapon. Semin. Respir. Infect. 18:216219.
58. Diez-Orejas, R.,, G. Molero,, M. A. Moro,, C. Gil,, C. Nombela, and, M. Sanchez-Perez. 2001. Two different NO-dependent mechanisms account for the low virulence of a non-mycelial morphological mutant of Candida albicans. Med. Mycol. Immunol. 189:153160.
59. Diniz, S. N.,, P. S. Cisalpino,, A. T. Freire,, D. N. Silva-Teixeira,, C. Contigli,, V. Rodrigues Junior, and, A. M. Goes. 2001. In vitro granuloma formation, NO production and cytokines profile from human mononuclear cells induced by fractionated antigens of Paracoccidioides brasiliensis. Hum. Immunol. 62:799808.
60. Dixon, D. M. 2001. Coccidioides immitis as a select agent of bioterrorism. J. Appl. Microbiol. 91:602605.
61. Dolan, J. W.,, A. C. Bell,, B. Hube,, M. Schaller, and, T. F. Warner. 2004. Candida albicans PLD1 activity is required for full virulence. Med. Mycol. 42:439447.
62. Drutz, D. J., and, M. Huppert. 1983. Coccidioidomycosis: factors affecting the host-parasite interaction. J. Infect. Dis. 147:372390.
63. Duleu, S.,, P. Vincendeau,, P. Courtois,, S. Semballa,, I. Lagroye,, S. Daulouede,, J. L. Boucher,, K. T. Wilson,, B. Veyret, and, A. P. Gobert. 2004. Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect. J. Immunol. 172:62986303.
64. Dunn, B. E., and, S. H. Phadnis. 1998. Structure, function and localization of Helicobacter pylori urease. Yale J. Biol. Med. 71:6373.
65. Dzik, J. M.,, B. Golos,, E. Jagielska,, Z. Zielinski, and, E. Walajtys-Rode. 2004. A non-classical type of alveolar macrophage response to Trichinella spiralis infection. Parasite Immunol. 26:197205.
66. Elnekave, K.,, R. Siman-Tov, and, S. Ankri. 2003. Consumption of L-arginine mediated by Entamoeba histolytica L-arginase (EhArg) inhibitis amoebicidal activity and nitric oxide production by activated macrophages. Parasite Immunol. 25:597608.
67. Enserink, M., and, D. Malakoff. 2001. Bioterrorism. Congress weighs select agent update. Science 294:1438.
68. Eriksson, S.,, B. J. Chambers, and, M. Rhen. 2003. Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv. Typhimurium. Scand. J. Immunol. 58:493502.
69. Eulalio, K. D.,, R. L. de Macedo,, M. A. Cavalcanti,, L. M. Martins,, M. S. Lazera, and, B. Wanke. 2001. Coccidioides immitis isolated from armadillos (Dasypus novemcinctus) in the state of Piaui, northeast Brazil. Mycopathologia 149:5761.
70. Fass, U.,, K. Panickar,, K. Williams,, K. Nevels,, D. Personett, and, M. McKinney. 2004. The role of glutathione in nitric oxide donor toxicity to SN56 cholinergic neuron-like cells. Brain Res. 1005:90100.
71. Feelisch, M.,, J. Ostrowski, and, E. Noack. 1989. On the mechanism of NO release from sydnonimines. J. Cardiovasc. Pharmacol. 14(Suppl. 11):1322.
72. Fernandes, K. S.,, A. L. Coelho,, L. M. Lopes Bezerra, and, C. Barja-Fidalgo. 2000. Virulence of Sporothrix schenckii conidia and yeast cells, and their susceptibility to nitric oxide. Immunology 101:563569.
73. Ferreira, K. S.,, J. D. Lopes, and, S. R. Almeida. 2003. Regulation of T helper cell differentiation in vivo by GP43 from Paracoccidioides brasiliensis provided by different antigen-presenting cells. Scand. J. Immunol. 58:290297.
74. Fierer, J.,, L. Walls,, F. Wright, and, T. N. Kirkland. 1999. Genes influencing resistance to Coccidioides immitis and the interleukin-10 response map to chromosomes 4 and 6 in mice. Infect. Immun. 67:29162919.
75. Filion, M. C., and, N. C. Phillips. 1997. Anti-inflammatory activity of cationic lipids. Br. J. Pharmacol. 122:551557.
76. Fisher, M. C.,, G. L. Koenig,, T. J. White, and, J. W. Taylor. 2002. Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis. Mycologia 94:7384.
77. Florido, M., and, R. Appelberg. 2004. Granuloma necrosis during Mycobacterium avium infection does not require tumor necrosis factor. Infect. Immun. 72:61396141.
78. Flynn, J. L.,, M. M. Goldstein,, J. Chan,, K. J. Triebold,, K. Pfeffer,, C. J. Lowenstein,, R. Schreiber,, T. W. Mak, and, B. R. Bloom. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561572.
79. Folch, J.,, M. Lees, and, G. H. S. Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497509.
80. Fowler, M. E.,, D. Pappagianis, and, I. Ingram. 1992. Coccidioidomycosis in llamas in the United States: 19 cases (1981–1989). J. Am. Vet. Med. Assoc. 201:16091614.
81. Frey, C. L., and, D. J. Drutz. 1986. Influence of fungal surface components on the interaction of Coccidioides immitis with polymorphonuclear neutrophils. J. Infect. Dis. 153:933943.
82. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64:97112.
83. Galgiani, J. N.,, R. Hayden, and, C. M. Payne. 1982. Leukocyte effects on the dimorphism of Coccidioides immitis. J. Infect. Dis. 146:5663.
84. Ganendren, R.,, F. Widmer,, V. Singhal,, C. Wilson,, T. Sorrell, and, L. Wright. 2004. In vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Antimicrob. Agents Chemother. 48:15611569.
85. Gaynor, C. D.,, F. X. McCormack,, D. R. Voelker,, S. E. McGowan, and, L. S. Schlesinger. 1995. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J. Immunol. 155:53435351.
86. Ghannoum, M. A. 1998. Extracellular phospholipases as universal virulence factor in pathogenic fungi. Jpn. J. Med. Mycol. 39:5559.
87. Giordanengo, L.,, N. Guinazu,, C. Stempin,, R. Fretes,, F. Cerban, and, S. Gea. 2002. Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur. J. Immunol. 32:10031011.
88. Godoy, L. C.,, M. Mariano, and, J. D. Lopes. 2003. Immunity and hypersensitivity to gp43 antigen in susceptible and resistant mice infected with Paracoccidioides brasiliensis. Med. Mycol. 41:427436.
89. Goldman, D. L.,, S. C. Lee,, A. J. Mednick,, L. Montella, and, A. Casadevall. 2000. Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect. Immun. 68:832838.
90. Gonzalez, A.,, W. De Gregori,, D. Velez,, A. Restrepo, and, L. E. Cano. 2000. Nitric oxide participation in the fungicidal mechanism of gamma interferon-activated murine macrophages against Paracoccidioides brasiliensis conidia. Infect. Immun. 68:25462552.
91. Gonzalez, G. M.,, R. Tijerina,, L. K. Najvar,, R. Bocanegra,, M. G. Rinaldi, and, J. R. Graybill. 2004. Efficacies of amphotericin B (AMB) lipid complex, AMB colloidal dispersion, liposomal AMB, and conventional AMB in treatment of murine coccidioidomycosis. Antimicrob. Agents Chemother. 48:21402143.
92. Grant, C. M.,, G. Perrone, and, I. W. Dawes. 1998. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253:893898.
93. Guevara-Olvera, L.,, C. -Y. Hung,, J. -J. Yu, and, G. T. Cole. 2000. Sequence, expression and functional analysis of the Coccidioides immitis ODC (ornithine decarboxylase) gene. Gene 242:437448.
94. Guevara-Olvera, L.,, B. Xoconostle-Cazares, and, J. Ruiz-Herrera. 1997. Cloning and disruption of the ornithine decarboxylase gene of Ustilago maydis: evidence for a role of polyamines in its dimorphic transition. Microbiology 143:22372245.
95. Harrison, W. R.,, C. F. Merbs, and, C. R. Leathers. 1991. Evidence of coccidioidomycosis in the skeleton of an ancient Arizona Indian. J. Infect. Dis. 164:436437.
96. Haselkorn, R. 2003. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. USA 100:1166011665.
97. Hill, Z. H. 1992. The function of melanin or 6 people examine an elephant. Bioessays 14:4956.
98. Hsu, G.,, J. T. Napier,, R. A. Prince,, J. Chi, and, D. R. Hospenthal. 2004. Treatment of meningeal coccidioidomycosis with caspofungin. J. Antimicrob. Chemother. 54:292294.
99. Huffnagle, G. B.,, M. B. Boyd,, N. E. Street, and, M. F. Lipscomb. 1998. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J. Immunol. 160:23932400.
100. Hung, C. -Y.,, N. M. Ampel,, L. Christian,, K. R. Seshan, and, G. T. Cole. 2000. A major cell surface antigen of Coccidioides immitis which elicits both humoral and cellular immune responses. Infect. Immun. 68:584593.
101. Hung, C. Y.,, K. R. Seshan,, J. -J. Yu,, R. Schaller,, J. Xue,, V. Basrur,, M. Gardner, and, G. T. Cole. 2005. A metalloproteinase of Coccidioides posadasii contributes to evasion of host detection. Infect. Immun. 73:66896703.
102. Hung, C. -Y.,, J. -J. Yu,, K. R. Seshan,, U. Reichard, and, G. T. Cole. 2002. A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory fungal pathogen. Infect. Immun. 70:34433456.
103. Huppert, M. 1983. Antigens used for measuring immunological reactivity, p. 219–302. In D. Howard (ed.), Fungi Pathogenic for Humans and Animals. Part B. Pathogenicity and Detection. Marcel Dekker, Inc., New York, N.Y.
104. Huppert, M.,, H. B. Levine,, S. H. Sun, and, E. T. Peterson. 1967. Resistance of vaccinated mice to typical and atypical strains of Coccidioides immitis. J. Bacteriol. 94:924927.
105. Igarashi, K., and, K. Kashiwagi. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271:559564.
106. Iniesta, V.,, L. C. Gomez-Nieto, and, I. Corraliza. 2001. The inhibition of arginase by N(omega)-hydroxy-L-arginine controls the growth of Leishmania inside macrophages. J. Exp. Med. 193:777784.
107. Iniesta, V.,, L. C. Gomez-Nieto,, I. Molano,, A. Mohedano,, J. Carcelen,, C. Miron,, C. Alonso, and, I. Corraliza. 2002. Arginase I induction in macrophages, triggered by Th2-type cytokines, supports the growth of intracellular Leishmania parasites. Parasite Immunol. 24:113118.
108. Inselman, L. S.,, A. Chander, and, A. R. Spitzer. 2004. Diminished lung compliance and elevated surfactant lipids and proteins in nutritionally obese young rats. Lung 182:101117.
109. Isowa, N.,, A. M. Xavier,, E. Dziak,, M. Opas,, D. I. McRitchie,, A. S. Slutsky,, S. H. Keshavjee, and, M. Liu. 1999. LPS-induced depolymerization of cytoskeleton and its role in TNF-alpha production by rat pneumocytes. Am. J. Physiol. 277:606615.
110. Jiang, C.,, D. M. Magee,, F. D. Ivey, and, R. A. Cox. 2002. Role of signal sequence in vaccine-induced protection against experimental coccidioidomycosis. Infect. Immun. 70:35393545.
111. Jiang, C.,, D. M. Magee,, T. N. Quitugua, and, R. A. Cox. 1999. Genetic vaccination against Coccidioides immitis: comparison of vaccine efficacy of recombinant antigen 2 and antigen 2 cDNA. Infect. Immun. 67:630635.
112. Johnson, J. E.,, J. E. Perry, and, F. R. Fekety. 1964. Laboratory-acquired coccidioidomycosis: report of 210 cases. Ann. Intern. Med. 60:941956.
113. Johnson, L. R.,, E. J. Herrgesell,, A. P. Davidson, and, D. Pappagianis. 2003. Clinical, clinicopathologic, and radiographic findings in dogs with coccidioidomycosis: 24 cases (1995–2000). J. Am. Vet. Med. Assoc. 222:461466.
114. Kajiwara, H.,, M. Saito,, S. Ohga,, T. Uenotsuchi, and, S. Yoshida. 2004. Impaired host defense against Sporothrix schenckii in mice with chronic granulomatous disease. Infect. Immun. 72:50735079.
115. Kaplanski, G.,, V. Marin,, F. Montero-Julian,, A. Mantovani, and, C. Farnarier. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24:2529.
116. Kauffman, C. A. 2002. Endemic mycoses in patients with hematologic malignancies. Semin. Respir. Infect. 17:106112.
117. Kindler, V.,, A. P. Sappino,, G. E. Grau,, P. F. Piguet, and, P. Vassalli. 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731740.
118. Kirkland, T. N., and, G. T. Cole. 2002. Coccidioidomycosis: pathogenesis, immune response and vaccine development, p. 365–399. In R. A. Calderone and, L. C. Cihlar (ed.), Fungal Pathogenesis: Principles and Applications. Marcel Dekker, Inc., New York, N.Y.
119. Kirkland, T. N., and, J. Fierer. 1983. Inbred mouse strains differ in resistance to lethal Coccidioides immitis infection. Infect. Immun. 40:912916.
120. Kirkland, T. N.,, F. Finley,, K. I. Orsborn, and, J. N. Galgiani. 1998. Evaluation of the proline-rich antigen of Coccidioides immitis as a vaccine candidate in mice. Infect. Immun. 66:35193522.
121. Klotz, S. A.,, D. J. Drutz,, M. Huppert,, S. H. Sun, and, P. L. DeMarsh. 1984. The critical role of CO2 in the morphogenesis of Coccidioides immitis in cell-free subcutaneous chambers. J. Infect. Dis. 150:127134.
122. Kubo, S.,, A. Tamori,, S. Nishiguchi,, T. Omura,, H. Kinoshita,, K. Hirohashi,, T. Kuroki, and, S. Otani. 1998. Relationship of polyamine metabolism to degree of malignancy of human hepatocellular carcinoma. Oncol. Rep. 5:13851388.
123. Kubo, S.,, A. Tamori,, H. Tanaka,, S. Takemura,, T. Shuto,, K. Hirohashi,, H. Kinoshita, and, S. Nishiguchi. 2004. Polyamine metabolism and recurrence after resection for hepatocellular carcinoma. Hepato-Gastroenterology 5:208210.
124. Kuranda, M., and, P. Robbins. 1991. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266:1975819767.
125. Kwon-Chung, K. J., and, J. E. Bennett. 1992. Medical Mycology. Lea & Febiger, Philadelphia, Pa.
126. Levine, H. B. 1961. Purification of the spheruleendospore phase of Coccidioides immitis. Sabouraudia 1:112115.
127. Li, H.,, C. J. Meininger,, J. R. J. Hawker,, T. E. Haynes,, D. Kepka-Lenhart,, S. K. Mistry,, S. M. J. Morris, and, G. Wu. 2001. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am. J. Physiol. Ser. E 280:E75E82.
128. Li, K.,, J. -J. Yu,, C. -Y. Hung,, P. F. Lehmann, and, G. T. Cole. 2001. Recombinant urease and urease DNA of Coccidioides immitis elicit an immunoprotective response against coccidioidomycosis in mice. Infect. Immun. 69:28782887.
129. Linares, E.,, S. Giorgio,, R. A. Mortara,, C. X. Santos,, A. T. Yamada, and, O. Augusto. 2001. Role of peroxynitrite in macrophage microbicidal mechanisms in vivo revealed by protein nitration and hydroxylation. Free Radic. Biol. Med. 30:12341242.
130. Linsangan, L. C., and, L. A. Ross. 1999. Coccidioides immitis infection of the neonate: two routes of infection. Pediatr. Infect. Dis. J. 18:171173.
131. Litvintseva, A. P., and, J. M. Henson. 2002. Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl. Environ. Microbiol. 68:13051311.
132. Liu, L.,, M. Zeng,, A. Hausladen,, J. Heitman, and, J. S. Stamler. 2000. Protection from nitrosative stress by yeast flavohemoglobin. Proc. Natl. Acad. Sci. USA 97:46724676.
133. Liu, T.,, T. Matsuguchi,, N. Tsuboi,, T. Yajima, and, Y. Yoshikai. 2002. Differences in expression of toll-like receptors and their reactivities in dendritic cells in BALB/c and C57BL/6 mice. Infect. Immun. 70:66386645.
134. Logan, J. L.,, J. E. Blair, and, J. N. Galgiani. 2001. Coccidioidomycosis complicating solid organ transplantation. Semin. Resp. Infect. 16:251256.
135. MacNeill, C.,, T. M. Umstead,, D. S. Phelps,, Z. Lin,, J. Floros,, D. A. Shearer, and, J. Weisz. 2004. Surfactant protein A, an innate immune factor, is expressed in the vaginal mucosa and is present in vaginal lavage fluid. Immunology 111:9199.
136. Magee, D. M., and, R. A. Cox. 1995. Roles of gamma interferon and interleukin-4 in genetically determined resistance to Coccidioides immitis. Infect. Immun. 63:35143519.
137. Mansour, M. K., and, S. M. Levitz. 2002. Interactions of fungi with phagocytes. Curr. Opin. Microbiol. 5:359365.
138. Martin, R. M.,, J. L. Brady, and, A. M. Lew. 1998. The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J. Immunol. Methods 212:187192.
139. Merrell, D. S., and, S. Falkow. 2004. Frontal and stealth attack strategies in microbial pathogenesis. Nature 430:250256.
140. Minamoto, G., and, D. Armstrong. 1988. Fungal infections in AIDS. Histoplasmosis and coccidioidomycosis. Infect. Dis. Clin. North Am. 2:447456.
141. Mirbod, F.,, R. A. Schaller, and, G. T. Cole. 2002. Purification and characterization of urease isolated from the pathogenic fungus Coccidioides immitis. Med. Mycol. 40:3544.
142. Mirbod-Donnovan, F.,, R. Schaller,, C. -Y. Hung,, J. Xue,, U. Reichard, and, G. T. Cole. 2006. Urease produced by Coccidioides posadasii contributes to the virulence of this respiratory pathogen. Infect. Immun. 74:504515.
143. Moali, C.,, J. L. Boucher,, M. A. Sari,, D. J. Stuehr, and, D. Mansuy. 1998. Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N-omega-hydroxy derivatives, and N-omega-hydroxynor-L-arginine. Biochemistry 37:1045310460.
144. Mobley, H. L.,, M. D. Island, and, R. P. Hausinger. 1995. Molecular biology of microbial ureases. Microbiol. Rev. 59:451480.
145. Montecucco, C.,, E. Papini,, M. de Bernard, and, M. Zoratti. 1999. Molecular and cellular activities of Helicobacter pylori pathogenic factors. FEBS Lett. 452:1621.
146. Morgan, D. M. 1999. Polyamines. An overview. Mol. Biotechnol. 11:229250.
147. Morrow, M. R.,, N. Abu-Libdeh,, J. Stewart, and, K. M. W. Keough. 2003. Interaction of pulmonary surfactant protein SP-A with DPPC/egg-PG bilayers. Biophys. J. 85:23972405.
148. Mukherjee, P. K.,, K. R. Seshan,, S. D. Leidich,, J. Chandra,, G. T. Cole, and, M. A. Ghannoum. 2001. Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo. Microbiology 147:25852597.
149. Munder, M.,, K. Eichmann,, J. M. Moran,, F. Centeno,, G. Soler, and, M. Modolell. 1999. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 163:37713777.
150. Nicas, M., and, A. Hubbard. 2002. A risk analysis for airborne pathogens with low infectious doses: application to respirator selection against Coccidioides immitis spores. Risk Anal. 22:11531163.
151. Nosanchuk, J. D., and, A. Casadevall. 2003. The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5:203223.
152. Nosanchuk, J. D.,, B. L. Gomez,, S. Youngchim,, S. Diez,, P. Aisen,, R. M. Zancope-Oliveira,, A. Restrepo,, A. Casadevall, and, A. J. Hamilton. 2002. Histoplasma capsulatum synthesizes melanin-like pigments in vitro and during mammalian infection. Infect. Immun. 70:51245131.
153. Noverr, M. C.,, G. M. Cox,, J. R. Perfect, and, G. B. Huffnagle. 2003. Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect. Immun. 71:15381547.
154. Noverr, M. C.,, G. B. Toews, and, G. B. Huffnagle. 2002. Production of prostaglandins and leukotrienes by pathogenic fungi. Infect. Immun. 70:400402.
155. Noverr, M. C.,, P. R. Williamson,, R. S. Fajardo, and, G. B. Huffnagle. 2004. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect. Immun. 72:16931699.
156. Olszewski, M. A.,, M. C. Noverr,, G. -H. Chen,, G. B. Toews,, G. M. Cox,, J. R. Perfect, and, G. B. Huffnagle. 2004. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am. J. Pathol. 164:17611771.
157. Paananen, A.,, E. Vuorimaa,, M. Torkkeli,, M. Penttila,, M. Kauranen,, O. Ikkala,, H. Lemmetyinen,, R. Serimaa, and, M. B. Linder. 2003. Structural hierarchy in molecular films of two class II hydrophobins. Biochemistry 42:52535258.
158. Padhye, A. A.,, J. E. Bennett,, M. R. McGinnis,, L. Sigler,, A. Fliss, and, I. F. Salkin. 1998. Biosafety considerations in handling medically important fungi. Med. Mycol. 36:258265.
159. Pan, S.,, M. Zhang, and, G. T. Cole. 1995. Isolation and characterization of the arginase-encoding gene (arg) from Coccidioides immitis. Gene 154:115118.
160. Pappagianis, D. 1996. Clinical presentation of infectious entities, p. 9–11. In H. Einstein (ed.), Coccidioidomycosis. National Foundation for Infectious Disease, Washington, D.C.
161. Pappagianis, D. 1980. Epidemiology of coccidioidomycosis, p. 63–85. In D. A. Stevens (ed.), Coccidioidomycosis: a Text. Plenum Press, New York, N.Y.
162. Pappagianis, D. 1988. Epidemiology of coccidioidomycosis. Curr. Top. Med. Mycol. 2:199238.
163. Pappagianis, D. 2001. Serologic studies in coccidioidomycosis. Semin. Respir. Infect. 16:242250.
164. Pappagianis, D., and, H. Einstein. 1978. Tempest from Tehachapi takes toll on Coccidioides conveyed aloft and afar. West. J. Med. 129:527530.
165. Pappagianis, D., and, B. L. Zimmer. 1990. Serology of coccidioidomycosis. Clin. Microbiol. Rev. 3:247268.
166. Paris, S.,, J. -P. Debeaupuis,, R. Crameri,, M. Carey,, F. Charles,, M. C. Prevost,, C. Schmitt,, B. Philippe, and, J. P. Latge. 2003. Conidial hydrophobins of Aspergillus fumigatus. Appl. Environ. Microbiol. 69:15811588.
167. Peters-Golden, M. 1997. Lipid mediator synthesis by lung macrophages, p. 151–182. In M. F. Lipscomb and, S. W. Russell (ed.), Lung Macrophages and Dendritic Cells in Health and Disease, vol. 102. Marcel Dekker, Inc., New York, N.Y.
168. Peterson, C. M.,, K. Schuppert,, P. C. Kelly, and, D. Pappagianis. 1993. Coccidioidomycosis and pregnancy. Obstet. Gynecol. Surv. 48:149156.
169. Pishko, E. J.,, T. N. Kirkland, and, G. T. Cole. 1995. Isolation and characterization of two chitinase-encoding genes (cts1, cts2) from the fungus Coccidioides immitis. Gene 167:173177.
170. Proia, L. A., and, A. R. Tenorio. 2004. Successful use of voriconazole for treatment of Coccidioides meningitis. Antimicrob. Agents Chemother. 48:2341.
171. Rawlings, N. D.,, D. P. Tolle, and, A. J. Barrett. 2004. MEROPS: the peptidase database. Nucleic Acids Res. 32(Database issue):D160D164.
172. Reed, M. B.,, P. Domenech,, C. Manca,, H. Su,, A. K. Barczak,, B. N. Kreiswirth,, G. Kaplan, and, C. E. Barry III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:8487.
173. Reyna-Lopez, G. E., and, J. Ruiz-Herrera. 2004. Specificity of DNA methylation changes during fungal dimorphism and its relationship to polyamines. Curr. Microbiol. 48:118123.
174. Richards, J. O.,, N. M. Ampel, and, D. F. Lake. 2002. Reversal of coccidioidal anergy in vitro by dendritic cells from patients with disseminated coccidioidomycosis. J. Immunol. 169:20202025.
175. Rivera, J.,, J. Mukherjee,, L. M. Weiss, and, A. Casadevall. 2002. Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: a role for nitric oxide. J. Immunol. 168:34193427.
176. Rodrigues, E., and, L. Travassos. 1994. Nature of the reactive epitopes in Paracoccidioides brasiliensis polysaccharide antigen. J. Med. Vet. Mycol. 32:7781.
177. Rubensohn, M., and, S. Stack. 2003. Coccidiomycosis in a dog. Can. Vet. J. 44:159160.
178. Saubolle, M. A. 1996. Life cycle and epidemiology of Coccidioides immitis, p. 1–9. In H. E. Einstein and, A. Catenzaro (ed.), Coccidioidomycosis. National Foundation for Infectious Diseases, Washington, D.C.
179. Saubolle, M. A., and, J. Sutton. 1994. Coccidioidomycosis: centennial year on the North American Continent. Clin. Microbiol. Newsl. 16:137144.
180. Schouten, A.,, L. Wagemakers,, F. L. Stefanato,, R. M. van der Kaaij, and, J. A. L. van Kan. 2002. Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol. Microbiol. 43:883894.
181. Shubitz, L.,, T. Peng,, R. Perrill,, J. Simons,, K. Orsborn, and, J. N. Galgiani. 2002. Protection of mice against Coccidioides immitis intranasal infection by vaccination with recombinant antigen 2/PRA. Infect. Immun. 70:32873289.
182. Simon, H. -U. 2002. The neutralization of interleukin-5 as a therapeutic concept in allergic inflammation. Sarcoid. Vasc. Diffuse Lung Dis. 19:2528.
183. Smith, C.,, M. Saito, and, S. Simmons. 1956. Patterns of 39,500 serologic tests in coccidioidomycosis. JAMA 160:546552.
184. Smith, C.,, E. Whiting,, E. Baker,, H. Rosenberger,, R. Beard, and, M. Saito. 1948. The use of coccidioidin. Am. Rev. Tuberc. 57:330360.
185. Smith, M. A.,, A. E. Anderson, and, K. Kostroff. 1994. An unusual case of coccidioidomycosis. J. Clin. Microbiol. 32:10631064.
186. Snijdewint, F.,, P. Kalinski,, E. Wierenga,, J. Bos, and, M. Kapsenberg. 1993. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol. 150:53215329.
187. Steenbergen, J. N.,, J. D. Nosanchuk,, S. D. Malliaris, and, A. Casadevall. 2004. Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with Acanthamoeba castellanii. Infect. Immun. 72:34783488.
188. Stempin, C.,, T. Tanos,, O. A. Coso, and, F. M. Cerban. 2004. Arginase induction promotes Trypanosoma cruzi intracellular replication in Cruzipain-treated J774 cells through the activation of multiple signaling pathways. Eur. J. Immunol. 34:200209.
189. Strassmann, G.,, V. Patil-Koota,, F. Finkelman,, M. Fong, and, T. Kambayashi. 1994. Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J. Exp. Med. 180:23652370.
190. Stringer, M. A., and, W. E. Timberlake. 1993. Ceratoulmin, a toxin involved in Dutch elm disease, is a fungal hydrophobin. Plant Cell 5:145146.
191. Sun, S. H.,, G. T. Cole,, D. J. Drutz, and, J. L. Harrison. 1986. Electron-microscopic observations of the Coccidioides immitis parasitic cycle in vivo. J. Med. Vet. Mycol. 24:183192.
192. Taborda, C. P.,, M. A. Juliano,, R. Puccia,, M. Franco, and, L. R. Travassos. 1998. Mapping the T-cell epitope in the major 43-kilodalton glycoprotein of Paracoccidioides brasiliensis which induces a Th-1 response protective against fungal infection in BALB/c mice. Infect. Immun. 66:786793.
193. Taborda, C. P.,, C. R. Nakaie,, E. M. Cilli,, E. G. Rodrigues,, L. S. Silva,, M. F. Franco, and, L. R. Travassos. 2004. Synthesis and immunological activity of a branched peptide carrying the T-cell epitope of gp43, the major exocellular antigen of Paracoccidioides brasiliensis. Scand. J. Immunol. 59:5865.
194. Timm, K. I.,, R. J. Sonn, and, B. D. Hultgren. 1988. Coccidioidomycosis in a Sonoran Gopher snake Pituophismelanoleusus affinis. J. Med. Vet. Mycol. 26:101104.
195. Trajkovic, V.,, S. Stepanovic,, I. Samardzic,, V. Jankovic,, V. Badovinac, and, M. Stojkovic. 2000. Cryptococcus neoformans neutralizes macrophage and astrocyte derived nitric oxide without interfering with inducible nitric oxide synthase induction or catalytic activity— possible involvement of nitric oxide consumption. Scand. J. Immunol. 51:384391.
196. Travassos, L. R.,, R. Puccia,, P. Cisalpino,, C. Taborda,, E. G. Rodrigues,, M. Rodrigues,, J. F. Silveira, and, I. C. Almeida. 1995. Biochemistry and molecular biology of the main diagnostic antigen of Paracoccidioides brasiliensis. Arch. Med. Res. 26:297304.
197. Triggiani, M.,, A. Oriente,, G. de Crescenzo,, G. Rossi, and, G. Marone. 1995. Biochemical functions of a pool of arachidonic acid associated with triglycerides in human inflammatory cells. Int. Arch. Allergy Immunol. 107:261263.
198. Tripathy, U.,, G. L. Yung,, J. M. Kriett,, P. A. Thistlethwaite,, D. P. Kapelanski, and, S. W. Jamieson. 2002. Donor transfer of pulmonary coccidioidomycosis in lung transplantation. Ann. Thorac. Surg. 73:306308.
199. Tsujimoto, M.,, M. Sawaki,, M. Sakamoto,, K. Mikasa,, K. Hamada,, K. Maeda,, S. Teramoto,, K. Mori,, K. Ueda,, N. Narita, and, E. Kita. 1997. The evaluation of inter-leukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) level in peripheral blood of patients with chronic lower respiratory tract infection. J. Jpn. Assoc. Infect. Dis. 71:430436.
200. Tsunoda, I.,, N. D. Tolley,, D. J. Theil,, J. L. Whitton,, H. Kobayashi, and, R. S. Fujinami. 1999. Exacerbation of viral autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol. 9:481493.
201. Ullmann, B. D.,, H. Myers,, W. Chiranand,, A. L. Lazzell,, Q. Zhao,, L. A. Vega,, J. L. Lopez-Ribot,, P. R. Gardner, and, M. C. Gustin. 2004. Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot. Cell 3:715723.
202. Vassiliou, E.,, H. Jing, and, D. Ganea. 2003. Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell. Immunol. 223:120132.
203. Verghese, S.,, D. Arjundas,, K. C. Krishnakumar,, P. Padmaja,, D. Elizabeth,, A. A. Padhye, and, D. W. Warnock. 2002. Coccidioidomycosis in India: report of a second imported case. Med. Mycol. 40:307309.
204. Vigna, A. F. G.,, L. C. Godoy,, S. Rogerio de Almeida,, M. Mariano, and, J. D. Lopes. 2002. Characterization of B-1b cells as antigen presenting cells in the immune response to gp43 from Paracoccidioides brasiliensis in vitro. Immunol. Lett. 83:6166.
205. Vincendeau, P.,, A. P. Gobert,, S. Daulouede,, D. Moynet, and, M. D. Mossalayi. 2003. Arginases in parasitic diseases. Trends Parasitol. 19:912.
206. Walker, M. P.,, C. Z. Brody, and, R. Resnik. 1992. Reactivation of coccidioidomycosis in pregnancy. Obstet. Gynecol. 79:815817.
207. Wallace, H. M.,, A. V. Fraser, and, A. Hughes. 2003. A perspective of polyamine metabolism. Biochem. J. 376:114.
208. Walters, D. R. 2003. Polyamines and plant disease. Phytochemistry 64:97107.
209. Walvoord, M. A.,, F. M. Phillips,, D. A. Stonestrom,, R. D. Evans,, P. C. Hartsough,, B. D. Newman, and, R. G. Striegle. 2003. A reservoir of nitrate beneath desert soils. Science 302:10211024.
210. Weatherburn, M. 1967. Phenol-hydrochlorite reaction for determination of ammonia. Anal. Chem. 39:971974.
211. Wessels, J. G. H. 1993. Wall growth, protein excretion and morphogenesis in fungi. New Phytol. 123:397413.
212. Westerberg, S. C.,, C. B. Smith,, B. B. Wiley, and, C. Jensen. 1972. Mycoplasma-virus interrelationships in mouse tracheal organ cultures. Infect. Immun. 5:840846.
213. Wheat, L. J. 1988. Systemic fungal infections: diagnosis and treatment. I. Histoplasmosis. Infect. Dis. Clin. North Am. 2:841859.
214. Wheeler, M., and, A. Bell. 1988. Melanins and their importance in pathogenic fungi. Curr. Top. Med. Mycol. 2:338387.
215. Williams, F. M.,, V. Markides,, J. Edgeworth, and, A. J. Williams. 1998. Reactivation of coccidioidomycosis in a fit American visitor. Thorax 53:811812.
216. Williamson, P. R. 1994. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans. J. Bacteriol. 176:656664.
217. Woo, J. H.,, J. S. Lee,, D. W. Lee,, S. Y. Jin,, D. W. Kim, and, W. G. Lee. 1996. A case of disseminated coccidioidomycosis—autopsy report. J. Korean Med. Sci. 11:258264.
218. Wright, P. W.,, D. Pappagianis,, M. Wilson,, A. Louro,, S. A. Moser,, K. Komatsu, and, P. G. Pappas. 2003. Donor-related coccidioidomycosis in organ transplant recipients. Clin. Infect. Dis. 37:12651269.
219. Wu, J.,, A. J. Linscott,, A. Oberle, and, M. Fowler. 2003. Pathology case of the month. Occupational hazard? Coccidioidomycosis (Coccidioides immitis). J. La. State Med. Soc. 155:187188.
220. Xue, J. -M.,, C. -Y. Hung,, J. -J. Yu, and, G. T. Cole. 2005. Immune response of vaccinated and non-vaccinated mice to Coccidioides posadasii infection. Vaccine 20:35353544.
221. Yu, J. -J.,, S. L. Smithson,, P. W. Thomas,, T. N. Kirkland, and, G. T. Cole. 1997. Isolation and characterization of the urease gene (URE) from the pathogenic fungus Coccidioides immitis. Gene 198:387391.
222. Zalatnai, A.,, J. Zala, and, G. Sandor. 1998. Coccidioidomycosis in Hungary. The first import case. Pathol. Oncol. Res. 4:147151.
223. Zhu, X.,, J. Gibbons,, J. Garcia-Rivera,, A. Casadevall, and, P. R. Williamson. 2001. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect. Immun. 69:55895596.
224. Zhu, X., and, P. R. Williamson. 2004. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5:110.

Tables

Generic image for table
Table 1.

Affymetrix mouse array 6 days post-challenge (U74A chip)

Citation: Cole G, Xue J, Seshan K, Borra P, Borra R, Tarcha E, Schaller R, Yu J, Hung C. 2006. Virulence Mechanisms of , p 363-391. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error