1887

Chapter 28 : Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and as a Molecularly Tractable Model

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and as a Molecularly Tractable Model, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap28-2.gif

Abstract:

is an asexual polymorphic mold that is arguably the most studied black fungal pathogen of humans. This chapter provides a brief overview of these fungi, summarizes certain salient historical facts about , including the main attributes that contributed to its rise to model status. It then reviews results of recent molecular genetic studies that are primarily aimed at the cell wall virulence factors melanin and chitin. The advances described are intended to motivate others to determine whether the molecular findings with the model have relevance to the other, less well studied black mold pathogens. Elucidation of the 1,8-dihydroxynaphthalene (1,8-DHN) melanin biosynthetic pathway in initially resulted from the use of the specific pathway inhibitor tricyclazole and the identification of key pathway intermediates, secretion products, and enzymes of the wild-type strain and a few mutant strains (Mel) with obvious pigmentation defects. Decreased virulence due to defective 1,8-DHN melanin biosynthesis in was initially detected in the hypopigmented Mel strain , which is albino because of an inability to synthesize 1,3,6,8-tetrahydroxynapththalene (1,3,6,8-THN). It is important to note that some albino Mel strains become pink to orange when exposed to light of relatively high intensity for extended periods.

Citation: Szaniszlo P. 2006. Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and as a Molecularly Tractable Model, p 407-428. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch28

Key Concept Ranking

Transmission Electron Microscopy
0.4172795
Cell Wall Biosynthesis
0.41099566
0.4172795
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Representative morphotypes of (A) Logarithmic-phase yeast; (B) pseudohyphal yeast; (C) sclerotic cell that first produced a branching moniliform hypha which in turn produced true hyphae, both of which are producing yeast-like cells (blastospores) at septal regions that are in various stages of disarticulation; (D) cells in panel A at about ×3 higher magnification; (E) isotropically enlarging sclerotic cells and sclerotic bodies in various stages of septation; (F) a multicellular sclerotic body produced in acid-rich medium undergoing fission. The bar in panel A represents about 5μm and also applies to panels B and C, whereas the bar in panel D represents about 15μm and also applies to panels E and F.

Citation: Szaniszlo P. 2006. Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and as a Molecularly Tractable Model, p 407-428. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic representation of the morphotypes of induced in vitro by various factors. Starting with a polarized budding yeast cell or conidium, some conditions induce pseudohypha development because of the lack of yeast cell separation while others induce the loss of polarity that leads to transient or prolonged isotropic development. The latter produces the morphotypes known as sclerotic cells, planate cells, and sclerotic bodies. Return of the isotropic forms to conditions conducive to normal yeast growth usually leads to polarity reestablishments that result in moniliform and true hyphal outgrowths. Blastoconidia are then produced directly from hyphae and phialoconidia and annelloconidia are produced from conidiophores, both of which can reestablish budding yeast populations. The morphotypes are not drawn to scale (note the differences in scale bars): the sclerotic cells and sclerotic bodies are often three to many times larger than mother yeast cells or conidia and usually have thicker walls enriched with both melanin and chitin. The ∼ in the cell walls indicates chitin. Adapted from reference , Fig. 1 .

Citation: Szaniszlo P. 2006. Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and as a Molecularly Tractable Model, p 407-428. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815776.ch28
1. Adamkewewicz, J. I.,, K. H. Hansen,, W. A. Prud’homme,, J. L. Davis, and, J. Thorner. 2001. High affinity interaction of yeast transcriptional regulator, Mot1, with TATA box-binding protein (TBP). J. Biol. Chem. 276:18831894.
2. Ajello, L.,, L. K. George,, R. T. Steigbigel, and, C. J. K. Wang. 1974. A case of phaeohyphomycosis caused by a new species of Phialophora. Mycologia 66:490498.
3. Alviano, C. S.,, S. R. Farbiarz,, W. deSouza,, J. Angluster, and, L. R. Travassos. 1991. Characterization of Fonsecaea pedrosoi melanin. J. Gen Microbiol. 137:837844.
4. Barenfanger, J.,, F. Ramierz,, R. P. Tewari, and, L. Eagleton. 1989. Pulmonary phaeohyphomycosis in a patient with hemoptysis. Chest 95:11581160.
5. Bell, A. A.,, J. E. Puhalla,, W. J. Tolmsoff, and, R. D. Stipanovic. 1976. Use of mutants to establish (+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae. Can. J. Microbiol. 22:787799.
6. Borelli, D. 1955. Sporotichum gougerottii, Hormiscium dermatitidis, Phialophora jeanselmei, Phialophora gougerottii (Matruchot, 1910) comb. n. Mem. Congr. Venez. Cienc. Med. 5:29452971.
7. Borneman, A. R.,, M. J. Hynes, and, A. Andrianopoulos. 2000. The abaA homologue of Penicillium marneffei participates in two developmental programs: conidiation and dimorphic growth. Mol. Microbiol. 38:10341047.
8. Bowen, A. R.,, J. L. Chen-Wu,, M. Momany,, R. Young,, P. J. Szaniszlo, and, P. W. Robbins. 1992. Classification of fungal chitin synthases. Proc. Natl. Acad. Sci. USA 89:519523.
9. Bulawa, C. E. 1992. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol. Cell. Biol. 4:17641776.
10. Butler, M. J.,, G. Lazarovits,, V. J. Higgins, and, M. -A. Lachance. 1987. Phaeococcomyces sp. Analysis of melanin production by the yeast. Can. J. Microbiol. 35:728734.
11. Cabib, E.,, S. J. Silverman,, A. Sburlati, and, M. L. Slater. 1990. Chitin synthesis in yeast (Saccharomyces cerevisiae), p. 31–41. In P. J. Kuhn,, A. P. J. Trinici,, M. J. Jung,, M. W. Goosey, and L. G. Copping (ed.), Biochemistry of Cell Walls and Membranes in Fungi. Springer-Verlag, New York, N.Y.
12. Cabib, E.,, S. J. Silverman, and, J. A. Shaw. 1992. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J. Gen. Microbiol. 138:97102.
13. Campbell, C. K., and, S. S. A. Al-Hedaithy. 1993. Phaeohyphomycosis of the brain caused by Rhamichloridium mackenziei sp. nov. in Middle Eastern countries. J. Med. Vet. Mycol. 31:325332.
14. Carrion, A. L. 1950. Yeast-like dematiaceous fungi infecting the human skin. Arch. Dermatol. Syphilol. 61:9961009.
15. Centers for Disease Control and Prevention. 2002. Exophiala infection from contaminated injectable steroids prepared by a compounding pharmacy—United States, July–November 2002. Morb. Mortal. Wkly. Rep. 51:11091112.
16. Chang, C. L.,, D. -S. Kim,, D. J. Park,, H. J. Kim,, C. H. Lee, and, J. H. Shin. 2000. Acute cerebral phaeohyphomycosis due to Wangiella dermatitidis accompanied by cerebrospinal fluid eosinophilia. J. Clin. Microbiol. 38:19651966.
17. Chen, W. 1996. Molecular Cloning and Characterization of the Actin Gene of Wangiella dermatitidis. M.A. thesis. The University of Texas at Austin.
18. Chua, J. D.,, S. M. Gordon,, J. Banbury,, G. S. Hall, and, G. W. Procop. 2001. Relapsing Exophiala jeanselmei phaeohyphomycosis in a lung-transplant patient. Transpl. Infect. Dis. 3:235238.
19. Conant, N. F.,, D. T. Smith,, R. D. Baker, and, J. R. Callaway. 1971. Chromoblastomycosis, p. 503–540. In Manual of Clinical Mycology, 3rd ed. The W. B. Saunders Co., Philadelphia, Pa.
20. Cooper, B. H. 1985. Phialophora verrucosa and other chromoblastomycotic fungi, p. 263–280. In P. J. Szaniszlo (ed.), Fungal Dimorphism, with Emphasis on Fungi Pathogenic for Humans. Plenum Press, New York, N.Y.
21. Cooper, C. R., Jr.,, J. L. Harris,, C. W. Jacobs, and, P. J. Szaniszlo. 1984. Effect of polyoxin AL on cellular development in Wangiella dermatitidis. Exp. Mycol. 8:349363.
22. Cooper, C. R., Jr., and, P. J. Szaniszlo. 1993. Evidence for two cell division cycle (CDC) genes that govern yeast bud emergence in the pathogenic fungus Wangiella dermatitidis. Infect. Immun. 61:20692081.
23. Cooper, C. R., Jr., and, P. J. Szaniszlo. 1997. Melanin as a virulence factor in dematiaceous pathogenic fungi, p. 81–93. In H. V. Bossche,, D. A. Stevens, and, F. C. Odds (ed.), Proceedings of the Host-Fungus Interplay Conference. National Foundation for Infectious Diseases, Bethesda, Md.
24. Crosby, J. H.,, M. H. O’ Quinn,, J. C. H. Steele, Jr., and, R. N. Rao. 1989. Fine-needle aspiration of subcutaneous phaeohyphomycosis caused by Wangiella dermatitidis. Diagn. Cytopathol. 5:293297.
25. de Hoog, G. S. 1983. On the potentially pathogenic dematiaceous Hyphomycetes, p. 149–216. In D. Howard (ed.), Fungi Pathogenic for Humans and Animals, part A. Biology. Marcel Dekker, Inc., New York, N.Y.
26. de Hoog, G. S. 1999. Ecology and evolution of black yeasts and their relatives. Stud. Mycol. 43:34.
27. de Hoog, G. S. 1977. Rhinocladiella and allied genera. Stud. Mycol. 15:1177.
28. de Hoog, G. S.,, K. Takeo,, S. Yoshida,, E. Gottlich,, K. Nishimura, and, M. Miyaji. 1994. Pleoanamorphic life cycle of Exophiala dermatitidis. Antonie Leeuwenhoek 65:143153.
29. de Monbrison, F.,, M. A. Piens,, B. Ample,, S. Euvard,, P. Cochat, and, S. Picot. 2004. Two cases of subcutaneous phaeohyphomycosis due to Exophiala jeanselmei, in cardiac transplant and renal transplant patents. Br. J. Dermatol. 150:596624.
30. Din, A. B.,, C. A. Spect,, P. W. Robbins, and, O. Yarden. 1996. chs4, a class IV chitin synthase gene from Neurospora crassa. Mol. Gen. Genet. 250:214222.
31. Dixon, D. M., and, A. Polak-Wyss. 1991. The medically important dematiaceous fungi and their identifications. Mycoses 34:118.
32. Dixon, D. M.,, A. Polak, and, G. W. Connor. 1989. Melmutants of Wangiella dermatitidis in mice: evaluation of multiple mouse and fungal strains. J. Med. Vet. Mycol. 27:335341.
33. Dixon, D. M.,, A. Polak, and, P. J. Szaniszlo. 1987. Pathogenicity and virulence of wild-type and melanin-deficient Wangiella dermatitidis. J. Med. Vet. Mycol. 25:97106.
34. Dixon, D. M.,, J. Migliozzi,, C. R. Cooper, Jr.,, O. Solis,, B. Breslin, and, P. J. Szaniszlo. 1992. Melanized and nonmelanized multicellular form mutants of Wangiella dermatitidis in mice: mortality and histopathology studies. Mycoses 35:1721.
35. Dixon, D. M.,, P. J. Szaniszlo, and, A. Polak. 1991. Dihydroxynaphthalene (DHN) melanin and its relationship with virulence in the early stages of phaeohyphomycosis, p. 297–318. In G. T. Cole and, H. C. Hoch (ed.), The Fungal Spore and Disease Initiation in Plants and Animals. Plenum Publishing Corp., New York, N.Y.
36. Dixon, D. M.,, T. J. Walsh,, W. G. Merz, and, M. R. McGinnis. 1989. Infections due to Xylohypha bantiana(Cladosporium trichoides). Rev. Infect. Dis. 11:515525.
37. Doedt, T.,, S. Korishnamurthy,, D. P. Bockmuhl,, B. Tebarth,, C. Stempel,, C. L. Russell,, A. J. Brown, and, J. F. Ernst. 2004. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol. Biol. Cell 15:31673180.
38. Dutton, J. R.,, S. Johns, and, B. L. Miller. 1997. StuAp is a sequence specific transcription factor that regulates developmental complexity in A. nidulans. EMBO J. 16:57105721.
39. Ellis, M. B. 1971. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England.
40. Emmons, C. W. 1966. Pathogenic dematiaceous fungi. Jpn. J. Med. Mycol. 7:233245.
41. Espeso, E. A., and, M. A. Penala. 1996. Three binding sites for the Aspergillus nidulans Pac C zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J. Biol. Chem. 46:2882528830.
42. Feng, B. 2000. The Cloning and Study of Two Genes, WdPKS1 and WdMOT1, That Affect DHN-Melanin Biosynthesis in Wangiella dermatitidis. Ph.D. thesis. The University of Texas at Austin.
43. Feng, B.,, X. Wang,, M. Hauser,, S. Kaufmann,, S. Jentsch,, G. Haase,, J. M. Becker, and, P. J. Szaniszlo. 2001. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect. Immun. 69:17811794.
44. Geis, P. A., and, P. J. Szaniszlo. 1984. Carotenoid pigments of the dematiaceous fungus Wangiella dermatitidis. Mycologia 76:268273.
45. Geis, P. A.,, M. H. Wheeler, and, P. J. Szaniszlo. 1984. Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis. Arch. Microbiol. 137:324328.
46. Gimeno, C. J., and, G. R. Fink. 1994. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol. Cell. Biol. 14:21002112.
47. Greig, J.,, M. Harkness,, P. Taylor,, C. Hasmi,, S. Liang, and, J. Kwan. 2003. Peritonitis due to Exophiala dermatitidis complicating continuous ambulatory peritoneal analysis. Clin. Microbiol. Infect. 9:713715.
48. Grove, S. M.,, K. B. Oujezdsky, and, P. J. Szaniszlo. 1973. Budding in the dimorphic fungus Phialophora dermatitidis. J. Bacteriol. 115:323329.
49. Grur, K. E.,, G. P. Gross,, P. H. Cooper, and, S. A. Harding. 1979. Cystic chromomycosis due to Wangiella dermatitidis. Arch. Dermatol. 115:14331434.
50. Haase, G.,, H. Skopnik,, T. Groten,, H. Kwsenbach, and, H. G. Posselt. 1991. Long-term fungal cultures from patients with cystic fibrosis. Mycoses 34:373376.
51. Haase, G.,, L. Sonntag,, B. Metzer-Kirk, and, G. S. deHoog. 1999. Phylogenetic inferences by SSU-gene analysis of members of the Herpotrichiellaceae with special reference to human pathogenic species. Stud. Mycol. 43:8097.
52. Hamza, S. H.,, P. J. Mercado,, H. G. Skelton, and, K. J. Smith. 2003. An unusual dematiaceous fungal infection of the skin caused by Fonsecaea pedrosoi: a case report and review of the literature. J. Cutan. Pathol. 30:340343.
53. Harris, J. L., and, P. J. Szaniszlo. 1986. Localization of chitin in walls of Wangiella dermatitidis using colloidal gold-labeled chitinase. Mycologia 78:853857.
54. Harris, S. D., and, M. Momany. 2004. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet. Biol. 41:391400.
55. Hiruma, M.,, A. Kawada,, T. Ohata,, Y. Ohnishi,, H. Takahashi,, M. Mazaki,, A. Ishibashi,, K. Hatasuse,, M. Kakihara, and, M. Yoshida. 1993. Systemic phaeohyphomycosis caused by Exophiala dermatitidis. Antonie Leeuwenhoek 65:143152.
56. Hohl, P. E.,, H. P. Holley, Jr.,, E. Prevost,, L. Ajello, and, A. A. Padye. 1983. Infections due to Wangiella dermatitidis in humans: report of the first documented case from the United States and a review of the literature. Rev. Infect. Dis. 5:854864.
57. Horre, R., and, G. S. de Hoog. 1999. Primary cerebral infections by melanized fungi: a review. Stud. Mycol. 43:176193.
58. Jacobs, C. W., and, P. J. Szaniszlo. 1982. Microtubule function and its relation to cellular development and the yeast cell cycle in Wangiella dermatitidis. Arch. Microbiol. 133:155161.
59. Jacobs, C. W.,, R. L. Roberts, and, P. J. Szaniszlo. 1985. Reversal of multicellular-form development in a conditional morphological mutant of the fungus Wangiella dermatitidis. J. Gen. Microbiol. 131:17191728.
60. Jacobson, E. S. 2000. Pathogenic roles for fungal melanins. Clin. Microbiol. Rev. 13:708717.
61. Jacobson, E. S.,, E. Hove, and, H. S. Emery. 1995. Antioxidant function of melanin in black fungi. Infect. Immun. 63:49444945.
62. Johnson, D. L., and, J. R. Pringle. 1990. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111:143153.
63. Jotisankasa, V.,, H. S. Neilson, Jr., and, N. F. Conant. 1970. Phialophora dermatitidis: its morphology and biology. Sabouraudia 8:98107.
64. Kanj, S. S.,, S. S. Amr, and, G. D. Roberts. 2001. Ramichloridium mackenziei brain abscess: report of two cases and review of literature. Med. Mycol. 39:97102.
65. Kano, K. 1938. Uber die chomoblastomykase durch einen noch nicht als pathogen beschrieben p. lz: Hormiscium dermatitidis n. sp. Arch. Dermatol. 176:282294.
66. Karuppayil, S. M.,, M. Peng,, L. Mendoza,, T. A. Levins, and, P. J. Szaniszlo. 1996. Identification of the conserved coding sequences of three chitin synthase genes in Fonsecaea pedrosoi. J. Vet. Med. Mycol. 34:117125.
67. Karuppayil, S. M., and, P. J. Szaniszlo. 1997. Importance of calcium to the regulation of polymorphism in Wangiella (Exophiala) dermatitidis. J. Med. Vet. Mycol. 35:379388.
68. Kusenbach, G.,, H. Skopnik,, G. Haase,, F. Friedrichs, and, H. Doehmen. 1992. Exophiala dermatitidis in cystic fibrosis. Eur. J. Pediatr. 151:344346.
69. Kwon-Chung, K. J., and, J. E. Bennett. 1992. Phaeohyphomycosis, p. 621–677. In Medical Mycology, Lea and Febiger, Philadelphia, Pa.
70. Kwon-Chung, K. J.,, W. E. Goldman,, B. Klein, and, P. J. Szaniszlo. 1998. Fate of transforming DNA in pathogenic fungi. Med. Mycol. Suppl. 36:3844.
71. Levy, I.,, J. Stein,, S. Ashkenazi,, Z. Samra,, G. Livni, and, I. Yaniv. 2003. Ecthyma gangrenosum caused by Exoserohilum in a child with leukemia: a case report and review of the literature. Pediatr. Dermatol. 20:495497.
72. Liu, H. 2003. WdChs5p of Wangiella (Exophiala) dermatitidis, a Class V Chitin Synthase, Is Essential for Sustained Growth at Temperature of Infection. Ph.D. thesis. The University of Texas at Austin.
73. Liu, H.,, S. Kauffman,, J. M. Becker, and, P. J. Szaniszlo. 2004. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot. Cell 3:4051.
74. Liu, H.,, Z. Wang,, L. Zheng,, M. Hauser,, S. Kauffman,, J. M. Becker and, P. J. Szaniszlo. 2001. Relevance of chitin and chitin synthases to virulence in Wangiella (Exophiala) dermatitidis, a model melanized pathogen of humans, p. 463–472. In R. A. A. Muzzarelli (ed.), Chitin Enzymology 2001. Atec Edizioni, Grottammare, Italy.
75. Lo, H. J.,, J. R. Kohler,, B. DiDomenco,, D. Loebenburg,, A. Cacciapuoti, and, G. R. Fink. 1997. Nonfilamentous Candida albicans mutants are avirulent. Cell 90:939949.
76. Luche, R. M.,, R. Sumrada, and, T. G. Cooper. 1990. A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell. Biol. 10:38843895.
77. Matos, T.,, G. S. de Hoog,, A. G. de Boer,, I. de Crom, and, G. Haase. 2002. High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses 45:373377.
78. Matsumoto, T.,, A. A. Padhye,, L. Ajello, and, P. G. Standard. 1984. Critical review of human isolates of Wangiella dermatitidis. Mycologia 76:232249.
79. Matsumoto, T.,, A. A. Padhye, and, L. Ajello. 1991. Medical significance of the so-called black yeast. Eur. J. Epidemiol. 3:9195.
80. Matsumoto, T., and, L. Ajello. 1991. Dematiaceous fungi potentially pathogenic to humans and lower animals, p. 117–162. In D. K. Arora,, L. Ajello and, K. G. Mukerji (ed.), Handbook of Applied Mycology, vol. 2. Humans, Animals and Insects. Marcel Dekker, Inc., New York, N.Y.
81. Matsumoto, T.,, L. Ajello,, T. Matsuda,, P. J. Szaniszlo, and, T. J. Walsh. 1994. Developments in hyalohyphomycosis and phaeohyphomycosis. J. Med. Vet. Mycol. Suppl. 32:329349.
82. McGinnis, M. R. 1977. Wangiella, a new genus to accommodate Hormiscium dermatitidis. Mycotaxon 13:127136.
83. McGinnis, M. R. 1980. Laboratory Handbook of Medical Mycology. Academic Press, Inc., New York, N.Y.
84. McGinnis, M. R. 1983. Chromoblastomycosis and phaeohyphomycosis: new concepts, diagnosis and mycology. J. Am. Acad. Dermatol. 8:116.
85. McGinnis, M. R.,, I. F. Salkin,, W. A. Schell, and, L. Pararell. 1991. Dematiaceous fungi, p. 644–658. In A. Balows,, W. J. Hausler, Jr.,, K. L. Herrmann,, H. D. Isenberg, and, H. J. Shadomy (ed.), Manual of Clinical Microbiology, 5th ed. American Society for Microbiology, Washington, D.C.
86. McGinnis, M. R.,, S. M. Lemon,, D. H. Walker,, G. S. de Hoog, and, G. Haase. 1999. Fatal cerebritis caused by a new species of Cladophialophora. Stud. Mycol. 43:166171.
87. McIntosh, N. D. P. 1996. Yeast-to-Hypha Transition in Wangiella dermatitidis. M.A. thesis. The University of Texas at Austin.
88. Meis, J. F.,, G. M. P. Wesseling,, H. P. H. Kremer, and, P. E. Verweij. 1999. Unsuspected cerebral phaeohyphomycosis presenting as chronic basilar meningitis. Stud. Mycol. 43:163165.
89. Mendoza, A. L. 1995. Cloning and Molecular Characterization of the Chitin Synthase 1 (WdCHS1) Gene of Wangiella dermatitidis. Ph.D. thesis. The University of Texas at Austin.
90. Mendoza, L.,, S. M. Karruppayil, and, P. J. Szaniszlo. 1993. Calcium regulates in vitro dimorphism in chromoblastomycotic fungi. Mycoses 36:157164.
91. Miller, K. Y.,, J. Wu, and, B. L. Miller. 1992. stuA is required for cell pattern determination in Aspergillus. Genes Dev. 6:17701782.
92. Montijn, R. C.,, P. V. Wolven,, S. de Hoog, and, F. M. Klis. 1997. β-Glycosylated proteins in the cell wall of the black yeast Exophiala (Wangiella) dermatitidis. Microbiology 143:16731680.
93. Munro, C. A., and, N. A. R. Gow. 2001. Chitin synthesis in human pathogenic fungi. Med. Mycol. (Suppl. 1) 39:4153.
94. Myoken, Y.,, T. Sugata,, Y. Fujita,, T. Kyo,, M. Fujihara,, M. Katsu, and, Y. Mikami. 2003. Successful treatment of invasive stomatitis due to Exophiala dermatitidis in a patient with acute myeloid leukemia. J. Oral Pathol. Med. 32:5154.
95. Nishimura, K., and, M. Miyaji. 1983. Defense mechanisms of mice against Exophiala dermatitidis infection. Mycopathologia 81:921.
96. Nucci, M.,, T. Akiti,, G. Barreiros,, F. Silverra,, S. G. Revankar,, D. Sutton, and, T. F. Patterson. 2001. Nosocomial fungemia due to Exophiala jeanselmei and Rhinocladiella species: newly described causes of bloodstream infection. J. Clin. Microbiol. 39:514518.
97. Ohira, S.,, K. Isoda,, H. Hamanaka,, K. Takahashi,, K. Nishimoto, and, H. Mizutani. 2002. Phaeohyphomycosis caused by Phialophora verrucosa developed in a patient with non-HIV acquired immunodeficiency syndrome. Mycoses 45:5054.
98. Ohkusu, M.,, M. Yamaguchi,, K. Hata,, S. Yoshida,, R. Tanaka,, K. Nishimura,, G. S. de Hoog, and, K. Takeo. 1999. Cellular and nuclear characteristics of Exophiala dermatitidis. Stud. Mycol. 43:143150.
99. Okan, G., and, M. Rendon. 2001. Chromoblastomycoses in a patient with chronic obstructive pulmonary disease. Eur. Acad. Dermatol. Venereol. 15:181189.
100. Oujezdsky, K. B., and, P. J. Szaniszlo. 1974. Conidial ontogeny in Phialophora dermatitidis. Mycologia 66:537542.
101. Oujezdsky, K. B.,, S. N. Grove, and, P. J. Szaniszlo. 1973. Morphological and structural changes during the yeast-to-mold conversion of Phialophora dermatitidis. J. Bacteriol. 113:468477.
102. Padhye, A. A.,, J. D. Dunkel,, R. M. Winn,, S. Weber,, E. P. Ewing, and, G. S. de Hoog. 1999. Subcutaneous phaeohyphomycosis caused by an undescribed Cladophialophora sp. Stud. Mycol. 43:173175.
103. Padhye, A. A.,, L. Ajello,, A. W. Marion, and, K. K. Steinbronn. 1986. Phaeohyphomycosis of the nasal sinuses caused by a new species of Exoserhilum. J. Clin. Microbiol. 24:245249.
104. Padhye, A. A.,, M. S. Davis,, D. Baer,, A. Reddick,, K. K. Sinha, and, J. Ott. 1998. Phaeohyphomycosis caused by Phaeoacremonium inflatipis. J. Clin. Microbiol. 36:27632765.
105. Pappagianis, D., and, L. Ajello. 1994. Dematiaceous—a mycological misnomer? J. Med. Vet. Mycol. 32:319321.
106. Peng, M.,, C. R. Cooper, Jr., and, P. J. Szaniszlo. 1995. Genetic transformation of the pathogenic fungus Wangiella dermatitidis. Appl. Microbiol. Biotechnol. 44:444450.
107. Peng, M.,, S. M. Karuppayil,, L. Mendoza,, T. A. Levin, and, P. J. Szaniszlo. 1995. Use of the polymerase chain reaction to identify coding sequences for chitin synthase isozymes in Phialophora verrucosa. Curr. Genet. 27:517523.
108. Randhawa, H. S.,, V. Budimulja,, G. Bazaz-Malik,, K. Bramono,, M. Hiramia,, P. Kullaranjaya, and, V. Rojanavanich. 1994. Recent developments in the diagnosis and treatment of subcutaneous mycoses. J. Med. Vet. Mycol. 32:299307.
109. Roberts, R. L., and, P. J. Szaniszlo. 1978. Temperature-sensitive multicellular mutants of Wangiella dermatitidis. J. Bacteriol. 135:622632.
110. Roberts, R. L.,, R. J. Lo, and, P. J. Szaniszlo. 1979. Nuclear division in temperature-sensitive multicellular mutants of Wangiella dermatitidis. J. Bacteriol. 137:14561458.
111. Roberts, R. L.,, R. J. Lo, and, P. J. Szaniszlo. 1980. Yeast-phase cell cycle of the polymorphic fungus Wangiella dermatitidis. J. Bacteriol. 144:721731.
112. Roberts, R. L.,, R. J. Lo, and, P. J. Szaniszlo. 1980. Induction of synchronous growth in the yeast phase of Wangiella dermatitidis. J. Bacteriol. 141:981984.
113. Ruiz-Herrera, J.,, J. M. Gonzalez-Prieto, and, R. Ruiz-Medrano. 2001. Significance of the multigenic control of chitin synthase in fungi, p. 451–462. In R. A. A. Muzzarelli (ed.), Chitin Enzymology 2001. Atec Edizioni, Grottammare, Italy.
114. Schnitzler, N.,, H. Peltroche-Llacsahuanga,, N. Bestier,, J. Zundorf,, R. Lutticken, and, G. Haase. 1999. Effect of melanin and carotenoids of Exophiala (Wangiella) dermatitidis on phagocytosis, oxidative burst, and killing of human neutrophils. Infect. Immun. 67:94101.
115. Schol-Schwarz, M. B. 1968. Rhinocladiella, synonym Fonsecaea, and its relation to Phialophora. Antonie Leeuwenhoek 34:199152.
116. Sohn, K.,, C. Urban,, H. Brunner, and, S. Rupp. 2003. EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol. Microbiol. 47:89102.
117. Spect, C. A.,, Y. Liu,, P. W. Robbins,, C. E. Bulawa,, N. Iartchouk,, K. R. Winter,, P. J. Riggle,, J. C. Rhodes,, C. L. Dodge,, D. W. Culp, and, P. T. Borgia. 1996. The chsD and chsE genes of Aspergillus nidulans and their role in chitin synthesis. Fungal Genet. Biol. 20:153167.
118. Sterflinger, K.,, G. S. de Hoog, and, G. Haase. 1999. Phylogeny and ecology of meristematic ascomycetes. Stud. Mycol. 43:522.
119. Sutton, D. A.,, M. Slifkin,, R. Yakulis, and, M. G. Renaldi. 1998. U.S. case report of cerebral phaeohyphomycosis caused by Ramichoridium obovoideum (R. mackenziei): criteria for identification, therapy and review of the known dermatiaceous neurotropic taxa. J. Clin. Microbiol. 36:708715.
120. Szaniszlo, P. J. 2002. Molecular genetic studies of the model dematiaceous pathogen Wangiella dermatitidis. Int. J. Med. Microbiol. 292:381390.
121. Szaniszlo, P. J., and, M. Momany. 1993. Chitin, chitin synthase and chitin synthase conserved region homologues in Wangiella dermatitidis, p. 229–242. In B. Maresca,, G. Kobayashi, and, H. Yamaguchi (ed.), NATO Workshop Proceedings on Molecular Biology and Its Application to Medical Mycology. Springer-Verlag, New York, N.Y.
122. Szaniszlo, P. J.,, C. W. Jacobs, and, P. A. Geis. 1983. Dimorphism in pathogenic fungi, p. 373–436. In D. Howard (ed.), Fungi Pathogenic for Humans and Animals, part A. Biology. Marcel Dekker, Inc., New York, N.Y.
123. Szaniszlo, P. J.,, L. Mendoza, and, S. M. Karuppayil. 1993. Clues about chromoblastomycotic and other dematiaceous pathogens based on Wangiella as a model, p. 241–255. In H. Vanden Bossche,, F. C. Odds, and, D. Kerridge (ed.), Dimorphic Fungi in Biology and Medicine. Plenum Press, New York, N.Y.
124. Szaniszlo, P. J.,, P. A. Geis,, C. W. Jacobs,, C. R. Cooper, Jr., and, J. L. Harris. 1983. Cell wall changes associated with yeast-to-multicellular form conversion in Wangiella dermatitidis. p. 239–244. In D. Schlessinger (ed.), Microbiology—1983. American Society for Microbiology, Washington, D.C.
125. Szaniszlo, P. J.,, P. H. Hsieh, and, J. D. Marlowe. 1976. Induction and ultrastructure of the multiseptate (sclerotic) morphology in Phialophora dermatitidis. Mycologia 68:117130.
126. Szaniszlo, P. J.,, S. M. Karuppayil,, L. Mendoza, and, R. Rennard. 1993. Cell-cycle regulation of polymorphism in Wangiella dermatitidis. Arch. Med. Res. 54:251261.
127. Taylor, B. E.,, M. H. Wheeler, and, P. J. Szaniszlo. 1991. Evidence for pentaketide melanin biosynthesis in dematiaceous human pathogenic fungi. Mycologia 79:320322.
128. Tsai, H. -F.,, I. Fuji,, A. Watanabe,, M. H. Wheeler,, Y. C. Chung,, Y. Yasuoka,, Y. Ebizaka, and, K. J. Kwon Chung. 2001. Pentaketide melanin biosynthesis in Aspergillus fumigatu s requires chain-length shortening of a heptake-tide precursor. J. Biol. Chem. 276:2929229298.
129. Valdiveso, M. H.,, P. C. Mol,, J. A. Shaw,, E. Cabib, and, A. Duran. 1991. CAL1, a gene required for activity of the chitin synthase 3 in Saccharomyces cerevisiae. J. Cell Biol. 114:101109.
130. Vieira, M. R.,, A. Milheiro, and, F. A. Pacheco. 2001. Phaeohyphomycosis due to Cladosporium cladosporioides. Med. Mycol. 39:135137.
131. Walsh, T. J. 1998. Emerging fungal pathogens: evolving challenges to immunocompromised patients, p. 221–232. In W. M. Scheld,, D. Armstrong, and, J. M. Hughes (ed.), Emerging Infections. ASM Press, Washington, D.C.
132. Walsh, T. J.,, A. Groll,, J. Hiemenz,, R. Fleming,, E. Roilides, and, E. Anaissie. 2004. Infections due to emerging and uncommon medically important pathogens. Clin. Microbiol. Infect. 10(Suppl. 1):4866.
133. Walsh, T. J.,, B. DePauw,, E. Anaissie, and, P. Martino. 1994. Recent advances in the epidemiology, prevention and treatment of invasive fungal infections in neutropenic patients. J. Med. Vet. Mycol. 32:3351.
134. Wang, Q.,, H. Liu, and, P. J. Szaniszlo. 2002. Compensatory expression of five chitin synthase genes, a response to stress stimuli in Wangiella (Exophiala) dermatitidis, a melanized fungal pathogen of humans. Microbiology 148:28112817.
135. Wang, X. 1998. Construction of a Cosmid Library, and Its Use in the Cloning of the WdPKS1 gene of Wangiella dermatitidis by Mutant Complementation. M.A. thesis. The University of Texas at Austin.
136. Wang, Z. 1998. Cloning and Characterization of the Chitin Synthase 3 (WdCHS3) and Chitin Synthase 4 (WdCHS4) Genes of Wangiella dermatitidis and Expression Studies of WdCHS3. Ph.D. thesis. The University of Texas at Austin.
137. Wang, Z., and, P. J. Szaniszlo. 2000. WdCHS3, a gene that encodes a class III chitin synthase in Wangiella (Exophiala) dermatitidis, is expressed differentially under stress conditions. J. Bacteriol. 182:874881.
138. Wang, Z., and, P. J. Szaniszlo. 2002. Characterization of WdChs3p, a class III chitin synthase of Wangiella (Exophiala) dermatitidis, overexpressed in Saccharomyces cerevisiae. Med. Mycol. 40:283289.
139. Wang, Z.,, L. Zheng,, H. Liu,, Q. Wang,, M. Hauser,, S. Kauffman,, J. M. Becker, and, P. J. Szaniszlo. 2001. WdChs2p, a class I chitin synthase, together with WdChs3p (class III), contributes to virulence in Wangiella (Exophiala) dermatitidis. Infect. Immun. 69:75177526.
140. Wang, Z.,, L. Zheng,, M. Hauser,, J. M. Becker, and P. J. Szaniszlo. WdChs4p, a homolog of chitin synthase 3 in Saccharomyces cerevisiae, alone cannot support the growth of Wangiella (Exophiala) dermatitidis at the temperature of infection. Infect. Immun. 12:66196630.
141. Ward, M.,, C. J. Gimeno,, G. R. Fink, and, S. Garret. 1996. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol. Cell. Biol. 15:68546863.
142. Wheeler, M. H., and, A. A. Bell. 1987. Melanins and their importance to pathogenic fungi. Curr. Top. Med. Mycol. 2:338387.
143. Wheeler, M. H., and, R. D. Stipanovic. 1985. Melanin biosynthesis and metabolism of flaviolin and 2-hydroxyjuglene in Wangiella dermatitidis. Arch. Microbiol. 142:234241.
144. Wickes, B. L., and, K. J. Kwon-Chung. 2002. Genetic basis of pathogenicity in Cryptococcus neoformans, p. 25–49. In R. A. Calderone and, R. L. Cihlar (ed.), Fungal Pathogenesis: Principles and Clinical Applications. Marcel Dekker, Inc., New York, N.Y.
145. Yamaguchi, M.,, S. K. Biswas,, Y. Suzuki,, H. Furukawa,, M. Sameshima, and, K. Takeo. 2002. The spindle pole body duplicates in early G1 phase in the pathogenic yeast Exophiala dermatitidis : an ultrastructural study. Exp. Cell Res. 279:7179.
146. Yamaguchi, M.,, Y. Kubabrua,, M. Shimizu,, H. Furukawa,, H. Nishioka, and, K. Takeo. 2003. The spindle pole body of the pathogenic yeast Exophiala dermatitidis: variation in morphology and positional relationship to the nucleolus and the bud in interphase cells. Eur. J. Cell Biol. 82:531538.
147. Yamaguchi, M.,, S. K. Biswas,, Y. Suzuki,, H. Furukawa, and, K. Takeo. 2003. Three dimensional reconstruction of a pathogenic yeast Exophiala dermatitidis by freeze-substitution and serial sectioning electron mycoscopy. FEMS Microbiol. Lett. 219:1721.
148. Ye, X. 1998. Role of a CDC42 Homologous Gene in the Regulation of Cell Polarity and Morphogenetic Transitions in Wangiella dermatitidis. Ph.D. thesis. The University of Texas at Austin.
149. Ye, X., and, P. J. Szaniszlo. 2000. Expression of a constitutively active Cdc42 homolog promotes development of sclerotic bodies but represses hyphal growth in the pathogenic fungus Wangiella (Exophiala) dermatitidis. J. Bacteriol. 182:49414950.
150. Ye, X.,, B. Feng, and, P. J. Szaniszlo. 1999. A color-selectable and site-specific integrative transformation system for gene expression studies in the dermatiaceous fungus Wangiella (Exophiala) dermatitidis. Curr. Genet. 36:241247.
151. Zheng, L. 1997. Establishment of Genetic Transformation Systems in and Molecular Cloning of the Chitin Synthase 2 (WdCHS2) Gene, and Characterization of the WdCHS1 and WdCHS2 Genes of Wangiella dermatitidis. Ph.D. thesis. The University of Texas at Austin.
152. Zheng, L., and, P. J. Szaniszlo. 1999. Cloning and use of the WdURA5 gene as a hisG cassette selection marker for potentially disrupting multiple genes in Wangiella dermatitidis. Med. Mycol. 37:8596.

Tables

Generic image for table
Table 1.

Selected etiological agents of mycoses caused by black molds

Citation: Szaniszlo P. 2006. Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and as a Molecularly Tractable Model, p 407-428. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch28
Generic image for table
Table 2.

Summary of chitin synthase gene disruptions in wild-type

Citation: Szaniszlo P. 2006. Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and as a Molecularly Tractable Model, p 407-428. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error